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We are now able to state our enriched version of the result of Elmendorf, [22].
Other authors have obtained variants of this, notably Seymour, [32], and
Dwyer and Kan, [20]. The following theorem is one half of [17, Theorem
3.11(1)]. In this theorem, by G-complex we mean G-CW-complex.

Theorem 2.2 ([17]). The above pair of S-functors
R:G-Top — 899%, ¢: 897" _ G-Top

has the properties that if Y is a G-complex, and T is a OrG°P-diagram taking Kan
values, then there is a homotopy equivalence of Kan simplicial sets

G-Top(Y,¢(T)) = CohS(R(Y),T).

In order to prove that certain key maps are homotopy equivalences, we need
the alternative construction of the simplicial set of homotopy coherent trans-
formations using ends rather than coends. Since we will form indexed limits, we
require the receiving S-category C to be complete. Then C will be cotensored,
which means that if K is a simplicial set and C an object of C, there is an object
which we will denote by C(K, C) such that there is a natural isomorphism

S(K,C(C',C)) = C(C',C(K, C)).
Suppose
0: A® x A—C.

We can now define the homotopy coherent end of Q by
$0(4,4)= [ C(X(4,4"),0(4,4"))
4 4,4

(cf. Cordier and Porter, [18]).

Example 2.3. Suppose F,G: A — C are two S-functors, and set Q(4,4') =
C(FA,GA'). Then §, O(A, A) can be interpreted as the simplicial set of homo-
topy coherent transformations from F to G. This will be denoted by
Coh(A,C)(F,G) or more simply by CohC(F,G) if the codomain is the im-
portant information to remember whilst the domain is fixed, or just by
Coh(F,G) if there is no danger of confusion.

Given an S-functor Q : A°? x A — C, we can construct a cosimplicial object in
C, denoted Y(Q) : A — C, by

(10)  Y(Q)" =T[1{0(4o, Ay) : u € (Ner A),,u = (Ao — --- = 4,)}.

The coface and codegeneracy maps are given by formulae analogous to those
of the ‘cosimplicial replacement’ construction of Bousfield and Kan, [7], and
are given in detail in [18]. As is now standard, the Bousfield—Kan homotopy
limit of a diagram of simplicial sets can be given as a ‘total complex’ of a co-
simplicial simplicial set constructed from the given data. If Y is a cosimplicial
simplicial set,
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dijk and Svensson [31] on equivariant 2-types, but with results on function
spaces and not just homotopy classes of maps.

It is also possible to formulate a result for equivariant homotopy types with

non-trivial homotopy groups only in dimensions 1 and #. Such a homotopy
type is modelled by a crossed complex C which has precisely these groups as its

homology.
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