Colimit Theorems for Relative Homotopy Groups*

Ronald Brown ${ }^{\dagger}$
School of Mathematics, University of Wales, Bangor, Dean St., Bangor, Gwynedd LL57 1UT, UK

Philip J. Higgins, Department of Mathematics, Durham University, South Rd., Durham DH1 3LE UK

December 14, 2012

Introduction

This is the second of two papers whose main purpose is to prove a generalisation to all dimensions of the Seifert-Van Kampen theorem on the fundamental group of a union of spaces.

The first paper [10] (whose results were announced in [8]) developed the necessary 'algebra of cubes'. Categories \mathcal{G} of ω-groupoids and \mathcal{C} of crossed complexes were defined, and the principal result of [10] was an equivalence of categories $\gamma: \mathcal{G} \rightarrow \mathcal{C}$. Also established were a version of the homotopy addition lemma, and properties of 'thin' elements, in an ω-groupoid. In particular it was proved that an ω-groupoid is a special kind of Kan cubical complex, in that every box has a unique thin filler. All these results will be used here.

Throughout this paper we consider filtered spaces

$$
X_{*}: X_{0} \subseteq X_{1} \subseteq X_{2} \subseteq \cdots
$$

and associate with such an X_{*} a cubical complex $R X_{*}$ which in dimension n is the set of filtered maps $I_{*}^{n} \rightarrow X_{*}$, where I_{*}^{n} is the standard n-cube with its filtration by skeletons. Then $R X_{*}$ has defined

[^0]on it, in a natural, geometric way, structures of connections Γ_{j} and compositions $+_{i}$, satisfying rules given in [10, Section 1]. In particular, the n compositions $+_{1}, \cdots,{ }_{n}$ defined on $R_{n} X_{*}$ correspond to gluing n-cubes together in n different directions.

We now factor $R X_{*}$ by the relation of homotopy rel end points through filtered maps rel vertices to obtain a quotient map $p: R X_{*} \rightarrow \varrho X_{*}$ where ϱX_{*} also is a cubical complex with connections. The first main result (Theorem A of Section 2) is that the $+_{i}$ are inherited by ϱX_{*}, which becomes an ω-groupoid.

Our promised generalisation of the Seifert-Van Kampen theorem to all dimension is Theorem B of Section 4, which takes the form of a colimit theorem for ϱX_{*}. Its proof follows closely the structure of some proofs of the one-dimensional theorem (as in [11], for example) but makes crucial use of properties of thin elements in ϱX_{*}. For the applications, this colimit theorem is recast in terms of the closely related invariant ΠX_{*}, the fundamental crossed complex of X_{*} (studied under other names in [3] and [23]). We show in Section 5 that $\gamma \varrho X_{*}$ is naturally isomorphic to ΠX_{*}, and hence obtain colimit theorems for ΠX_{*} (Theorems C and D of Section 5). In the proofs of all these results, one of the key ingredients is the deformation theorem of Section 3 which says, essentially, that $p: R X_{*} \rightarrow \varrho X_{*}$ is a fibration in the sense of Kan. This allows a characterisation of thin elements in ϱX_{*} and also helps to establish the connection between ϱX_{*} and ΠX_{*}.

In Section 6 we show how to construct colimits of crossed complexes, making particular use of induced modules, and induced crossed modules, over groupoids. In Section 7 we show that Theorem C contains as very special cases not only the Seifert-Van Kampen theorem (in its groupoid version), but also the fact that $\pi_{n} S^{n} \cong \mathbb{Z}$, that $\pi_{n}\left(U \cup\left\{e_{\lambda}^{n}\right\}, U\right)$ is a free $\pi_{1} U$-module on the n-cells for $n>2$ (free crossed $\pi_{1} U$-module if $n=2$), and that if (V, W) is an $(n-1)$-connected pair, then $\pi_{i}(V \cup C W)$ is 0 for $i<n$ and is $\pi_{n}(V, W)$ factored by the action of $\pi_{1} W$ if $i=n$.

At this stage, we have not used homology at all. However, the last mentioned result, together with the absolute Hurewicz theorem, is easily seen to imply the relative Hurewicz theorem; in Section 8 we give a proof of the absolute theorem in the present context, and relate the homotopy exact sequence of the fibration $p: R X_{*} \rightarrow \varrho X_{*}$ to work of Blakers [3] and Whitehead [22, 24]. In Section 9 we establish that an ω-groupoid is isomorphic to some ϱX_{*}, and that any crossed complex is isomorphic to some ΠY_{*}; hence these constructions generalise constructions of Eilenberg-Mac Lane complexes. Finally, we prove that ϱI_{*}^{n} is the free ω-groupoid on one generator of dimension n.

1 Thin homotopies

By a filtered space X_{*} is meant a space X and a sequence $X_{0} \subseteq X_{1} \subseteq X_{2} \subseteq \cdots$ of subspaces of X. By a filtered map $f: X_{*} \rightarrow Y_{*}$ of filtered spaces is meant a map $f: X \rightarrow Y$ of spaces such that $f\left(X_{s}\right) \subseteq Y_{s}, s=0,1,2, \ldots$ A standard example of a filtered space is a $C W$-complex with its skeletal filtration. A cellular map of $C W$-complexes is then a filtered map of the associated filtered spaces.

Let I^{n} be the standard n-cube with its standard cell structure as a product of n copies of $I=[0,1]$. Then the filtered space consisting of I^{n} with its skeletal filtration $I_{0}^{n} \subseteq I_{1}^{n} \subseteq I_{2}^{n} \subseteq \cdots$ will be written I_{*}^{n}. We also write $\boldsymbol{\partial}\left(I^{n}\right)$ for the boundary of I^{n}, i.e. the subcomplex I_{n-1}^{n}. The filtered space associated with the skeletal filtration of a subcomplex B of I^{n} will be written B_{*}.

Two filtered maps $f_{0}, f_{1}: X_{*} \rightarrow Y_{*}$ of filtered spaces will be called thin homotopic if there is a homotopy $f: X \times I \rightarrow Y$ from f_{0} to f_{1} such that $f\left(X_{s} \times I\right) \subseteq Y_{s}, s=0,1,2, \cdots$; such an f is called a thin homotopy, and we write $f: f_{0} \equiv f_{1}$.

Let X_{*} be a filtered space. Then $R_{n} X_{*}$ will denote the set of filtered maps $I_{*}^{n} \rightarrow X_{*}$. These sets for all $n \geqslant 0$, together with the standard face and degeneracy maps, and with the connections and compositions defined in [10], form a cubical complex with connections and compositions, which we write $R X_{*}$.

The set of classes of elements of $R_{n} X_{*}$ under thin homotopy rel vertices of I^{n} is written $\varrho_{n} X_{*}$, the class of $\alpha \in R_{n} X$ is written $\bar{\alpha}$, and the quotient map is written $p: R_{n} X_{*} \rightarrow \varrho_{n} X_{*}$. It is easy to check that the connections and the face and degeneracy maps of $R X_{*}$ are inherited by ϱX_{*}, giving it the structure of cubical complex with connections. We will prove in Section 2 that the compositions also are inherited. This and later proofs require techniques for constructing thin homotopies, and for this we use methods of collapsing.

Let B, C be subcomplexes of I^{n} such that $C \subseteq B$. Recall that C is an elementary collapse of B, written $B \searrow C$, if for some $s \geqslant 1$ there is an s-cell a of B and ($s-1$)-face b of a such that

$$
B=C \cup a, \quad C \cap a=\boldsymbol{\partial}(a) \backslash b
$$

(where $\boldsymbol{\partial}(a)$ denotes the union of the proper faces of a). If there is a sequence

$$
B_{1} \searrow B_{2} \unlhd \cdots \searrow B_{r}
$$

of elementary collapses, then we write $B_{1} \searrow B_{r}$ and say B_{1} collapses to B_{r}.
It is well known that if C is a subcomplex of B then $B \times I$ collapses to $B \times\{0\} \cup C \times I$ (this is proved by induction on the dimension of $B \backslash C$), and that I^{n} collapses to any one of its vertices (this may be proved by induction on n using the first example.)

Let B be a subcomplex of I^{n}, let $m \geqslant 2$, and let $B \times I^{m}$ be given the product cell structure, so that the skeletal filtration gives a filtered space $B_{*} \times I_{*}^{m}$. Let $h: B \times I^{m} \rightarrow X$ be a map. Fixing the i th coordinate of I^{m} at the value t, where $0 \leqslant t \leqslant 1$, we obtain a map $\partial_{i}^{t} h: B \times I^{m-1} \rightarrow X$. If X_{*} is a filtered space, and $\partial_{i}^{t} h: B_{*} \times I_{*}^{m-1} \rightarrow X_{*}$ is a filtered map for each $0 \leqslant t \leqslant 1$, we say h is a thin homotopy in the ith direction of I^{m}. (A similar definition applies to a map $h: I^{m} \rightarrow X$.) In such case we write $h: \alpha \equiv_{i} \beta$ where $\alpha=\partial_{i}^{0} h, \beta=\partial_{i}^{1} h$. It is easy to see that the relation \equiv_{i} defined on filtered maps $B \times I^{m-1} \rightarrow X$ by the existence of such an h is an equivalence relation independent of $i, 1 \leqslant i \leqslant m$.

A map $h: B_{*} \times I_{*}^{2} \rightarrow X_{*}$ is call a thin double homotopy if it is a thin homotopy in each of the two directions of I^{2}; this is equivalent to $h\left(B_{s} \times I^{2}\right) \subseteq X_{s+1}, h\left(B_{s} \times \boldsymbol{\partial} I^{2}\right) \subseteq X_{s}, s=0,1,2, \cdots$. If K is a proper subcomplex of I^{2}, and $k: B \times K \rightarrow X$ satisfies $k\left(B_{s} \times K\right) \subseteq X_{s}, s=0,1,2, \cdots$, then by an abuse of language we call k also a thin double homotopy.

Consider now a filtered space X_{*}.

Proposition 1.1 Let B, C be subcomplexes of I^{n} such that $B \searrow C$. Let

$$
f: B \times \boldsymbol{\partial} I^{2} \rightarrow X, \quad g: C \times I^{2} \rightarrow X
$$

be thin double homotopies which agree on $C \times \boldsymbol{\partial} I^{2}$. Then $f \cup g$ extends to a thin double homotopy $h: B \times I^{2} \rightarrow X$.

Proof It is sufficient to consider the case of an elementary collapse $B \searrow^{e} C$. Suppose then $B=$ $C \cup a, C \cap a=\boldsymbol{\partial} a \backslash b$, where a is an s-cell and b is an $(s-1)$-face of a.

Let $r: a \times I^{2} \rightarrow\left(a \times \boldsymbol{\partial} I^{2}\right) \cup\left((\boldsymbol{\partial} a \backslash b) \times I^{2}\right)$ be a retraction. Then r defines an extension $h: B \times I^{2} \rightarrow X$ of $f \cup g$. Since f is a thin double homotopy,

$$
h\left(a \times I^{2}\right)=f\left(a \times \boldsymbol{\partial} I^{2}\right) \subseteq X_{s}
$$

and since g is a thin double homotopy

$$
h\left((\boldsymbol{\partial} a \backslash b) \times I^{2}\right)=g\left((\boldsymbol{\partial} a \backslash b) \times I^{2}\right) \subseteq X_{s}
$$

Hence $h\left(\alpha \times I^{2}\right) \subseteq X_{s}$, and in particular $h\left(b \times I^{2}\right) \subseteq X_{s}$. These conditions, with those of $f \cup g$, imply that h is a thin double homotopy.

Corollary 1.2 Let X_{*} be a filtered space and let B be a subcomplex of I^{n} such that B collapses to one of its vertices. Then any thin double homotopy rel vertices $f: B_{*} \times \boldsymbol{\partial} I_{*}^{2} \rightarrow X_{*}$ extends to a thin double homotopy rel vertices $h: B_{*} \times I_{*}^{2} \rightarrow X_{*}$.

Proof Let ν be a vertex of B such that $B \searrow\{\nu\}$. Now $f\left(\{\nu\} \times \boldsymbol{\partial} I^{2}\right) \subseteq X_{0}$. Since the homotopies are rel vertices, $f \mid\{\nu\} \times \boldsymbol{\partial} I^{2}$ extends to a constant map $g:\{\nu\} \times I^{2} \rightarrow X$ with image in X_{0}. Thus g is a thin double homotopy. By Proposition 1.1, $f \cup g$ extends to a thin double homotopy $h: B \times I^{2} \rightarrow X$.

The following result is joint work with N. Ashley.
Proposition 1.3 Let B, A be subcomplexes of I^{n} such that $B \subseteq A$ and B collapses to one of its vertices. Let X_{*} be a filtered space. Let $\alpha, \beta: A_{*} \rightarrow X_{*}$ be filtered maps and let $\psi: \alpha \equiv \beta, \phi: \alpha \mid B \equiv$ $\beta \mid B$ be filter homotopies rel vertices. Then there is a thin double homotopy $H: A \times I^{2} \rightarrow X$ such that H is a homotopy rel end maps of ψ to a thin homotopy $\alpha \equiv \beta$ extending ϕ.

Proof Let $L=(I \times\{0\}) \cup(I \times I)$. Define

$$
l:(A \times L) \cup(B \times I \times\{1\}) \rightarrow X
$$

by $l(x, t, 0)=\psi(x, t), l(x, 0, t)=\alpha(x), l(x, 1, t)=\beta(x), l(y, t, 1)=\phi(y, t), x \in A, y \in B, t \in I$. Then $f=l \mid B \times \boldsymbol{\partial} I^{2}$ and $k=l \mid A \times L$ are thin double homotopies.

By Corollary 1.2, f extends to a thin double homotopy $h: B \times I^{2} \rightarrow X$.
We extend $k \cup h:(A \times L) \cup\left(B \times I^{2}\right) \rightarrow X$ to a thin double homotopy $H: A \times I^{2} \rightarrow X$ by induction on the dimension of $A \backslash B$.

Suppose that H_{s} is a thin double homotopy defined on $(A \times L) \cup\left(\left(A_{s} \times B\right) \times I^{2}\right)$, extending $H_{-1}=k \cup h$. For each $(s+1)$-cell a of $A \backslash B$, choose a retraction

$$
r_{a}: a \times I^{2} \rightarrow(\boldsymbol{\partial} a \times L) \cup\left(a \times I^{2}\right)
$$

These retractions extend H_{s} to H_{s+1} defined also on $A_{s+1} \times I^{2}$. Since $r_{a}\left(a \times I^{2}\right) \subseteq X_{s+1}$, it follows that H_{s+1} is also a thin double homotopy.

Clearly $H=H_{n}$ is a thin double homotopy as required.
Corollary 1.4 Let B, A, X_{*} be as in Proposition 1.3. If $\alpha, \beta: A_{*} \rightarrow X_{*}$ are maps which are thin homotopic rel vertices, then any thin homotopy rel vertices $\alpha|B \equiv \beta| B$ extends to a thin homotopy $\alpha \equiv \beta$.

If $f: Y_{*} \rightarrow X_{*}$ is a filtered map, where Y_{*} is a CW-complex with its skeletal filtration, we say that f is deficient on a cell a of Y if $\operatorname{dim} a=s$ but $f(a) \subseteq X_{s-1}$.

Proposition 1.5 (thin homotopy extension property). Let B, A be subcomplexes of I^{n} such that $B \subseteq A$. Let $f: A \times\{0\} \cup B \times I \rightarrow X$ be a map such that $f \mid A \times\{0\}$ is a filtered map and $f \mid B \times I$ is a thin homotopy rel vertices. Then f extends to a thin homotopy $h: A \times I \rightarrow X$. Further, h can be chosen so that if f is deficient on a cell $a \times\{0\}$ of $(A \backslash B) \times\{0\}$, then h is deficient on $a \times\{1\}$.

The proof of this proposition is an easy induction on the dimension of the cells of $A \backslash B$, using retractions $a \times I \rightarrow a \times\{0\} \cup \boldsymbol{\partial} a \times I$ for each cell a of $A \backslash B$.

$2 \varrho X_{*}$ is an ω-groupoid

We now show that the compositions in $R X_{*}$ are inherited by ϱX_{*}. This gives us a definition of a higher homotopy groupoid.

Theorem A. If X_{*} is a filtered space, then the compositions on $R X_{*}$ induce compositions on ϱX_{*} which, together with the induced face and degeneracy maps and connections, give ϱX_{*} the structure of ω-groupoid.

Proof We need some notation for multiple compositions in $R_{n} X_{*}$.
Let $(m)=\left(m_{1}, \ldots, m_{n}\right)$ be an n-tuple of positive integers. Let

$$
\phi_{(m)}: I^{n} \rightarrow\left[0, m_{1}\right] \times \cdots \times\left[0, m_{n}\right]
$$

be the map $\left(x_{1}, \ldots, x_{n}\right) \mapsto\left(m_{1} x_{1}, \ldots, m_{n} x_{n}\right)$. Then a subdivision of type (m) of a map $\alpha: I^{n} \rightarrow X$ is a factorisation $\alpha=\alpha^{\prime} \circ \phi_{(m)}$; its parts are the cubes $\alpha_{(r)}$ where $(r)=\left(r_{1}, \ldots, r_{n}\right)$ is an n-tuple of integers with $1 \leqslant r_{i} \leqslant m_{i}, i=1, \ldots, n$, and where $\alpha_{(r)}: I^{n} \rightarrow X$ is given by

$$
\left(x_{1}, \ldots, x_{n}\right) \mapsto \alpha^{\prime}\left(x_{1}+r_{1}-1, \ldots, x_{n}+r_{n}-1\right)
$$

We then say that α is the composite of the cubes $\alpha_{(r)}$ and write $\alpha=\left[\alpha_{(r)}\right]$. The domain of $\alpha_{(r)}$ is then the set $\left\{\left(x_{1}, \ldots, x_{n}\right) \in I^{n}: r_{i}-1 \leqslant i x_{i} \leqslant r_{i}, 1 \leqslant i \leqslant n\right\}$.

The composite is in direction j if m_{j} is the only $m_{i}>1$, and we then write $\alpha=\left[\alpha_{1}, \ldots, \alpha_{m j}\right]_{j}$; the composite is in the directions $j, k(j \neq k)$ if m_{j}, m_{k} are the only $m_{i}>1$, and we then write

$$
\alpha=\left[\alpha_{r s}\right]_{j, k}
$$

$\left(r=1, \cdots, m_{j} ; s=1, \cdots, m_{k}\right)$.
A composition $+_{i}$ on $\varrho_{n} X_{*}$ is defined as follows.
Let $\bar{\alpha}, \bar{\beta} \in \varrho_{n} X_{*}$ satisfy $\partial_{i}^{1} \bar{\alpha}=\partial_{i}^{0} \bar{\beta}$. Then $\partial_{i}^{1} \alpha \equiv \partial_{i}^{0} \beta$, so we may choose $h: I^{n} \rightarrow X$, a thin homotopy in the i th direction, so that $\gamma=[\alpha, h, \beta]_{i}$ is defined in $R_{n} X_{*}$. We let $\bar{\alpha}+{ }_{i} \bar{\beta}=\bar{\gamma}$ and prove this composition well-defined.

For this it is sufficient, by symmetry, to suppose $i=n$. The following picture illustrates the proof.

Figure 1
Let $\gamma^{\prime}=\left[\alpha^{\prime}, h^{\prime}, \beta^{\prime}\right]_{n}$ be alternative choices. Then there exist thin homotopies $k: \alpha \equiv \alpha^{\prime}, l:$ $\beta \equiv \beta^{\prime}$ (in the $(n+1)$ st direction). We view I^{n+1} as a product $I^{n-1} \times I^{2}$ and define a thin double homotopy rel vertices $f: I^{n-1} \times \boldsymbol{\partial} I^{2} \rightarrow X$ by $f(x, t, 0)=h(x, t), f(x, t, 1)=h^{\prime}(x, t), f(x, 0, t)=$ $k(x, 1, t), f(x, 1, t)=l(x, 0, t)$, where $x \in I^{n-1}$ and $t \in I$. By Corollary 1.2, f extends to a thin double homotopy $H: I^{n-1} \times I^{2} \rightarrow X$. Then $[k, H, l]_{n}$ is defined and is a thin homotopy $\gamma \equiv \gamma^{\prime}$. This completes the proof that $+_{n}$, and by symmetry $+_{i}$, is well defined.

Suppose now that $\alpha+{ }_{i} \beta$ is defined in $R_{n} X_{*}$. Let $h: \partial_{i}^{1} \alpha \equiv_{i} \partial_{i}^{0} \beta$ be the constant thin homotopy in the i th direction. Then $\alpha+{ }_{i} \beta$ is a thin homotopic to $[\alpha, h, \beta]_{i}$ and so $\overline{\alpha+{ }_{i} \beta}=\bar{\alpha}+{ }_{i} \bar{\beta}$. Thus the operations $+_{i}$ on $\varrho_{n} X_{*}$ are induced by those on $R_{n} X_{*}$ in the usual algebraic sense.

Further, if $\bar{\alpha}+{ }_{i} \bar{\beta}$ is defined in $\varrho_{n} X_{*}$, then we may choose representatives $\alpha^{\prime}, \beta^{\prime}$ of $\bar{\alpha}, \bar{\beta}$ such that $\alpha^{\prime}+{ }_{i} \beta^{\prime}$ is defined and represents $\bar{\alpha}+{ }_{i} \bar{\beta}$ (for example we may take $\alpha^{\prime}=\alpha, \beta^{\prime}=h+{ }_{i} \beta^{\prime}$ where $\left.h: \partial_{i}^{1} \alpha \equiv{ }_{i} \partial_{i}^{0} \beta\right)$.

Defining $-_{i}(\bar{\alpha})=\left(-{ }_{i} \alpha\right)$, one easily checks that $+_{i}$ and $-_{i}$ make $\varrho_{n} X_{*}$ a groupoid with initial, final and identity maps $\partial_{i}^{0}, \partial_{i}^{1}$ and ε_{i}.

The laws for $\varepsilon_{j}, \partial_{j}^{\tau}, \Gamma_{j}$ of a composite $\bar{\alpha}+{ }_{i} \bar{\beta}$ follow from the laws in $R_{n} X_{*}$ by choosing the representatives α, β so that $\alpha+{ }_{i} \beta$ is defined.

Finally, we must verify the interchange law for $+{ }_{i},+_{j}(i \neq j)$. By symmetry, it is sufficient to assume $i=n-1, j=n$.

Suppose that $\bar{\alpha}+{ }_{n-1} \bar{\beta}, \bar{\gamma}+{ }_{n-1} \bar{\delta}, \bar{\alpha}+{ }_{n} \bar{\gamma}, \bar{\beta}+{ }_{n} \bar{\delta}$ are defined in $\varrho_{n} X_{*}$. We choose the representatives $\alpha, \beta, \gamma, \delta$ and construct in $R_{n} X_{*}$ a composite

$$
\left[\begin{array}{ccc}
\alpha & k & \gamma \tag{2.1}\\
h & H & h^{\prime} \\
\beta & k^{\prime} & \delta
\end{array}\right]_{n-1, n}
$$

in which the thin homotopies h, h^{\prime} in the $(n-1)$ st direction and the thin homotopies k, k^{\prime} in the nth direction exist, because the appropriate composites are defined. To construct H, we define a thin double homotopy $f: I^{n-2} \times I^{2} \rightarrow X$ by $f(x, 0, t)=k(x, 1, t), f(x, 1, t)=k^{\prime}(x, 0, t), f(x, t, 0)=$ $h(x, t, 1), f(x, t, 1)=h^{\prime}(x, t, 0)$ where $x \in I^{n-2}$, and $t \in I$. By Corollary $1.2, f$ extends to a thin double homotopy $H: I^{n-2} \times I^{2} \rightarrow X$. Then the composite (2.1) is defined in $R_{n} X$ and the interchange law

$$
\left(\bar{\alpha}+{ }_{n-1} \bar{\beta}\right)+_{n}\left(\bar{\gamma}+{ }_{n-1} \bar{\delta}\right)=\left(\bar{\alpha}+{ }_{n} \bar{\gamma}\right)+{ }_{n-1}\left(\bar{\beta}+{ }_{n} \bar{\delta}\right)
$$

is readily deduced by evaluating (2.1) in two ways.
This completes the proof that ϱX_{*} is an ω-groupoid.
We call ϱX_{*} the homotopy ω-groupoid of the filtered space X_{*}.
A filtered map $f: X_{*} \rightarrow Y_{*}$ of filtered spaces clearly defines a map $R f: R X_{*} \rightarrow R Y_{*}$ of cubical complexes with connections and compositions, and a map $\varrho f: \varrho X_{*} \rightarrow \varrho X_{*}$ of ω-groupoids. So we have a functor

$$
\varrho:(\text { filtered spaces }) \rightarrow(\omega \text {-groupoids }) .
$$

The question of the behaviour of ϱ with regard to homotopies of filtered maps will be considered in later papers ${ }^{1}$. At this stage we can use standard results in homotopy theory to prove:

Proposition 2.2 Let $f: X_{*} \rightarrow Y_{*}$ be a filtered map of filtered spaces such that each $f_{n}: X_{n} \rightarrow Y_{n}$ is a homotopy equivalence. Then $\varrho f: \varrho X_{*} \rightarrow \varrho Y_{*}$ is an isomorphism of ω-groupoids.

Proof This is immediate from [13, (10.11)].

3 The fibration and deformation theorems

The following result is an easy and memorable consequence of the deformation theorem (Theorem 3.2) below.

Theorem 3.1 (the fibration theorem). Let X_{*} be a filtered space. Then the quotient map $p: R X_{*} \rightarrow$ ϱX_{*} is a Kan fibration.

The deformation theorem is a more explicit and slightly stronger form of this result; it is needed as a technical tool in later proofs.

[^1]First let C be an r-cell in the n-cube I^{n}. Two $(r-1)$-faces of C are called opposite if they do not meet. A partial box in C is a subcomplex B of C generated by one $(r-1)$-face b of C (called a base of B) and a number, possibly zero, of other $(r-1)$-faces of C none of which is opposite to b. The partial box is a box if its $(r-1)$-cells consist of all but one of the $(r-1)$-faces of C.

Theorem 3.2 (the deformation theorem). Let X_{*} be a filtered space, and let $\alpha \in R_{n} X_{*}$. Let B be a partial box in $I^{n}, \gamma: B_{*} \rightarrow X_{*}$ a filtered map, and suppose that for each $(n-1)$-face a of B, the maps $\alpha|a, \gamma|$ a are thin homotopic rel vertices. Then α is a thin homotopic to a map $\beta: I^{n} \rightarrow X$ extending γ. Further, if α is deficient (i.e. $\alpha\left(I^{n}\right) \subseteq X_{n-1}$), then β may be chosen to be deficient.

The proof requires the following lemma.

Lemma 3.3 Let B, B^{\prime} be partial boxes in an r-cell C of I^{n} such that $B^{\prime} \subseteq B$. Then there is a chain

$$
B=B_{s} \searrow B_{s-1} \searrow \cdots \searrow B_{1}=B^{\prime}
$$

such that
(i) each B_{i} is a partial box in C;
(ii) $B_{i+1}=B_{i} \cup a_{i}$ where a_{i} is an $(r-1)$-cell of C not in B_{i};
(iii) $a_{i} \cap B_{i}$ is a partial box in a_{i}.

Proof We first show that there is a chain $B=B_{s} \supset B_{s-1} \supset \cdots \supset B_{1}=B^{\prime}$ of partial boxes and a set of $(r-1)$-cells $a_{1}, a_{2}, \cdots, a_{s-1}$ such that $B_{i+1}=B_{i} \cup a_{i}, a_{i} \subseteq B_{i}$. If B and B^{\prime} have a common base this is clear, since we may adjoin to B^{\prime} the $(r-1)$-cells of $B \backslash B^{\prime}$ one at a time in any order. If B and B^{\prime} have no common base, choose a base b for B and let b^{*} be its opposite face in C. Then neither b nor b^{*} is in B^{\prime}. Hence $B_{2}=B^{\prime} \cup b$ is a partial box with base b and we are reduced to the first case.

Now consider the partial box $B_{i+1}=B_{i} \cup a_{i}, a \subseteq B_{i}$. We claim that $a_{i} \cap B_{i}$ is a partial box in a_{i}. To see this, choose a base b for B_{i+1} with $b \neq a_{i}$; this is possible because if a_{i} were the only base for B_{i+1}, then B_{i} would consist of a number of pairs of opposite faces of C and would not be a partial box. We now have $a_{i} \neq b, a_{i} \neq b^{*}$, so $a_{i} \cap b$ is an $(r-2)$-face of a_{i}. Its opposite face in a_{i} is $a_{i} \cap b^{*}$ and this is not in B_{i} because the only $(r-1)$-faces of C which contain it are a_{i} and b^{*}. Hence $a_{i} \cap B_{i}$ is a partial box with base $a_{i} \cap b$.

The proof is now completed by induction on the dimension r of C. If $r=1$, the lemma is trivial. If $r>1$, choose B_{i}, a_{i} as above. Since $a_{i} \cap B_{i}$ is a partial box in a_{i}, there is a box J in a_{i} containing it. The elementary collapse $a_{i} \searrow_{\searrow}^{e} J$ gives $B_{i+1} \searrow B_{i} \cup J$. But by the induction hypothesis, J can be collapsed to the partial box $a_{i} \cap B_{i}$ in a_{i}, and this implies $B_{i+1} \searrow B_{i}$.
Proof of Theorem 3.2. Let B_{1} be any $(n-1)$-cell contained in B. We choose a chain $B=B_{s} \searrow$ $B_{s-1} \searrow \cdots \searrow B_{1}$ of partial boxes and $(n-1)$-cells $a_{1}, a_{2}, \cdots, a_{s-1}$ as in the lemma.

We construct thin homotopies $\phi_{i}: \alpha\left|B_{i} \equiv \gamma\right| B_{i}$ by induction on i, starting with ϕ_{1} any thin homotopy $\alpha\left|B_{1} \equiv \gamma\right| B_{1}$. Suppose ϕ_{i} has been constructed and extends ϕ_{i-1}. Then $\left.\phi_{i} \mid a_{i} \cap B_{i}\right)$ is
defined. Since $a_{i} \cap B_{i}$ is a partial box, the lemma implies that $a_{i} \cap B_{i}$ collapses to any of its vertices. Since $\alpha\left|a_{i} \equiv \gamma\right| a_{i}$, the homotopy $\phi_{i} \mid\left(a_{i} \cap B_{i}\right)$ extends, by Corollary 1.4, to a thin homotopy $\alpha\left|a_{i} \equiv \gamma\right| a_{i}$; this, with ϕ_{i}, defines ϕ_{i+1}.

Finally, we apply the thin homotopy extension property (Proposition 1.5) to extend $\phi_{s}: \alpha \mid B \equiv \gamma$ to a thin homotopy $\alpha \equiv \beta$, for some β extending γ. The last part of Proposition 1.5 gives the final part of Theorem 3.2.

For some applications of the deformation theorem, it is convenient to work in the category of cubical complexes. To this end, we write I^{n} not only for the geometric n-cube, but also for its model as a cubical complex, namely the free cubical complex on one generator c^{n} of dimension n. Then an element γ of dimension n of a cubical complex C determines a unique cubical map $\hat{\gamma}: I^{n} \rightarrow C$ such that $\hat{\gamma}\left(c^{n}\right)=\gamma$. In particular, a filtered map $\gamma: I_{*}^{n} \rightarrow X_{*}$ determines a unique cubical map $\hat{\gamma}: I^{n} \rightarrow R X_{*}$ such that $\hat{\gamma}\left(c^{n}\right)=\gamma$. Also, if P is a subcomplex of the geometric n-cube P then P determines a subcomplex, also written P, of the cubical complex I^{n}, and a filtered map $\gamma: P_{*} \rightarrow X_{*}$ determines uniquely a cubical map $\hat{\gamma}: P \rightarrow R X_{*}$.

We can now rewrite the deformation theorem as follows.

Corollary 3.4 Let B be a box in I^{n} and let $i: B \rightarrow I^{n}$ be the inclusion. Let X_{*} be a filtered space, and suppose given a commutative diagram of cubical maps

Then there is a map $\beta: I^{n} \rightarrow R X_{*}$ such that $\beta i=\gamma, p \beta=\bar{\alpha}$. Further, if $\bar{\alpha}\left(c^{n}\right)$ has a deficient representative, then β may be chosen so that $\beta\left(c^{n}\right)$ is deficient.

The fibration theorem (Theorem 3.1) is immediate from the first part of Corollary 3.4.
One application of Corollary 3.4 is to the lifting of subdivisions from $\varrho_{n} X_{*}$ to $R_{n} X_{*}$. For the proof of this, and of the union theorem in the next section, we require the following construction.

Let $(m)=\left(m_{1}, \cdots, m_{n}\right)$ be an n-tuple of positive integers. The subdivision of I^{n} with small n-cubes $c_{(r)},(r)=\left(r_{1}, \cdots, r_{n}\right), 1 \leqslant r_{i} \leqslant m_{1}$, where $c_{(r)}$ lies between the hyperplanes $x_{i}=\left(r_{i}-1\right) / m_{i}$ and $x_{i}=r_{i} / m_{i}$ for $i=1, \cdots, n$, is called the subdivision of I^{n} of type (m).

Proposition 3.5 Let X_{*} be a filtered space and $\bar{\alpha}=\left[\bar{\alpha}_{(r)}\right]$ a subdivision of an element $\bar{\alpha}$ of $\varrho_{n} X_{*}$. Then there is an element β of $R_{n} X_{*}$ and a subdivision $\beta=\left[\beta_{(r)}\right]$ of β, where all $\beta_{(r)}$ lie in $R_{n} X_{*}$ such that $\bar{\beta}=\bar{\alpha}$ and $\bar{\beta}_{(r)}=\bar{\alpha}_{(r)}$ for all (r). Further, if each $\bar{\alpha}_{(r)}$ has a deficient representative, then the $\beta_{(r)}$, and hence also β, may be chosen to be deficient.

Proof Let K be the cell complex of the subdivision of I^{n} of the same type as the given subdivision of $\bar{\alpha}$. Then K collapses to a vertex, so that there is a chain

$$
K=A_{s} \searrow A_{s-1} \searrow \cdots \searrow A_{1}=\{\nu\}
$$

of elementary collapses, where $A_{i+1}=A_{i} \cup a_{i}$ for some cell a_{i} of K, and $A_{i} \cap a_{i}$ is a box in a_{i}.
We now work in terms of the corresponding cubical complexes $K=A_{s}, A_{s-1}, \ldots, A_{1}$, where K has unique nondegenerate elements $c_{(r)}$ of dimension n. The subdivision of $\bar{\alpha}$ determines a unique cubical $\operatorname{map} g: K \rightarrow \varrho X_{*}$ such that $g\left(c_{(r)}\right)=\bar{\alpha}_{(r)}$. We construct inductively maps $f_{i}: A_{i} \rightarrow R X_{*}, i=1, \cdots, s$, such that f_{i} extends $f_{i-1}, p f_{i}=g \mid A_{i}$, and $f_{i+1}\left(a_{i}\right)$ is deficient if $g\left(a_{i}\right)$ has a deficient representative. The induction is started by choosing $f_{1}(\nu)$ to be any element such that $p f_{1}(\nu)=g(\nu)$. The inductive step is given by Corollary 3.4.

Let $f=f_{s}: K \rightarrow R X_{*}$, and let $\beta_{(r)}=f\left(c_{(r)}\right)$ for all (r). The the $\beta_{(r)}$ compose in $R_{n} X_{*}$ to give an element $\beta=\left[\beta_{(r)}\right]$ as required.

In any ω-groupoid G, an element $x \in G_{n}$ is thin if it can be written as a composite $x=\left[x_{(r)}\right]$ with each entry of the form $\varepsilon_{j} y$ or of the form a repeated negative of $\Gamma_{j} y[10$, Definition (4.11)]. The following characterisation of thin elements of $\varrho_{n} X_{*}$ is essential for later work.

Theorem 3.6 Let X_{*} be a filtered space and let $n \geqslant 1$. Then an element of $\varrho_{n} X_{*}$ is thin if and only if it has a deficient representative.

Proof The case $n=1$ is trivial, so we suppose $n \geqslant 2$.
First suppose that α in $R_{n} X_{*}$ is deficient. Define $\Psi_{i} \alpha \in R_{n} X_{*}$ by

$$
\Psi_{i} \alpha=\left[-\varepsilon_{i} \partial_{i}^{1} \alpha,-\Gamma_{i} \partial_{i+1}^{0} \alpha, \alpha, \Gamma_{i} \partial_{i+1}^{1} \alpha\right]_{i+1}
$$

where - denotes $-_{i+1}$. Let $\Psi \alpha=\Psi_{1} \cdots \Psi_{n-1} \alpha$; then $\Psi \alpha$ also is deficient.
Recall that a 'folding operation' Φ is defined for any ω-groupoid, and hence also for $\varrho_{n} X_{*}$, in [10, Section 4], and that the formula for Ψ is the same as that for Φ. It follows that $p \Psi=\Phi p$, where $p: R X_{*} \rightarrow \varrho X_{*}$ is the quotient map.

Now $\partial_{1}^{\tau} \Phi p(\alpha)=\varepsilon_{1}^{n-1} \bar{\nu}$ for some $\bar{\nu} \in \varrho_{0} X=\pi_{0} X_{0}$, if $(\tau, j) \neq(0,1)$ (by [10, Proposition (4.5)]). Thus if B is the box in I^{n} with base $\partial_{1}^{1} I^{n}$, then for each $(n-1)$-cell a of $B, \Psi \alpha \mid a$ is a thin homotopic to the constant map at ν. By the deformation theorem (Theorem 3.2), $\Psi \alpha$ is thin homotopic to an element β such that $\beta(B)=\{\nu\}$, and such that β is deficient. Therefore, the homotopy of β to the constant map at ν, defined by a strong deformation retraction of I^{n} onto B, is a thin homotopy. Therefore $p \Psi \alpha=p \beta=0$. So $\Phi p \alpha=0$. By $[10,(4.12)], \bar{\alpha}=p \alpha$ is thin.

For the other implication, suppose that $\bar{\alpha}$ is thin. Then $\bar{\alpha}$ has a subdivision $\bar{\alpha}=\left[\bar{\alpha}_{(r)}\right]$ in which each $\alpha_{(r)}$ is deficient. By Proposition 3.5, $\bar{\alpha}$ has a deficient representative.

4 The union theorem for ω-groupoids

The groupoid version of the Van Kampen theorem [4, 8.4.2], gives useful results for nonconnected spaces, but still requires a 'representativity' condition in dimension 0 . The union theorem of [7],
which computes second relative homotopy groups, requires conditions in dimension 0 and 1 . It is thus not surprising that our general union theorem requires conditions in all dimensions.

A filtered space X_{*} is said to be connected if the following conditions $\phi\left(X_{*}, m\right)$ hold for each $m \geqslant 0$: $\phi\left(X_{*}, 0\right)$: If $j>0$, the map $\pi_{0} X_{0} \rightarrow \pi_{0} X_{j}$, induced by inclusion, is surjective. $\phi\left(X_{*}, m\right)(m \geqslant 1):$ If $j>m$ and $\nu \in X_{0}$, then the map

$$
\pi_{m}\left(X_{m}, X_{m-1}, \nu\right) \rightarrow \pi_{m}\left(X_{j}, X_{m-1}, \nu\right)
$$

induced by inclusion, is surjective.
A standard example of a connected filtered space is a CW-complex X with its skeletal filtration.
Suppose for the rest of this section that X_{*} is a filtered space. We suppose given a cover $\mathcal{U}=$ $\left\{U^{\lambda}\right\}_{\lambda \in \Lambda}$ of X such that the interiors of the sets of \mathcal{U} cover X. For each $\zeta \in \Lambda^{n}$ we set $U^{\zeta}=$ $U^{\zeta_{1}} \cap \cdots \cap U^{\zeta_{n}}, U_{i}^{\zeta}=U^{\zeta} \cap X_{i}$. Then $U_{0}^{\zeta} \subseteq U_{1}^{\zeta} \subseteq \cdots$ is called the induced filtration U_{*}^{ζ} of U^{ζ}. So the homotopy ω-groupoids in the following ϱ-diagram of the cover are well defined:

$$
\bigsqcup_{\zeta \in \Lambda^{2}} \varrho U_{*}^{\zeta} \stackrel{a}{b} \bigsqcup_{\lambda \in \Lambda} \varrho U_{*}^{\lambda} \xrightarrow{c} \varrho X_{*}
$$

Here \bigsqcup denotes disjoint union (which is the same as coproduct in the category of ω-groupoids); a, b are determined by the inclusions $a_{\zeta}: U^{\lambda} \cap U^{\mu} \rightarrow U^{\lambda}, b_{\zeta}: U^{\lambda} \cap U^{\mu} \rightarrow U^{\mu}$ for each $\zeta=(\lambda, \mu) \in \Lambda^{2}$; and c is determined by the inclusions $c_{\lambda}: U^{\lambda} \rightarrow X$.
Theorem B (the union theorem). Suppose that for every finite intersection U^{ζ} of elements of \mathcal{U}, the induced filtration U_{*}^{ζ} is connected. Then
(C) X_{*} is connected;
(I) in the above @-diagram c is the coequaliser of a, b in the category of ω-groupoids.

Proof Suppose we are given a morphism

$$
\begin{equation*}
f^{\prime}: \bigsqcup_{\lambda \in \Lambda} \varrho U_{*}^{\lambda} \rightarrow G \tag{4.1}
\end{equation*}
$$

of ω-groupoids such that $f^{\prime} \circ a=f^{\prime} \circ b$. We have to show there is a unique morphism $f: \varrho X_{*} \rightarrow G$ of ω-groupoids such that $f \circ c=f^{\prime}$.

Let i_{λ} be the inclusion of ϱU_{*}^{λ} into the disjoint union in (4.1). Let $p_{\lambda}: R U_{*}^{\lambda} \rightarrow \varrho U_{*}^{\lambda}$ be the quotient map, and let $F_{\lambda}=f^{\prime} i_{\lambda} p_{\lambda}: R U_{*}^{\lambda} \rightarrow G$. We use these F_{λ} to construct $F \theta$ for certain θ in $R_{n} X_{*}$.

Suppose that θ in $R_{n} X_{*}$ is such that θ lies in some set U^{λ} of \mathcal{U}. Then θ determines uniquely an element θ^{λ} of $R_{n} U_{*}^{\lambda}$, and the rule $f^{\prime} \circ a=f^{\prime} \circ b$ implies that an element of G_{n}

$$
F \theta=F_{\lambda} \theta^{\lambda}
$$

is determined by θ.

Suppose given a subdivision $\left[\theta_{(r)}\right]$ of an element θ of $R_{n} X_{*}$ such that each $\theta_{(r)}$ is in $R_{n} X_{*}$ and also lies in some $U^{\lambda(r)}$ of \mathcal{U}. Since the composite $\theta=\left[\theta_{(r)}\right]$ is defined, it is easy to check, again using $f^{\prime} \circ a=f^{\prime} \circ b$, that the elements $F \theta_{(r)}$ compose in G_{n} to give an element $g=\left[F \theta_{(r)}\right]$ of G_{n}. We write this g as $F \theta$, although a priori it depends on the subdivision chosen.

Suppose now that α is an arbitrary element of $R_{n} X_{*}$. The construction from α of an element g in G_{n} and the proof that g depends only on the class of α in $\varrho_{n} X_{*}$ depend on the following lemma.

Lemma 4.2 Let $\alpha: I^{n} \rightarrow X$ and let $\alpha=\left[\alpha_{(r)}\right]$ be a subdivision of α such that each $\alpha_{(r)}$ lies in some set $U^{\lambda(r)}$ of \mathcal{U}. Then there is a homotopy $h: \alpha \simeq \theta$ with $\theta \in R_{n} X_{*}$ such that in the subdivision $h=\left[h_{(r)}\right]$ determined by that of α, each homotopy $h_{(r)}: \alpha_{(r)} \simeq \theta_{(r)}$ satisfies:
(i) $h_{(r)}$ lies in $U^{\lambda(r)}$;
(ii) $\theta_{(r)}$ belongs to $R_{n} X_{*}$;
(iii) if some m-dimensional face of $\alpha_{(r)}$ lies in X_{j}, so also do the corresponding faces of $h_{(r)}$ and $\theta_{(r)}$;
(iv) if ν is a vertex of I^{n} and $\alpha(\nu) \in X_{0}$ then h is the constant homotopy on ν.

Proof Let K be the cell-structure on I^{n} determined by the subdivision $\alpha=\left[\alpha_{(r)}\right]$. Let $L_{m}=$ $K^{m} \times I \cup K \times\{0\}$. We construct maps $h_{m}: L_{m} \rightarrow X$ for $m=0, \ldots, n$ such that h_{m} extends h_{m-1}, where $h_{-1}=\alpha$. Further we construct h_{m} to satisfy the following conditions, for each m-cell σ of K :
(i) m if σ is contained in the domain of $\alpha_{(r)}$, then $h_{m}(\sigma \times I) \subseteq U^{\lambda(r)}$;
(ii) ${ }_{m} h_{m} \mid \sigma \times\{1\}$ is an element of $R_{m}\left(X_{*}\right)$;
(iii) ${ }_{m}$ if α maps σ into X_{j}, then $h_{m}(\sigma \times I) \subseteq X_{j}$;
(iv) m_{m} if $\alpha \mid \sigma: \sigma \rightarrow X$ is a filtered map, then h is constant on σ.

For an m-cell σ of K, let j be the smallest integer such that α maps σ into X_{j}. Let U^{σ} be the intersection of all the sets $U^{\lambda(s)}$ such that σ is contained in the domain of $\alpha_{(s)}$.

Let $h_{m} \mid K \times 0$ be given by α, and for those cells σ of K such that $\alpha \mid \sigma$ is filtered, let h_{m} be the constant homotopy on $\sigma \times I$.

Let σ be a 0 -cell of K. If $\alpha(\sigma)$ does not lie in X_{0}, then by $\phi\left(U_{*}^{\sigma}, 0\right)$ we can define h_{0} on $\sigma \times I$ to be a path in U^{σ} joining σ to a point of X_{0}.

Let $m \geqslant 1$. The construction of h_{m} from h_{m-1} is as follows on those m-cells σ such that $\alpha \mid \sigma$ is not filtered. If $j \leqslant m$, then h_{m-1} can be extended to h_{m} on $\sigma \times I$ by means of a retraction $\alpha \times I \rightarrow \sigma \times\{0\} \cup \boldsymbol{\partial} \sigma \times I$. If $j>m$ the restriction of h_{m-1} to the pair $(\sigma \times\{0\} \cup \boldsymbol{\partial} \sigma \times I, \boldsymbol{\partial} \sigma \times I)$ determines an element of $\pi_{m}\left(U_{j}^{\sigma}, U_{m-1}^{\sigma}\right)$. By $\phi\left(X_{*}, m\right), h_{m-1}$ extends to h_{m} on $\sigma \times I$ mapping into U_{j}^{σ} and such that $\sigma \times\{1\}$ is mapped into U_{m}^{σ}.

Corollary 4.3 Let $\alpha \in R_{n} X_{*}$. Then there is a thin homotopy rel vertices $h: \alpha \equiv \theta$ such that $F \theta$ is defined in G_{n}.

Proof Choose a subdivision $\alpha=\left[\alpha_{(r)}\right]$ such that $\alpha_{(r)}$ lies in some set $U^{\lambda(r)}$ of \mathcal{U}. Lemma 4.2 gives a thin homotopy $h: \alpha \equiv \theta$ and subdivision $\theta=\left[\theta_{(r)}\right]$ as required.

We will show in Lemma 4.5 below that this element $F \theta$ depends only on the class of α in $\varrho_{n} X_{*}$.

Proof of (C)

We can now prove that X_{*} is connected.
The condition $\phi\left(X_{*}, 0\right)$ is clear since each point of X_{j} belongs to some U^{λ} and so may be joined in U^{λ} to a point of X_{0}.

Let $J^{m-1}=I \times \boldsymbol{\partial} I^{m-1} \cup\{1\} \times I^{m-1}$. Let $j>m>0, \nu \in X_{0}$ and let $\bar{\alpha} \in \pi_{m}\left(X_{j}, X_{m-1}, \nu\right)$, so that $\alpha:\left(I^{m},\{0\} \times I^{m-1}, J^{m-1}\right) \rightarrow\left(X_{j}, X_{m-1}, \nu\right)$. By Lemma 4.2, α is deformable as a map of triples into X_{m}.

This proves X_{*} is connected.
Remark. Up to this stage, our proof of the union theorem is very like the proof for the 2-dimensional case given in [7]. We now diverge from that proof for two reasons. First, the form of the homotopy addition lemma given in [7] is not so easily stated in higher dimensions. So we employ thin elements, since these are elements with 'commuting boundary'. Second, we can now arrange that the proof is nearer in structure to the 1-dimensional case, for example the proof of the Van Kampen theorem given in [11].

Two facts about ω-groupoids which made the proof work are that composites of thin elements are thin, and the following proposition.

Proposition 4.4 Let G be an ω-groupoid and x a thin element of G_{n+1}. Suppose that for $m=1, \cdots, n$ and each face operator $d: G_{n+1} \rightarrow G_{m}$ not involving ${ }^{2} \partial_{n+1}^{0}$ or ∂_{n+1}^{1}, the element $d x$ is thin. Then $x=\varepsilon_{n+1} \partial_{n+1}^{0} x$ and hence

$$
\partial_{n+1}^{0} x=\partial_{n+1}^{1} x .
$$

Proof The proof is by induction on n, the case $n=0$ being trivial since a thin element in G_{1} is degenerate.

The inductive assumption thus implies that every face $\partial_{i}^{\tau} x$ with $i \neq n+1$ is of the form $\varepsilon_{n} \partial_{n}^{0} \partial_{i}^{\tau} x$. So the box consisting of all faces of x except $\partial_{n+1}^{1} x$ is filled not only by x but also by $\varepsilon_{n+1} \partial_{n+1}^{0} x$. Since a box in G has a unique thin filler [10, Proposition (7.2)], it follows that $x=\varepsilon_{n+1} \partial_{n+1}^{0} x$

Suppose now that $h^{\prime}: \alpha \equiv \alpha^{\prime}$ is a thin homotopy between elements of $R_{n} X_{*}$, and $h: \alpha \equiv \theta, h$ " : $\alpha^{\prime} \equiv \theta^{\prime}$ are thin homotopies constructed as in Corollary 4.3, so that $F \theta, F \theta^{\prime}$ are defined. From the given thin homotopies we can obtain a thin homotopy $H: \theta \equiv \theta^{\prime}$. So to prove $F \theta=F \theta^{\prime}$ it is sufficient

[^2]to prove the following key lemma. In fact, the previous machinery has been developed in order to give expression to this proof.

Lemma 4.5 Let $\theta, \theta^{\prime} \in R_{n} X_{*}$ and let $H: \theta \equiv \theta^{\prime}$ be a thin homotopy. Suppose $\left.\theta=\left[\theta_{(r)}\right], \theta^{\prime}=\theta_{(s)}^{\prime}\right]$ are subdivisions into elements of $R_{n} X_{*}$ each of which lies in some set of \mathcal{U}. Then in G_{n}

$$
\left[F \theta_{(r)}\right]=\left[F \theta_{(s)}^{\prime}\right] .
$$

Proof Suppose $\theta_{(r)}$ lies in $U^{\lambda(r)} \in \mathcal{U}, \theta_{(s)}^{\prime}$ lies in $U^{\lambda^{\prime}(s)} \in \mathcal{U}$, for all $(r),(s)$. Now $\theta=H(-, 0)=$ $\partial_{n+1}^{0} H, \theta^{\prime}=H(-, 1)=\partial_{n+1}^{1} H$. We choose a subdivision $H=\left[H_{(t)}\right]$ such that each $H_{(t)}$ lies in some set $V^{(t)}$ of \mathcal{U} and so that on $\partial_{n+1}^{0} H$ and $\partial_{n+1}^{1} H$ it induces refinements of the given subdivisions of θ and θ^{\prime} respectively. Further, this subdivision can be chosen fine enough so that $\partial_{n+1}^{0} H_{(t)}$, if it is a part of $\theta_{(r)}$, lies in $U^{\lambda^{\prime}(s)}$. So we can and do choose $V^{(t)}=U^{\lambda(r)}$ in the first instance, $V^{(t)}=U^{\lambda^{\prime}(s)}$ in the second instance (and avoid both cases holding together by choosing, if necessary, a finer subdivision).

We now apply Lemma 4.2 with the substitution of $n+1$ for n, H for α, K for θ, and (t) for (r), to obtain in $R_{n+2} X_{*}$ a thin homotopy $h: H \equiv K$ such that in the subdivision $h=\left[h_{(t)}\right]$ determined by that of H, each homotopy $h_{(t)}: H_{(t)} \simeq K_{(t)}$ satisfies
(i) $h_{(t)}$ lies in $V^{(t)}$
(ii) $K_{(t)}$ belongs to $R_{n+1} X_{*}$,
(iii) if some m-dimensional face of $H_{(t)}$ lies in X_{j}, so also do the corresponding faces of $h_{(t)}$ and $K_{(t)}$.

Now $k=\partial_{n+1}^{0} h, k^{\prime}=\partial_{n+1}^{1} h$ are thin homotopies $k: \theta \equiv \phi, k^{\prime}: \theta^{\prime} \equiv \phi^{\prime}$, say. Further, the previous choices ensure that in the subdivision $k=\left[k_{(r)}\right]$ induced by that of $\theta, k_{(r)}$ is a thin homotopy $\theta_{(r)} \equiv \phi_{(r)}$ (by (iii)) and lies in $U^{\lambda(r)}$ (by (i)). It follows that $F \theta_{(r)}=F \phi_{(r)}$ in G_{n} and hence $F \theta=F \phi$. Similarly $F \theta^{\prime}=F \phi^{\prime}$, so it is sufficient to prove $F \phi=F \phi^{\prime}$.

We have a thin homotopy $K: \phi \equiv \phi^{\prime}$ and a subdivision $K=\left[K_{(t)}\right]$ such that each $K_{(t)}$ belongs to $R_{n+1} X_{*}$ and lies in some $V^{(t)}$ of \mathcal{U}. Thus $F K=\left[F K_{(t)}\right]$ is defined in G_{n+1}. Further, the induced subdivisions of $\partial_{n+1}^{0} F K, \partial_{n+1}^{1} F K$ refine the subdivisions $\left[F \phi_{(r)}\right],\left[F \phi_{(s)}^{\prime}\right]$ respectively. Hence $\partial_{n+1}^{0} F K=F \phi, \partial_{n+1}^{1} F K=F \phi^{\prime}$, and it is sufficient to prove $\partial_{n+1}^{0} F K=\partial_{n+1}^{1} F K$. For this we apply Proposition 4.4.

Let d be a face operator from dimension $n+1$ to dimension m, and not involving ∂_{n+1}^{0} or ∂_{n+1}^{1}. Let $\sigma=d(H), \tau=d(K)$. Then σ is deficient (since H is a filter homotopy) and so by the choice of h in accordance with (iii), τ is deficient. In the subdivision $\tau=\left[\tau_{(u)}\right]$ induced by the subdivision $K=\left[K_{(t)}\right], \tau_{(u)} \in R_{m} X_{*}$ and is deficient. By Theorem 3.6, the $F \tau_{(u)} \in G_{m}$ are thin, and hence their composite $F \tau \in G_{m}$ is thin. But $F K=\left[F K_{(t)}\right]$ has, by its construction, the property that $d F K=F \tau$. So $d F K$ is thin. By Proposition 4.4, $\partial_{n+1}^{0} F K=\partial_{n+1}^{1} F K$

This completes the proof that there is a well-defined function $f: \varrho_{n} X_{*} \rightarrow G_{n}$ given by $f(\bar{\alpha})=F(\theta)$, where θ is constructed as in Corollary 4.3. These maps $f: \varrho_{n} X_{*} \rightarrow G_{n}, n \geqslant 0$, determine a morphism $f: \varrho X_{*} \rightarrow G$ of ω-groupoids. By its construction, f satisfies $f \circ c=f^{\prime}$ and is the only such morphism. Thus the proof of Theorem B is complete.

Remark. There is a simplicial version Theorem B^{\triangle} of Theorem B. The statement of Theorem B^{\triangle} is as for Theorem B but with ϱX_{*} replaced by $\varrho^{\triangle} X_{*}$, say, which denotes the simplicial homotopy T-complex of the filtered space X_{*}, as defined and constructed in [2]. However, the proof of Theorem B^{\triangle} involves noting that we have equivalences of categories

$$
\text { (simplicialT-complexes) }(\xrightarrow{N}) \text { (crossed complexes) }\left(\iota^{\lambda}\right) \text { (} \omega \text {-groupoids) }
$$

of which the first is given in [2] and the second in [8, 10]. Further it is proved in [2] that $N \varrho^{\triangle} X_{*}=\pi X_{*}$, and we prove in Section 5, as announced in [9], that $\lambda \varrho X_{*}=\Pi X_{*}$. Thus Theorem B^{\triangle} follows from these facts and Theorem B, and at the time of writing no other proof of Theorem B^{\triangle} is known.

5 The union theorem for crossed complexes

In order to interpret the union theorem (Theorem B), we relate the ω-groupoid ϱX_{*} to familiar structures in homotopy theory.

For a filtered space X_{*} the fundamental groupoid $C_{1}=\pi_{1}\left(X_{1}, X_{0}\right)$ is defined as the set of homotopy classes of maps $(I, \boldsymbol{\partial} I) \rightarrow\left(X_{1}, X_{0}\right)$. For $n \geqslant 2$ and $\nu \in X_{0}$, let $C_{n}(\nu)=\pi_{n}\left(X_{n}, X_{n-1}, \nu\right)$, the usual relative homotopy group at ν of $\left(X_{n}, X_{n}-1\right)$. There are boundary maps $\delta: C_{n}(\nu) \rightarrow C_{n-1}(\nu)(n \geqslant 2$, where $\left.C_{1}(\nu)=\pi_{1}\left(X_{1}, \nu\right)\right)$ and an operation of the groupoid C_{1} on C_{n} so that the family C of all the C_{n} has the structure of crossed complex over a groupoid as given in [10]. This crossed complex, written ΠX_{*}, is the basic example of such a structure. We call ΠX_{*} the fundamental crossed complex of the filtered space X_{*}. (It is sometimes called the fundamental crossed complex of X_{*}.)

In [10] we defined a functor $\lambda: \mathcal{G} \rightarrow \mathcal{C}$ from the category of ω-groupoids to the category of crossed complexes, such that if G is an ω-groupoid and $D=\gamma G$, then $D_{0}=G_{0}, D_{1}=G_{1}$, and for $n \geqslant 2, D_{n}(\nu)=\left\{x \in G_{n}: \partial_{i}^{\tau} x=\varepsilon_{1}^{n-1} \nu\right.$, all $\left.(\tau, i) \neq(0,1)\right\}$, where $\nu \in G_{0}$.

Theorem 5.1 If X_{*} is a filtered space then $\gamma \varrho X_{*}$ is naturally isomorphic to ΠX_{*}.
Proof Let $C=\Pi X_{*}$ and $D=\gamma \varrho X_{*}$. Then by definition and the fact that $\pi_{0} X_{0}=X_{0}$, we have $C_{0}=D_{0}, C_{1}=D_{1}$.

Let $n \geqslant 2$, and $\nu \in C_{0}$. We construct an isomorphism $\theta_{n}: C_{n}(\nu) \rightarrow D_{n}(\nu)$. The elements of $C_{n}(\nu)$ are homotopy classes of maps of triples $\alpha:\left(I^{n}, \partial_{1}^{0} I^{n}, B\right) \rightarrow\left(X_{n}, X_{n-1}, \nu\right)$, where B is the box in I^{n} with base $\partial_{1}^{1} I^{n}$. Such a map α defines a filtered map $\theta^{\prime} \alpha: I^{n} \rightarrow X_{*}$ with the same values as α, and $\theta^{\prime} \alpha$ is constant on B. If α is homotopic to β (as maps of triples), then $\theta^{\prime} \alpha$ is thin homotopic to $\theta^{\prime} \beta$, and so θ^{\prime} induces a map $\theta_{n}: C_{n}(\nu) \rightarrow D_{n}(\nu)$. But addition in the relative homotopy group $C_{n}(\nu)$ is defined using any $+_{i}, i \geqslant 2$. So θ_{n} is a morphism of groups.

Suppose α represents in $C_{n}(\nu)$ an element mapped to 0 by θ_{n}. Then $\theta^{\prime} \alpha$ is thin homotopic to $\nu *$, the constant map at ν. But $\alpha \mid B$ is constant. By Proposition 1.4 and since B collapses to a vertex (by Lemma 3.3), the constant thin homotopy $\theta^{\prime} \alpha|B \equiv \nu *| B$ extends to a thin homotopy $\theta^{\prime} \alpha \equiv \nu *$. This thin homotopy defines a homotopy $\alpha \simeq \nu *$. So θ_{n} is injective. (This proof is due to N. Ashley.)

We now prove θ_{n} surjective. Let $\bar{\gamma} \in D_{n}(\nu)$. Then for each ($n-1$)-face a of $B, \gamma \mid a$ is thin homotopic to $\tilde{\nu} \mid a$ (where $\tilde{\nu}$ is the constant map $B \rightarrow X_{*}$ at ν). By the deformation theorem (Theorem 3.2), γ is thin homotopic to a map $\gamma^{\prime}: I^{n} \rightarrow X_{*}$ extending $\tilde{\nu}$. Hence θ_{n} is surjective.

We thus have an isomorphism $\theta: C \rightarrow D$ of graded groupoids which also preserves the boundary maps δ. To complete the proof, we show that θ preserves the action of C_{1} on C.

Let α represent an element of $C_{n}(\nu)$, and let ξ represent an element of $C_{1}(\nu, w)$. A standard method of constructing $\beta=\alpha^{\xi}$ representing an element of $C_{n}(w)$ is to use the homotopy extension property as follows. Let $\xi^{\prime}: B \times I \rightarrow X_{*}$ be $(x, t) \mapsto \xi(t)$. Then ξ^{\prime} is a homotopy of $\alpha \mid B$ which extends to a homotopy $h: \alpha \simeq \beta$, and we set $\alpha^{\xi}=\beta$. In fact, h is constructed by extending ξ^{\prime} over $\partial_{1}^{0} I^{n} \times I$ using a retraction of $\partial_{1}^{0} I^{n} \times I$ to its box with base $\partial_{1}^{0} I^{n} \times\{0\}$, and then extending again using a retraction of $I^{n} \times I$ to its box with base $I^{n} \times\{0\}$. Thus h is a filtered map $I^{n+1} \rightarrow X_{*}$ with h and $\partial_{i}^{\tau} h(i \neq n+1)$ deficient; hence \bar{h} and $\partial_{i}^{\tau} \bar{h}(i \neq+1)$ are thin (Theorem 3.6). Therefore the folding $\operatorname{map} \Phi: \varrho_{n} X_{*} \rightarrow \varrho_{n} X_{*}[10$, Section 4] vanishes on these elements [10, Proposition (4.12)] and so the homotopy addition lemma [10, (7.1)] reduces to

$$
\Phi \partial_{n+1}^{1} \bar{h}=\left(\Phi \partial_{n+1}^{0} \bar{h}\right)^{u_{n+1}} \bar{h}
$$

By $[10,(4.6)], \Phi$ is the identity on D_{n}, to which belong both $\partial_{n+1}^{1} \bar{h}=\theta_{n} \bar{\beta}$ and $\partial_{n+1}^{0} \bar{h}=\theta_{n} \bar{\alpha}$. Further $u_{n+1} \bar{h}=\bar{\xi}$. So

$$
\theta_{n} \bar{\beta}=\left(\theta_{n} \bar{\alpha}\right)^{\bar{\xi}}
$$

Thus θ preserves the operations.
Finally, the naturality of θ is clear.
Since the functor $\gamma: \mathcal{G} \rightarrow \mathcal{C}$ is an equivalence of categories, we obtain immediately from Theorem B and the previous definitions the main result of this paper.

Theorem C. Under the same assumptions as Theorem B, there is a coequaliser diagram of crossed complexes over groupoids

$$
\bigsqcup_{\zeta \in \Lambda^{2}} \Pi U_{*}^{\zeta} \stackrel{a}{b} \bigsqcup_{\lambda \in \Lambda} \Pi U_{*}^{\lambda} \xrightarrow{c} \Pi X_{*}
$$

The above diagram is called the Π-diagram of the cover \mathcal{U}.
A particularly useful application of this result is to CW-complexes.

Corollary 5.2 Let X_{*} be the skeletal filtered space of a $C W$-complex X, and let $\mathcal{X}=\left\{X^{\lambda}\right\}_{\lambda \in \Lambda}$ be a cover of X by subcomplexes. Then the Π-diagram

$$
\bigsqcup_{\zeta \in \Lambda^{2}} \Pi X_{*}^{\zeta} \underset{b}{a} \bigsqcup_{\lambda \in \Lambda} \Pi X_{*}^{\lambda} \xrightarrow{c} \Pi X_{*}
$$

of the cover \mathcal{X} is a coequaliser diagram of crossed complexes.

Proof It is well known that the skeletal filtration of any CW-complex is connected.
There is a standard method of assigning to each subcomplex Y of X a neighbourhood U_{Y} of Y in X and a retraction $r_{Y}: U_{Y} \rightarrow Y$ such that
(i) Y is a strong deformation retract of U_{Y};
(ii) if $Y \subseteq Z$ are subcomplexes of X, then $U_{Y} \subseteq U_{Z}$ and $r_{Z} \mid U_{Y}=r_{Y}$;
(iii) if Y_{1}, \cdots, Y_{n} are subcomplexes of X, then $U_{Y_{1} \cap \cdots \cap Y_{n}}=U_{Y_{1}} \cap \cdots \cap U_{Y_{n}}$.

The method of constructing the U_{Y}, r_{Y} is by induction on the dimension of the cells of $X \backslash Y$ which meet Y.

We now set $U^{\lambda}=U_{X^{\lambda}}, \lambda \in \Lambda$. Then $\mathcal{U}=\left\{U^{\lambda}\right\}_{\lambda \in \Lambda}$ is a family whose interiors cover X and for which the induced filtration U^{ζ} of each finite intersection of its elements is connected. However, the map induced by inclusion of the Π-diagram of \mathcal{X} to the Π-diagram of \mathcal{U} is an isomorphism (by Proposition 2.2). Since the Π-diagram of \mathcal{U} is a coequaliser, by Theorem C, so also is the Π-diagram of \mathcal{X}

As in [7, Section 3], we can also obtain results for adjunction spaces in the form of push-outs, rather then coequalisers, of crossed complexes.

Theorem D. Suppose that the commutative diagram of filtered spaces

satisfies one of the following hypotheses:
Hypothesis \mathcal{A} : The maps $i, f, \bar{\imath}, \bar{f}$ are inclusions of subspaces; $W=U \cap V$; X is the union of the interiors of the sets U, V; and $W_{n}=W \cap X_{n}, V_{n}=V \cap X_{n}, U_{n}=U \cap X_{n}, n \geqslant 0$.

Hypothesis $\mathcal{B}:$ For $n \geqslant 0$, the maps $i_{n}: W_{n} \rightarrow V_{n}$ are closed cofibrations, $W_{n}=W \cap V_{n}$, and X_{n} is the adjunction space $U_{n} \cup_{f_{n}} V_{n}$.

Suppose also that the filtrations U_{*}, V_{*}, W_{*} are connected. Then the induced diagram

is a pushout of crossed complexes.
Proof This is a deduction of standard kind from Theorem C.
We end this section with a useful condition for a filtered space to be connected.
Proposition 5.3 A filtered space X_{*} is connected if and only if for all $n>0$ the induced map $\pi_{0} X_{0} \rightarrow \pi_{0} X_{n}$ is surjective and for all $r>n>0$ and $\nu \in X_{0}, \pi_{n}\left(X_{r}, X_{n}, \nu\right)=0$.

Proof Let $r>n>0$. Part of the homotopy exact sequence of the triple (X_{r}, X_{n}, X_{n-1}) based at $\nu \in X_{0}$ is

$$
\begin{equation*}
\cdots \rightarrow \pi_{n}\left(X_{n}, X_{n-1}, \nu\right) \xrightarrow{i_{n}^{r}} \pi_{n}\left(X_{r}, X_{n-1}, \nu\right) \xrightarrow{j_{n}^{r}} \pi_{n}\left(X_{r}, X_{n}, \nu\right) \tag{}
\end{equation*}
$$

(where for $n=1$ this is an exact sequence of based sets). Hence $\pi_{n}\left(X_{r}, X_{n}, \nu\right)=0$ implies i_{n}^{r} surjective, as required for connectedness.

Suppose conversely that X_{*} is connected. Then $\pi_{0} X_{0} \rightarrow \pi_{0} X_{n}$ is surjective for $n>0$. Let $r>1$. Then i_{1}^{r} is surjective and so $j_{1}^{r}=0$. But if $\lambda:(I, 0,1) \rightarrow\left(X_{r}, X_{1}, \nu\right)$ is a map, then by choosing a path joining $\lambda(0)$ to a point of X_{0} we may deform λ to a path μ with $\mu(0) \in X_{0}$. Hence j_{1}^{r} is surjective, and so $\pi_{1}\left(X_{r}, X_{1}, \nu\right)=0$ for $r>1$.

If $r>n>1$, the exact sequence $(*)$ may be extended to the right by

$$
\delta_{n}^{r}: \pi_{n}\left(X_{r}, X_{n}, \nu\right) \rightarrow \pi_{n-1}\left(X_{n}, X_{n-1}, \nu\right)
$$

So i_{n}^{r} surjective implies δ_{n}^{r} (this is still true for $n=2$ since we have the rule $\delta_{2}^{r} a=\delta_{2}^{r} b$ if and only if $a b^{-1} \in \operatorname{Im} j_{2}^{r}$ (see [5]). Hence the composite

$$
\delta_{2}^{3} \delta_{3}^{4} \ldots \delta_{n-1}^{n}: \pi_{n}\left(X_{r}, X_{n}, \nu\right) \rightarrow \pi_{1}\left(X_{2}, X_{1}, \nu\right)
$$

is injective. Therefore $\pi_{n}\left(X_{r}, X_{n}, \nu\right)=0$.

6 Colimits of crossed complexes

The usefulness of Theorems C and D depends on the ability to describe colimits in the category \mathcal{C} of crossed complexes in more familiar terms. To this end, we first show that the determination of colimits in \mathcal{C} can be reduced to the determination of colimits in (i) the category $\mathcal{C U}$ of crossed modules (over groupoids), and (ii) the category \mathcal{U} of modules (over groupoids). In the special cases of modules or crossed modules over groups, these colimits are relatively easy to describe; and even in the very special cases of induced modules or induced crossed modules over groups they have applications which give some classical theorems of algebraic topology, as we see in Section 7.

For $n \geqslant 0$, let \mathcal{C}_{n} denote the category of n-truncated crossed complexes in which all structure above dimension n is ignored. Then \mathcal{C}_{1} is the category \mathcal{G} of groupoids and \mathcal{C}_{2} is the category $\mathcal{G U}$ of crossed modules over groupoids. There is a forgetful functor $t r^{n}: \mathcal{C} \rightarrow \mathcal{C}_{n}$ sending C to $\left(C_{n}, C_{n-1}, \cdots, C_{0}\right)$.

The category \mathcal{U} of modules over groupoids is defined as follows. An object of \mathcal{U} is a pair (M, G), where G is a groupoid with set of vertices G_{0} and $M=\left\{M_{p}\right\}_{p \in G_{0}}$ is a family of abelian groups on which G acts (so that $x \in G_{(p, q)}$ induces an isomorphism $m \mapsto m^{x}$ from M_{p} to M_{q}). A morphism $(M, G) \rightarrow\left(M^{\prime}, G^{\prime}\right)$ in \mathcal{U} is a pair (θ, ϕ), where $\phi: G \rightarrow G^{\prime}$ is a morphism of groupoids and $\theta=\left\{\theta_{p}\right\}_{p \in G_{0}}$ is a family of group morphisms $\theta_{p}: M_{p} \rightarrow M_{\phi(p)}^{\prime}$ satisfying $\theta_{q}\left(m^{x}\right)=\left(\theta_{p} m\right)^{\phi(x)},\left(x \in G_{(p, q)}, m \in M_{p}\right)$.

Proposition 6.1 Let $C=\operatorname{colim} C^{\lambda}$ be a colimit in the category \mathcal{C} of crossed complexes. Then
(i) the groupoid $G=\left(C_{1}, C_{0}\right)$ is colim G^{λ}, the colimit in \mathcal{G} of the groupoids $G^{\lambda}=\left(C_{1}^{\lambda}, C_{0}^{\lambda}\right)$;
(ii) the crossed complex $t^{2} C$ (over the groupoid G of (i) is colimtr${ }^{2} C^{\lambda}$, the colimit in $\mathcal{C U}$ of the crossed modules $\operatorname{tr}^{2} C^{\lambda}$;
(iii) if $n \geqslant 3$ and $\bar{G}=\left(C_{1} / \delta C_{2}, C_{0}\right), \bar{G}^{\lambda}=\left(C_{1}^{\lambda} / \delta C_{2}^{\lambda}, C_{0}^{\lambda}\right)$, then the module $\left(C_{n}, \bar{G}\right)$ is $\operatorname{colim}\left(C_{n}^{\lambda}, \bar{G}^{\lambda}\right)$, the colimit in the category \mathcal{U} of modules over groupoids.

Proof (i),(ii) These follow from the fact that, for $n \geqslant 0$, the truncation functor $\operatorname{tr}^{n}: \mathcal{C} \rightarrow \mathcal{C}_{n}$ has a right adjoint the coskeleton functor $\operatorname{cosk}^{n}: \mathcal{C}_{n} \rightarrow \mathcal{C}$ given by $\operatorname{cosk}^{n}\left(A_{n}, A_{n-1}, \cdots, A_{0}\right)=$ $\left(\cdots, 0,0, \cdots, 0, K_{n}, A_{n}, A_{n-1}, \cdots, A_{0}\right)$, where 0 denotes the discrete groupoid over $A_{0}, K_{0}=0, K_{1}$ is the family of all vertex groups of $A_{1}, K_{n}(n \geqslant 2)$ is the kernel of $\delta: A_{n} \rightarrow A_{n-1}$, and the map $\delta: K_{n} \rightarrow A_{n}$ is inclusion (cf. [10, Section 5). (The truncation functor tr^{n} also has a left adjoint $s k^{n}$: $\mathcal{C}_{n} \rightarrow \mathcal{C}$, the skeleton functor, given by $\left.s k^{n}\left(A_{n}, A_{n-1}, \cdots, A_{0}\right)=\left(\cdots, 0,0, \cdots, 0, A_{n}, A_{n-1}, \cdots, A_{0}\right).\right)$
(iii). In any crossed complex C, the image of C_{2} under δ is a totally disconnected, normal subgroupoid of C_{1}, so the quotient $C_{1} / \delta C_{2}$ is a groupoid \bar{G} with vertex set C_{0}. Furthermore, if $n \geqslant 3$, then δC_{2} acts trivially on C_{n}, so C_{n} can be viewed as a \bar{G}-module. Let $F_{n}: \mathcal{C} \rightarrow \mathcal{U}$ be the functor sending C to the module $\left(C_{n}, G\right),(n \geqslant 3)$. Then F_{n} has a right adjoint $E_{n}: \mathcal{U} \rightarrow \mathcal{C}$ which sends the module (M, H) to the crossed complex $\left(\cdots, 0,0, \cdots, 0, M, M, 0, \cdots, 0, H_{1}, H_{0}\right)$ where the two copies of M occur in dimensions $n, n+1$, and $\delta: M \rightarrow M$ is the identity. Hence F_{n} preserves colimits, as claimed.

Note that, from this description of $\operatorname{tr}^{2} C$ and C_{n} for $n \geqslant 3$, the boundary maps $\delta: C_{n} \rightarrow C_{n-1}$ can be recovered as induced by the maps $\delta^{\lambda}: C_{n}^{\lambda} \rightarrow C_{n-1}^{\lambda}$, for all λ.

Colimits of groupoids are easily described by generators and relations and are as readily computed as colimits of groups (see $[15,16,17]$). Colimits in \mathcal{U} and \mathcal{C}, \mathcal{U} are less transparent and we analyse their structure further by the use of induced modules and induced crossed modules (over groupoids).

Given a module (M, H) and a morphism of groupoids $\alpha: H \rightarrow G$, the induced G-module $\alpha_{*} M$ is defined by the pushout diagram

in \mathcal{M}. If \mathcal{M}_{G} denotes the category of modules over the fixed groupoid G (with morphisms inducing the identity on G), one obtains, for each $\alpha: H \rightarrow G$, a functor $\alpha_{*}: \mathcal{M}_{H} \rightarrow \mathcal{M}_{G}$ which preserves colimits. Similarly, let (M, H) be a crossed module over H (where now M is non-abelian and we omit mention of the boundary map $\delta: M \rightarrow H$ as well as the action of H). For any morphism of groupoids $\alpha: H \rightarrow G$ we define the induced crossed module $\alpha_{*} M$ over G by the pushout diagram (6.2), but now a pushout in $\mathcal{C} \mathcal{M}$. This gives a functor $\alpha_{*}: \mathcal{C} \mathcal{M}_{H} \rightarrow \mathcal{C} \mathcal{M}_{G}$ which also preserves colimits. More generally, we have the following.

Proposition 6.3 Let $(M, H)=\operatorname{colim}\left(M^{\lambda}, H^{\lambda}\right)$ be a colimit in \mathcal{M} (resp. $\mathcal{C} \mathcal{M}$) with canonical morphisms $\left(\theta^{\lambda}, \alpha^{\lambda}\right):\left(M^{\lambda}, H^{\lambda}\right) \rightarrow(M, H)$. For each λ, let $N^{\lambda}=\alpha_{*}^{\lambda} M^{\lambda}$ be the induced H-module (resp. the induced crossed module over H). Then $M=\operatorname{colim} N^{\lambda}$, a colimit in $\mathcal{M}_{H}\left(\operatorname{resp} . \mathcal{C} \mathcal{M}_{H}\right)$.

Propositions 6.1 and 6.3 give a recipe for computing a colimit $C=\operatorname{colim} C^{\lambda}$ of crossed complexes:
(i) compute the groupoid $G=\left(C_{1}, C_{0}\right)$ as colim G^{λ} in \mathcal{G}, where $G^{\lambda}=\left(C_{1}^{\lambda}, C_{0}^{\lambda}\right)$;
(ii) find the induced crossed G-modules $D_{2}^{\lambda}=\alpha_{*}^{\lambda} C_{2}^{\lambda}$, where $\alpha^{\lambda}: G^{\lambda} \rightarrow G$ are the canonical morphisms, and obtain C_{2} as colim D_{2}^{λ} in $\mathcal{C U}_{G}$;
(iii) find the induced \bar{G}-modules $D_{n}^{\lambda}=\beta_{*} \alpha_{*}^{\lambda} C_{n}^{\lambda}(n \geqslant 3)$, where $\beta: G \rightarrow \bar{G}=\left(C_{1} / \delta C_{2}, C_{0}\right)$ is the quotient morphism, and obtain C_{n} as colim D_{n}^{λ} in $\mathcal{M}_{\bar{G}}$, viewing C_{n} as a G-module via the morphism $\beta: G \rightarrow \bar{G}$. Alternatively, C_{n} can be obtained from $\operatorname{colim} \alpha_{*}^{\lambda} C_{n}^{\lambda}$ in \mathcal{M}_{G} by killing the action of δC_{2}.

Induced modules over groupoids afford some interesting constructions and we hope to discuss them in detail elsewhere. For the applications in Section 7 we mainly need colimits colim C^{λ} as above in which case C_{0}^{λ} is a singleton (i.e. each G^{λ} is a group), and the colimit is taken over a connected diagram. Then $G=\operatorname{colim} G^{\lambda}$ is also a group and this colimit may be taken in the category of groups. Thus C itself is the colimit colim C^{λ} in the category of crossed complexes over groups and C can be completely described in terms of (a) colimits of groups, induced modules over groups, and colimits of modules over groups, and colimits of crossed modules over a fixed group, all of which are familiar construction; and (b) induced crossed modules over groups, and colimits of crossed modules over a fixed group. A presentation for induced crossed modules was given in Proposition 8 of [7], and a presentation for pushouts of crossed modules over a fixed group G was given in Proposition 11 of [7]. The extension of the latter to colimits $M=\operatorname{colim} M^{\lambda}$ in $\mathcal{C} \mathcal{M}_{G}$ is easy: let B be the colimit of the M^{λ} in the category of groups, equipped with the induced morphism $\partial: B \rightarrow G$ and the induced action of G; then $M=B / S$ where S is the normal closure in B of the elements $b^{-1} c^{-1} b c^{\partial b}$ for $b, c \in B$, and the boundary map $M \rightarrow G$ is induced by ∂.

Note also that in this easy we obtain a description of the coproduct $C=*_{\lambda} C^{\lambda}$ in the category of crossed complexes over groups; we call C the free product of crossed complexes over groups.

7 Application and examples

We illustrate the use of Theorem D and Section 6 for determining relative homotopy groups in some cases in which the computations are straightforward.

A filtered space X_{*} is based if X_{0} consists of a single point; the element of X_{0} is taken as base point of each $X_{n}, n \geqslant 0$, and the relative homotopy groups of X_{*} are abbreviated to $\pi_{n}\left(X_{n}, X_{n-1}\right)$. The base point in X_{0} is nondegenerate if each inclusion $X_{0} \rightarrow X_{n}, n \geqslant 1$, is a closed cofibration.

Theorem 7.1 Let $X_{*}^{\lambda}, \lambda \in \Lambda$, be a family of based, filtered spaces each with non-degenerate basepoint. Let $X_{*}=\bigvee_{\lambda} X_{*}^{\lambda}$ be the wedge of all the X_{*}^{λ}, with filtration $X_{n}=\bigvee_{\lambda} X_{n}^{\lambda}$. Suppose each X^{λ} is homotopy full. Then ΠX_{*} is isomorphic to $*_{\lambda} \Pi X_{*}^{\lambda}$, the free product of crossed complexes over groups.

Proof Let $V_{*}=\bigsqcup_{\lambda} X_{*}^{\lambda}$ be the disjoint union of the X_{*}^{λ} and let V_{*} have the induced filtration $V_{n}=\bigsqcup_{\lambda} X_{n}^{\lambda}$. Let W_{*} be the filtered space with $W_{n}=\bigsqcup_{\lambda} X_{0}^{\lambda}$ for all $n \neq 0$. Let U_{*} be the filtered space with $U_{n}=\{*\}$ for all $n \geqslant 0$. Then we have a diagram of maps of filtered spaces as in Theorem D , and

Hypothesis \mathcal{B} of that theorem is satisfied. Hence we have a pushout of crossed complexes

where W_{0}, U_{0} denote the crossed complexes which in dimension $n \geqslant 1$ are the discrete groupoids on $\bigsqcup_{\lambda} X_{0}^{\lambda},\{*\}$ respectively. This pushout diagram determines ΠX_{*} as the required free product.

The methods of Section 6 enable us to deduce from Theorem 7.1, under the given assumptions, a formula for the relative homotopy groups of a wedge. A particular example is the following.

Corollary 7.2 Let $\left(V^{\lambda}, W^{\lambda}\right), \lambda \in \Lambda$, be a family of based pairs each with non-degenerate base-point, and let (V, W) be the based pair $\bigvee_{\lambda \in \Lambda}\left(V^{\lambda}, W^{\lambda}\right)$. Let $G=\pi_{1} W=*_{\lambda} \pi_{1} W^{\lambda}$, let $n \geqslant 3$, and suppose $\pi_{i}\left(V^{\lambda}, W^{\lambda}\right)=0,1 \leqslant i<n, \lambda \in \Lambda$. Then $\pi_{i}(V, W)=0,1 \leqslant i<n$, and the G-module $\pi_{n}(V, W)$ is the direct sum of the G-modules induced from the $\pi_{1} W^{\lambda}$-module $\pi_{n}\left(V^{\lambda}, W^{\lambda}\right)$ by $\pi_{1} W^{\lambda} \rightarrow G$. The same holds for $n=2$ with 'module' replaced by 'crossed module', and 'direct sum' replaced by 'coproduct in $\mathcal{C U}_{G}{ }^{\prime}$.

Proof The description of $\pi_{n}(V, W)$ follows from Section 6 and Theorem 7.1 on taking X^{λ} to be the filtered space with $X_{0}^{\lambda}-*, X_{1}^{\lambda}=W^{\lambda}(1 \leqslant i<n), X_{1}^{\lambda}=V^{\lambda}(i \geqslant n)$, since the condition that X^{λ} be connected is then equivalent to the given connectivity condition on $\left(V^{\lambda}, W^{\lambda}\right)$. The connectivity of (V, W) now follows since the direct sum, or coproduct of zero objects is zero.

The following is an immediate application of Theorem D and Section 6.
Theorem 7.3 Let V_{*} be a filtered space, let $W \subseteq V, X=V / W$, let $W_{n}=V_{n} \cap W, X_{n}=V_{n} / W_{n}, n \geqslant 0$. Assume that each $W_{n} \rightarrow V_{n}$ is a closed cofibration, and that each of W_{*}, V_{*} is connected. Then we have a pushout of crossed complexes

Hence if also V_{*} is based, and $n \geqslant 3$, then $\pi_{n}\left(X_{n}, X_{n-1}\right)=\pi_{n}\left(V_{n}, V_{n-1}\right) / N$ where N is the $\pi_{1} V^{1}$ submodule generated by $i_{*} \pi_{n}\left(W_{n}, W_{n-1}\right)$ and all elements $u-u^{a}$ where $u \in \pi_{n}\left(V_{n}, V_{n-1}\right), a \in i_{*} \pi_{i} W^{1}$.

Our remaining examples will all be deduced from the following application of Theorem D.
Theorem E. Suppose that the commutative square of based spaces

satisfies one of the two hypotheses:
Hypothesis \mathcal{A} : The maps $i, f, \bar{\imath}, \bar{f}$ are inclusions of subspaces, $W=U \cap V$ and X is the union of the interiors of U and V.

Hypothesis \mathcal{B} : The map i is a closed cofibration and X is the adjunction space $U \cup_{f} V$.
Suppose that U, V, W are path-connected and (V, W) is $(n-1)$-connected. Let $\lambda=f_{*}: \pi_{1} W \rightarrow \pi_{1} U$. Then for $n>2$ the $\pi_{1} U$-module $\pi_{n}(X, U)$ is $\lambda_{*} \pi_{n}(V, W)$, the module induced from the $\pi_{1} W$-module $\pi_{n}(V, W)$ by λ. The same holds for $n=2$ with 'module' replaced by 'crossed module'.
Proof Under these conditions we may take filtrations

$$
X_{i}=\left\{\begin{array}{ll}
* & i=0, \\
U & 1 \leqslant i<n, \\
X & n \leqslant i,
\end{array} \quad V_{i}= \begin{cases}* & i=0 \\
W & 1 \leqslant i<n \\
V & n \leqslant i\end{cases}\right.
$$

where $U_{i}=U \cap X_{1}, W_{i}=W \cap V_{1}$ in Theorem D . The associated pushout of crossed complexes gives the result. (See [7] for a discussion of the case $n=2$).

The following examples justify our claim in the introduction to [10] that the union theorem (Theorem B) includes as a special case a number of classical theorems of algebraic topology.
Example 1. Let A, B, U be path-connected, based spaces. Let $X=U \cup_{j}(C A \times B)$ where $C A$ is the (unreduced) cone on A and f is a map $A \times B \rightarrow U$. The homotopy exact sequence of $(C A \times B, A \times B)$ gives

$$
\pi_{i}(C A \times B, A \times B) \cong \pi_{i-1} A, i \geqslant 2, \text { and } \pi_{1}(C A \times B, A \times B)=0
$$

Suppose now that $n>2$ and A is $(n-2)$-connected. Then $\pi_{1} A=0$. We conclude from Theorem E that (X, U) is $(n-1)$-connected and $\pi_{n}(X, U)$ is the $\pi_{1} U$-module induced from $\pi_{n-1} A$, considered as trivial $\pi_{1} B$-module, by $\lambda=f_{*}: \pi_{1} B \rightarrow \pi_{i} U$. Hence $\pi_{n}(X, U)$ is the $\pi_{1} U$-module

$$
\pi_{n-1} A \otimes_{\mathbb{Z}\left(\pi_{1} B\right)} \mathbb{Z}\left(\pi_{1} U\right)
$$

Example 2. In Example 1, let B be a point. Then $X=U \cup_{f} C A$ and we deduce that if A is $(n-2)$-connected then (X, U) is $(n-1)$-connected and

$$
\pi_{n}(X, U) \cong \pi_{n-1} A \otimes \mathbb{Z}\left(\pi_{1} U\right)
$$

Example 3. In Example 2, let U also be a point. Then $X=S A$ the (unreduced) suspension of A, and we deduce that if A is $(n-2)$-connected then $S A$ is $(n-1)$ - connected and

$$
\pi_{n} S A \cong \pi_{n-1} A
$$

All this is for $n>2$. However, as shown in [7], the case $n=2$ of Theorem E implies that if A is path-connected then

$$
\pi_{2} S A \cong\left(\pi_{1} A\right)^{a b}
$$

while of course Van Kampen's theorem (which is itself a special case of Theorem D) implies that

$$
\pi_{1} S^{1}=\mathbb{Z}, \quad \pi_{1} S^{2}=0
$$

(the first of these equations requires the use of groupoids in these theorems). Thus Theorem D implies that S^{n} is $(n-1)$-connected and

$$
\pi_{n} S^{n}=\mathbb{Z}, \quad n \geqslant 1 .
$$

Example 4. Any space $\bar{U}=U \cup\left\{e_{\alpha}^{n}\right\}$ obtained from the path-connected space U by attaching n-cells is homotopy equivalent, rel U, to a space $X=U \cup_{f} C A$ where A is a wedge of $(n-1)$-spheres. Suppose $n>2$. Then A is $(n-2)$-connected and $\pi_{n-1} A$ is a free abelian group (by Corollary 7.2). Thus Example 2 specialises to the well-known fact that (\bar{U}, U) is $(n-1)$-connected and $\pi_{n}(\bar{U}, U)$ is the free $\pi_{1} U$-module with one generator for each n-cell attached. In the case $n=2$, the same argument shows that $\pi_{2}(\bar{U}, U)$ is a free crossed module (see [7, p. 211]).
Example 5. Let (V, W) be a based pair, and let $X=V \cup C W$. Suppose that (V, W) is $(n-1)$-connected $(n \geqslant 2)$, and that V, W are path connected. We determine $\pi_{i} X, i \leqslant n$.

To this end, let $U=C W$, let $W^{\prime}=W \times\left[0, \frac{1}{2}\right] \subseteq U$ be the bottom half of the cone, and let $V^{\prime}=V \cup W^{\prime}$. The inclusions $(V, W) \rightarrow\left(V^{\prime}, W^{\prime}\right),(X, *) \rightarrow(X, U)$ induce isomorphisms of all relative homotopy groups. By Theorem E, with V, W replaced by V^{\prime}, W^{\prime} and $f: W^{\prime} \rightarrow U$ equal to the inclusion, so that Hypothesis \mathcal{A} applies, we deduce that $(X, C W)$ is $(n-1)$-connected and $\pi_{n}(X, C W)=$ $\lambda_{*} \pi_{n}\left(V^{\prime}, W^{\prime}\right)$. Hence X is $(n-1)$-connected and $\pi_{n} X=\lambda_{*} \pi_{n}(V, W)$. Since $\lambda=f_{*}: \pi_{1} W \rightarrow \pi_{1} U$, and $\pi_{1} U=0$, we deduce that $\pi_{n} X$ is obtained from $\pi_{n}(V, W)$ by killing the action of $\pi_{1} W$. In the case $n=2$, this means simply that $\pi_{2} X$ is the group $\pi_{2}(V, W)$ made abelian.
Example 6. Continuing the previous example, the absolute Hurewicz theorem (proved here in Section 8) gives $H_{1} X=0,0<i<n$, and $H_{n} X=\pi_{n} X$. However, for $i>0$

$$
H_{i} X \cong H_{i}(X, C W) \cong H_{i}\left(V^{\prime}, W^{\prime}\right) \cong H_{i}(V, W) .
$$

So we deduce that $H_{i}(V, W)=0,0<i<n$, and that $H_{n}(V, W)$ is obtained from $\pi_{n}(V, W)$ by killing the action of $\pi_{1} W$ - this is the relative Hurewicz Theorem.
Example 7. As a final example, we note that by Proposition 5.3 and the above we have a method of constructing connected filtered spaces X_{*}, namely by taking X_{0} to be a point and $X_{n+1}=X_{n} \cup_{f_{n}} C A_{n}$ where A_{n} is an $(n-1)$-connected space and f_{n} is a map $A_{n} \rightarrow X_{n}$.
Remark. C.T.C. Wall has shown us that Theorem E for $n>2$ and when U, V, W, X are CW-complexes may be proved using covering spaces and the relative Hurewicz theorem. Curiously enough, no other proof of the case $n=2$ of Theorem E is known, although a proof of Whitehead's theorem, that $\pi_{2}\left(U \cup\left\{e_{\alpha}^{2}\right\}, U\right)$ is a free crossed module, has been given by J. Ratcliffe in his Ph.D. thesis [20] using methods of covering spaces, the relative Hurewicz theorem, and a homological characterisation of free crossed modules. Whitehead's proof $[21,23]$ is still interesting because of its use of the fundamental group of the complement of a link obtained by using methods essentially of transversality; an exposition of this proof is given in [6].

8 Homotopy and homology

There are standard definitions of homology groups for any cubical complex, and of homotopy groups for Kan complexes (cubical complexes satisfying Kan's extension condition, that any box has a filler).

The homology groups of $K X$, the cubical singular complex of X, are simply the (cubical) singular homology groups of X. Also $K X$ is a Kan complex and its homotopy groups can be easily seen to be identical with those of X.

Let X_{*} be a filtered space. Then $R X_{*}$ is a Kan complex and ϱX_{*} is an ω-groupoid, and hence a Kan complex (by $[10,(7.2)]$). (A direct proof that ϱX_{*} is a Kan complex can be given using Theorem 3.2.)

The following proposition is one step towards the Hurewicz theorem.

Proposition 8.1 Let X_{*} be a filtered space that the following conditions $\psi\left(X_{*}, m\right)$ hold for all $m \geqslant 0$:
$\psi\left(X_{*}, 0\right):$ The map $\pi_{0} X_{0} \rightarrow \pi_{0} X$ induced by inclusion is surjective.
$\psi\left(X_{*}, m\right)(m \geqslant 1):$ For all $\nu \in X_{0}$, the map

$$
\pi_{m}\left(X_{m}, X_{m-1}, \nu\right) \rightarrow \pi_{m}\left(X, X_{m-1}, \nu\right)
$$

induced by inclusion is surjective.

Then the inclusion $i: R X_{*} \rightarrow K X$ is a homotopy equivalence of cubical sets.

Proof There exist maps $h_{m}: K_{m} X \rightarrow K_{m+1} X, r_{m}: K_{m} X \rightarrow K_{m} X$ for $m \geqslant 0$ such that
(i) $\partial_{m+1}^{0} h_{m}=1, \partial_{m+1}^{1} h_{m}=r_{m}$,
(ii) $r_{m}(K X) \subseteq R_{m} X_{*}$ and $h_{m} \mid R_{m} X_{*}=\varepsilon_{m+1}$,
(iii) $\partial_{i}^{\tau} h_{m}=h_{m-1} \partial_{i}^{\tau}$ for $1 \leqslant i \leqslant m$ and $\tau=0,1$,
(iv) $h_{m} \varepsilon_{j}=\varepsilon_{j} h_{m-1}$ for $1 \leqslant j \leqslant m$.

Such r_{m}, h_{m} are easily constructed by induction, starting with $h_{-1}=\emptyset$, and using $\psi\left(X_{*}, m\right)$ to define $h_{m} \alpha$ for elements α of $K_{m} X$ which are not degenerate and do not lie in $R_{m} X_{*}$.

These maps define a retraction $r: K X \rightarrow R X_{*}$ and a homotopy $h \simeq i r \operatorname{rel} R X_{*}$.

Corollary 8.2 If the conditions $\psi\left(X_{*}, m\right)$ of the proposition hold for all $m \geqslant 0$, then the inclusion $i: R X_{*} \rightarrow K X$ induces an isomorphism of all homology and homotopy groups.

Remark. That a similar inclusion (in the simplicial case) induces an equivalence of the associated chain complexes is proved by Blakers in [3]. It is used by him to prove results related to the Hurewicz
theorem. For completeness, we outline a proof of the Hurewicz theorem using Corollary 8.2 and the homotopy addition lemma in the following form. Let $n \geqslant 2$, and let $\beta:\left(I^{n+1}, I_{n-1}^{n+1}\right) \rightarrow(X, \nu)$ be a map. Then each $\partial_{i}^{\tau} \beta$ represents an element β_{i}^{τ} of $\pi_{n}(X, \nu)$, and we have

$$
\begin{equation*}
\sum_{i=1}^{n+1}(-1)^{i}\left(\beta_{i}^{0}-\beta_{i}^{1}\right)=0 \tag{8.3}
\end{equation*}
$$

This follows from the form of the homotopy addition lemma given in $[10,(7.1)]$, applied to the ω-groupoid ϱX_{*} where X_{*} is the filtered space with $X_{i}=\{\nu\}, i<n, X_{i}=X, i \geqslant n$.

Theorem 8.4 (The Hurewicz Theorem). If $n \geqslant 2$ and X is an ($n-1$)-connected space, then $H_{i} X=0$ for $0<i<n$ and the Hurewicz map $\omega_{n}: \pi_{n} X \rightarrow H_{n} X$ is an isomorphism.

Proof Let X_{*} be the filtered space defined immediately above. Then X_{*} satisfies $\psi\left(X_{*}, m\right)$ for all $m \geqslant 0$ and so $i: R X_{*} \rightarrow K X$ is a homotopy equivalence. But $H_{i} R X_{*}=0$ for $0<i<n$; hence $H_{i} X=H_{i} K X=0$ for $0<i<n$.

Let $C_{m} X_{*}$ denote the group of (normalised) m-chains of $R X_{*}$. Then every element of $C_{n} X_{*}$ is a cycle, and the basis elements $\alpha \in R_{n} X_{*}$ of $C_{n} X_{*}$ are maps $I^{n} \rightarrow X$ with $\alpha\left(\boldsymbol{\partial} I^{n}\right)=\{\nu\}$. So they determine elements $\tilde{\alpha}$ of $\pi_{n}(X, \nu)$, and $\alpha \mapsto \tilde{\alpha}$ determines a morphism $C_{n} X_{*} \rightarrow \pi_{n}(X, \nu)$. But by (8.3), this morphism annihilates the group of boundaries. So it induces a map $H_{n} X \rightarrow \pi_{n}(X, \nu)$ which is easily seen to be inverse to the Hurewicz map.

We know that if X_{*} is a filtered space, then $p: R X_{*} \rightarrow \varrho X_{*}$ is a Kan fibration.

Theorem 8.5 Let X_{*} be a filtered space, and let $\nu \in X_{0}$. Let F be the fibre of $p: R X_{*} \rightarrow \varrho X_{*}$ over ν. Then $\pi_{n}(F, \nu)$ is isomorphic to the image of the morphism

$$
i_{n}: \pi_{n}\left(X_{n-1}, \nu\right) \rightarrow \pi_{n}\left(X_{n}, \nu\right)
$$

induced by inclusion.
Proof We define a map $\theta: \pi_{n}(F, \nu) \rightarrow \pi_{n}\left(X_{n}, \nu\right)$.
Let $\alpha \in F_{n}$ have all its faces at the base point ν. Then α determined $\alpha^{\prime}:\left(I^{n}, I^{n}\right) \rightarrow\left(X_{n}, \nu\right)$ with the same values as α, and $\alpha \mapsto \alpha^{\prime}$ induces θ.

If $\alpha \in F_{n}$, then $p \alpha=\varepsilon_{1}^{n} \bar{\nu}$ in $\varrho_{n} X$, and so α is thin homotopic to $\bar{\nu}$, the constant map at ν. Suppose further that α has all its faces at the base point. Let B be the box in I^{n} with base $\partial_{n}^{0} I^{n}$. By Corollary 1.4, the constant thin homotopy $\bar{\nu}|B \equiv \alpha| B$ extends to a thin homotopy $h: \bar{\nu} \equiv \alpha$. Let $\beta=\partial_{n}^{1} h, k=\Gamma_{n} \beta$. Then $h+_{n} k$ is a thin homotopy $\bar{\nu}+_{n} \beta \simeq \alpha+{ }_{n} \bar{\nu}$, rel $\boldsymbol{\partial} I^{n}$. Let $\beta^{\prime}:\left(I^{n}, \boldsymbol{\partial} I^{n}\right) \rightarrow\left(X_{n-1}, \nu\right)$ be the map with the same values as β. Then $\alpha^{\prime} \simeq i \beta^{\prime}$. This proves $\operatorname{Im} \theta \subseteq$ $\operatorname{Im} i_{n}$.

Let $\alpha^{\prime}:\left(I^{n}, \boldsymbol{\partial} I^{n}\right) \rightarrow\left(X_{n-1}, \nu\right)$ represent an element of $\pi_{n}\left(X_{n-1}, \nu\right)$. Let $\alpha: I_{*}^{n} \rightarrow X_{*}$ have the same values as α^{\prime}. Then $\Gamma_{n} \alpha$ is a thin homotopy $\alpha \equiv \bar{\nu}$, so that $\alpha \in F_{n}$. Clearly $\theta \bar{\alpha}=i_{n} \alpha^{\prime}$, and this proves $\operatorname{Im} i_{n} \subseteq \operatorname{Im} \theta$.

Finally, we prove θ injective. Suppose $\theta \bar{\alpha}=0$. Then there is a homotopy $h: \alpha^{\prime} \simeq \bar{\nu}$ of maps $\left(I^{n}, \boldsymbol{\partial} I^{n}\right) \rightarrow\left(X_{n}, \nu\right)$. Clearly $h \in R_{n+1} X_{*}$. However, $\Gamma_{n+1} h$ is a thin homotopy $h \equiv \bar{\nu}$. Therefore $h \in F_{n+1}$, and so $\bar{\alpha}=0$.

We say X_{*} is a J_{n}-filtered space if for $0 \leqslant i<n$ and $\nu \in X_{0}$, the map

$$
\pi_{i+1}\left(X_{i}, \nu\right) \rightarrow \pi_{i+1}\left(X_{i+1}, \nu\right)
$$

induced by inclusion is trivial.

Corollary 8.6 If X_{*} is a J_{n}-filtered space, then each fibre of $p: R X_{*} \rightarrow \varrho X_{*}$ is n-connected, and the induced maps $\pi_{i} R X_{*} \rightarrow \pi_{i} \varrho X_{*}, H_{i} R X_{*} \rightarrow H_{i} \varrho X_{*}$, of homotopy and homology, are isomorphisms for $i \leqslant n$ and epimorphisms for $i=n+1$.

The conclusion of Corollary 8.6 as regards homology may be regarded as a version of Theorem I of [3].
Remark. Let X_{*} be the skeletal filtration of a CW-complex X with one vertex ν. It is proved in [23] that the group $H_{n} \Pi X_{*}$ is for $n \geqslant 2$ isomorphic to $H_{n} \widetilde{X}$, where \widetilde{X} is the universal cover of X based at ν. Also, Theorem 8.5 shows that if F is the fibre of $p: R X_{*} \rightarrow \varrho X_{*}$ over ν then (F, ν) is isomorphic to the group $\Gamma_{n} X$ considered in [24]; the homotopy exact sequence of the fibration $p: R X_{*} \rightarrow \varrho X_{*}$ is in fact equivalent to Whitehead's exact sequence

$$
\rightarrow \pi_{n+1} X \rightarrow H_{n+1} \widetilde{X} \rightarrow \Gamma_{n} X \rightarrow \pi_{n} X \xrightarrow{\omega_{n}} H_{n} \widetilde{X} \rightarrow \cdots
$$

(all based at ν) where ω_{n} is the Hurewicz map. Further, the condition that X_{*} be a J_{n}-filtered space is in this case precisely the condition that X is a J_{n}-complex in the sense of [22], and is also by Theorem 8.5 equivalent to $p: R X_{*} \rightarrow \varrho X_{*}$ being an n-equivalence. Thus these results are related to the results of [1] which give necessary and sufficient conditions for X to be a J_{n}-complex.

9 The free ω-groupoid on one generator

Let G be any ω-groupoid and define G^{m} to be the ω-subgroupoid of G generated by all elements of dimension $\leqslant m$. Then G^{m} has only thin elements in dimension greater than m and is the largest such ω-groupoid. In fact,

$$
G^{m} \cong S k^{m} G=s k^{m}\left(\operatorname{tr}^{m} G\right)
$$

as described in [10, Section 5], and by abuse of language we call it the m-skeleton of G (not to be confused with the m-skeleton of G considered as a cubical complex). We define the skeletal filtration of G to be

$$
G^{*}: G^{0} \subseteq G^{1} \subseteq \cdots
$$

The elements of G_{n}^{m} are the same as those of G_{n} for $n \leqslant m$; and for $n>m, G_{n}^{m}$ can be described inductively as the set of thin elements of G_{n} whose faces are in G_{n-1}^{m}.

Since G^{m} is an ω-groupoid, it is a Kan complex. Therefore if $p \in G_{0}$, and $0<l<m$, the r th relative homotopy group $\pi_{r}\left(G^{m}, G^{1}, p\right)$ is defined for $r \geqslant 2$. So there is a crossed complex ΠG^{*} which in dimension $n \geqslant 2$ is the family of groups $\pi_{n}\left(G^{n}, G^{n-1}, p\right), p \in G_{0}$, and in dimension 1 is the groupoid $\pi_{1} G^{1}$.

Proposition 9.1 If G^{*} is the skeletal filtration of an ω-groupoid G then the crossed complex ΠG^{*} is naturally isomorphic to γG. Further, G^{*} is connected.

Proof The elements of $\pi_{n}\left(G^{n}, G^{n-1}, p\right), p \in G_{0}, n \geqslant 2$, are classes of elements x of G_{n} such that $\partial_{i}^{\tau} x=\varepsilon_{1}^{n-1} p$ for $(\tau, i) \neq(0,1)$, two such elements x, y being equivalent if there is an $h \in G_{n+1}^{n}$ such that $\partial_{n+1}^{0} h=x, \partial_{n+1}^{1} h=y, \partial_{i}^{\tau} h=\varepsilon_{1}^{n} p$ for $(\tau, i) \neq(0,1)$ and $i \neq n+1$, and $\partial_{1}^{0} h \in G_{n}^{n-1}$. Then h is thin, as is $d h$ for any face operator d not involving ∂_{n+1}^{0} or ∂_{n+1}^{1}. It follows from Proposition 4.4 that $x=y$. Thus $\pi_{n}\left(G^{n}, G^{n-1}, p\right)$ can be identified with $C_{n}(p)=\left(\gamma_{n} G\right)(p)$.

The identification of the groupoid $\pi_{1} G^{1}$ with G_{1} is simple, as is the identification of the boundary maps. The identification of the operations may be carried out in a similar manner to the proof of Theorem 5.1.

Finally, that G^{*} is connected follows from the fact that $G_{n}^{r}=G_{n}$ for $r \geqslant n$.
The geometric realisation $|A|$ of a cubical complex A is defined in a manner similar to that of the simplicial case [15], using identifications involving only the face operators ∂_{i}^{τ} and degeneracy operators ε_{j}. Details are given in [14], where it is also proved that if X is a space and $K X$ is the singular cubical complex of X, then the natural map $j_{x}:|K X| \rightarrow X$ induces an isomorphism of homotopy groups.

It is proved in [18] that if A is a Kan cubical complex, then the natural map $i_{A}: A \rightarrow K|A|$ induces isomorphisms of homotopy groups. ${ }^{3}$ So if (A, B) is a pair of Kan cubical complexes, then the natural map $i:(A, B) \rightarrow(K|A|, K|B|)$ induces isomorphisms of relative homotopy groups. Since $\pi_{n}(K X, K Y)$ may be identified with $\pi_{n}(X, Y)$ for any pair of spaces X, Y, it follows that we have a natural isomorphism $\pi_{n}(A, B, \nu)=\pi_{n}(|A|,|B|, \nu)$ for any Kan pair (A, B).

If G is an ω-groupoid, then $|G|$ denotes the geometric realisation of the underlying cubical complex of G.

Proposition 9.2 Let G be an ω-groupoid, G^{*} its skeletal filtration, and let $X_{*}=\left|G^{*}\right|$ be the filtration of $X=|G|$ given by $X_{n}=\left|G^{n}\right|$. Then there is a natural isomorphism of ω-groupoids

$$
G \cong \varrho\left|G^{*}\right|
$$

Proof By the previous remarks and Proposition 9.1 we have natural isomorphisms

$$
\gamma G \cong \Pi G \cong \Pi|G|
$$

The result follows since $\Pi|G| \cong \gamma \varrho|G|$ and γ is an equivalence.

[^3]Corollary 9.3 If C is a crossed complex, there is a filtered space X_{*} such that C is isomorphic to ΠX_{*}.

Proof Let G be the ω-groupoid λC (cf. [10, Section 6]) and let $X=|G|$. By Proposition 9.2, $C \cong \Pi X_{*}$.

Remark 1 This result contrasts with Whitehead's example of a crossed complex C which is of dimension 5 , has $\pi_{1} C=Z_{2}$, is free in each dimension but is not isomorphic to ΠX_{*} for the skeletal filtration X_{*} of any CW-complex X see [23]).
Remark 2. Note also that when $X=|\lambda C|$, the absolute homotopy groups $\pi_{n}(X, \nu)$ are isomorphic to $\pi_{1}(C, \nu)$ for $n=1, H_{n}(C, \nu)$ for $n \geqslant 2$ by Remark 2 of [10, Section 7]. Thus Corollary 9.3 generalises the construction of Eilenberg-Mac Lane spaces.

Recall from Section 5 that if X_{*} is a filtered space then there is a natural isomorphism of crossed complexes $\theta: \Pi X_{*}=\gamma \varrho X_{*}$; and from [10, Section 4], that there is a 'folding map' $\Phi: \varrho_{n} X_{*} \rightarrow \gamma_{n} \varrho X_{*}$.

Proposition 9.4 Let $n \geqslant 2$ and let $c^{n} \in \varrho_{n} I_{*}^{n}$ be the class of the identity map $I_{*}^{n} \rightarrow I_{*}^{n}$. Then $\pi_{n}\left(I^{n}, I^{n}, 1\right)$ is isomorphic to \mathbb{Z} and is generated by $\theta^{-1} \Phi c^{n}$.

Proof There is an alternative definition of relative homotopy groups, namely $\pi_{n}^{\prime}(X, Y, \nu)$ is the set of homotopy classes of maps $\left(I^{n}, I^{n}, 1\right) \rightarrow(X, Y, \nu)$, with addition induced by a map $I^{n} \rightarrow I^{n} \bigvee I^{n}$. An isomorphism $\xi: \pi_{n}(X, Y, \nu) \rightarrow \pi_{n}^{\prime}(X, Y, \nu)$ is induced by $\alpha \mapsto \alpha^{\prime}$ where (in the notation of the proof of Theorem 5.1) $\alpha:\left(I^{n}, \partial_{1}^{0} I^{n}, B\right) \rightarrow(X, Y, \nu)$, and $\alpha^{\prime}:\left(I^{n}, I^{n}, 1\right) \rightarrow(X, Y, \nu)$ has the same values as α. (Here $1=(1, \cdots, 1)$ is the base point of $\left.I^{n}.\right)$

Let $\varrho_{n}\left(I^{n}, 1\right)$ be the set of x in $\varrho_{n} I^{n}$ such that $\left(\partial_{1}^{1}\right)^{n} x=1$. Then a map

$$
\eta: \varrho_{n}\left(I^{n}, 1\right) \rightarrow \pi_{n}^{\prime}\left(I^{n}, I^{n}, 1\right)
$$

is induced by $\beta \mapsto \beta^{\prime}$ where $\beta: I^{n} \rightarrow I^{n}$ satisfies $\beta(1)=1$, and β^{\prime} has the same values as β. Clearly $\eta \theta=\xi$.

A standard deduction from the results of Section 7 is that $\pi_{n}^{\prime}\left(I^{n}, I^{n}, 1\right)$ is isomorphic to \mathbb{Z} and is generated by α^{n}, the class of the identity map. Now clearly $\eta c^{n}=\alpha^{n}$. Also, it is easily checked that for any $x \in \varrho_{n}\left(I^{n}, 1\right)$ and $j=1, \cdots, n-1$, we have $\eta \Phi_{j} x=\eta x$. Hence $\eta \Phi c^{n}=\eta c^{n}=\alpha^{n}$. The result now follows.

From now on, we identify ΠX_{*} with $\theta \Pi X_{*}=\gamma \varrho X_{*}$ for any filtered space X_{*}.
We now describe the crossed complex ΠI_{*}^{n}. The cell complex I^{n} has one cell for each cubical face operator d from dimension n to $\underset{\sim}{r}, 0 \leqslant r \leqslant n$, and d determines a characteristic map $\tilde{d}: I_{*}^{r} \rightarrow I_{*}^{n}$ for this cell. Then \tilde{d} induces $\varrho(\tilde{d}): \varrho I_{*}^{r} \rightarrow \varrho I_{*}^{n}$ and $\varrho(\tilde{d})\left(c^{r}\right)=d c^{n}$. Since $\varrho(\tilde{d})$ is a morphism of ω-groupoids, it follows that $\varrho(\tilde{d})\left(\Phi c^{r}\right)=\Phi d c^{n}$. Hence ΠI_{*}^{n} has generators $\Phi d c^{n}$ for each face operator d from dimension n to $r, 0 \leqslant r \leqslant n$. The boundary $\delta \Phi d c^{n}$ is given by the homotopy addition lemma [10, (7.1)].

Proposition 9.5 The homotopy ω-groupoid ϱI_{*}^{n} is the free ω-groupoid on the class $c^{n} \in \varrho_{n} I_{*}^{n}$ of the identity map.

Proof Let G be an ω-groupoid and let $x \in G_{n}$. We have to prove there is a unique morphism $f: \varrho I_{*}^{n} \rightarrow G$ of ω-groupoids such that $f\left(c^{n}\right)=x$.

By Proposition 9.2, we may assume $G=\varrho X_{*}$ for a suitable filtered space X_{*}. Then x is the class of a map $\alpha: I_{*}^{n} \rightarrow X_{*}$ and it is clear that $f=\varrho(\alpha): \varrho I_{*}^{n} \rightarrow \varrho X_{*}$ satisfies $f\left(c^{n}\right)=x$. This proves the existence of f.

Suppose $g: \varrho I_{*}^{n} \rightarrow G$ is another morphism such that $g\left(c^{n}\right)=x$. Then $\gamma f, \gamma g: \Pi I^{n} \rightarrow \Pi X_{*}$ agree on the element $\Phi c^{n} \in \pi_{n}\left(I^{n}, I^{n}, 1\right)$ of Proposition 9.4.

However, ΠI_{*}^{n} is generated as crossed complex by the elements $\Phi d c^{n} \in \pi_{r}\left(I_{r}^{n}, I_{r-1}^{n}, 1\right)$ for all face operators d from dimension n to $r, 0 \leqslant r \leqslant n$. Since f, g are morphisms of ω-groupoids, $f\left(\Phi d c^{n}\right)=$ $\Phi d\left(f c^{n}\right)=\Phi d\left(g c^{n}\right)=g\left(\Phi d c^{n}\right)$. Therefore f and g agree on ΠI_{*}^{n}. But the latter generates ϱI_{*}^{n} as ω-groupoid. So $f=g$.

Corollary 9.6 If G is an ω-groupoid, then G_{n} is naturally isomorphic to $\mathcal{C}\left(\Pi I_{*}^{n}, \gamma G\right)$.
Proof $G_{n} \cong \mathcal{G}\left(\varrho I_{*}^{n}, G\right) \cong \mathcal{C}\left(\Pi I_{*}^{n}, \gamma G\right)$.
Remark. This corollary gives another description of the functor $\lambda: \mathcal{C} \rightarrow \mathcal{G}$, the inverse equivalence of γ, namely that λ is naturally equivalent to $C \mapsto \mathcal{C}\left(\Pi I_{*}^{n}, C\right)$. In view of the explicit description of ΠI_{*}^{n} given above, a morphism $f: \Pi I_{*}^{n} \rightarrow C$ of crossed complexes is describable as a family $\{f(d)\}$ where d runs through all the cubical face operators from dimension n to dimension $r(0 \leqslant r \leqslant n), f(d) \in C_{r}$, and the elements $f(d)$ are required to satisfy the relations (cf. [10, Theorem 7.1])

$$
\delta f(d)= \begin{cases}\sum_{i=1}^{r}(-1)^{i}\left\{f\left(\partial_{i}^{1} d\right)-f\left(\partial_{i}^{0} d\right)^{f\left(u_{i} d\right)}\right\} & (r \geqslant 4), \\ -f\left(\partial_{3}^{1} d\right)-f\left(\partial_{2}^{0} d\right)^{f\left(u_{2} d\right)}-f\left(\partial_{1}^{1} d\right)+f\left(\partial_{3}^{0} d\right)^{f\left(u_{3} d\right)}+f\left(\partial_{2}^{1} d\right)+f\left(\partial_{1}^{0} d\right)^{f\left(u_{1} d\right)} & (r=3), \\ -f\left(\partial_{1}^{1} d\right)-f\left(\partial_{2}^{0} d\right)+f\left(\partial_{1}^{0} d\right)+d\left(\partial_{2}^{1} d\right) & (r=2),\end{cases}
$$

and $\delta^{\tau} f(d)=f\left(\partial_{1}^{\tau} d\right)(r=1)$. (These relations imply that $f(d) \in C_{r}(p)$ where $p=f(\beta d)$.)
Similar functors have been used by Blakers [3] (from crossed complexes to simplicial complexes) and Ashley [2] (from crossed complexes to simplicial T-complexes); in particular, Ashley shows that such a functor generalises a functor of Dold-Kan [19, Theorem 22.4] from chain complexes to simplicial abelian groups.

Acknowledgement

We must again thank Keith Dakin for the insights afforded by his work on T-complexes [12] and for discussions on the problems involved in analysing the structures possessed by ϱX_{*}. We must thank Nicholas Ashley for discussions which led to considerable improvements in some proofs (in Sections 1, 3 and 5). We are grateful to the Science Research Council for support.

References

[1] J. F. Adams, Four applications of the self-obstruction invariant, J. London Math. Soc. 31 (1956) 148-159.
[2] N. M. Ashley, T-complexes and crossed complexes, Ph.D. thesis, University of Wales (1978), Dissertationes Math. 265 (1988) 1-61. http://pages.bangor.ac.uk/~mas010/doctorates.html
[3] A. L. Blakers, Some relations between homology and homotopy groups, Ann. of math. 49 (1948) 428-461.
[4] R. Brown, Elements of modern topology (McGraw-Hill, Maidenhead, 1968). (Revised and republished as 'Topology and Groupoids', Booksurge PLC, S. Carolina, 2006.)
http://pages.bangor.ac.uk/~mas010/topgpds.html
[5] R. Brown, Fibrations of groupoids, J. Algebra 15 (1970) 103-132.
[6] R. Brown, On the second relative homotopy group of an adjunction space: an exposition of a theorem of J. H. C. Whitehead, J. London Math. Soc. (2) 22 (1980) 146-152.
[7] R. Brown and P. J. Higgins, On the connection between the second relative homotopy groups of some related spaces, Proc. London Math. Soc. (3) 36 (1978) 193-212.
[8] R. Brown and P. J. Higgins, Sur les complexes croisés, ω-groupoïdes, et T-complexes, C. R. Acad. Sci. Paris, Sér. A 285 (1977) 997-999.
[9] R. Brown and P. J. Higgins, Sur les complexes croisés d'homotopie associés à quelques espaces filtrés, C. R. Acad. Sci. Paris, Sér. A 286 (1978) 91-93.
[10] R. Brown and P. J. Higgins, On the algebra of cubes, J. Pure Appl. Algebra 21 (1981) 233-260.
[11] R. H. Crowell, On the Van Kampen theorem, Pacific J. Math. 9 (1959) 43-50.
[12] M. K. Dakin, Kan complexes and multiple groupoid structures, Ph.D. thesis, University of Wales (1977). http://pages.bangor.ac.uk/~mas010/doctorates.html
[13] T. tom Dieck, K. H. Kamps and D. Puppe, Homotopie-theorie, Lecture Notes in math. 157 (Springer, Berlin, 1970).
[14] H. Federer, Lectures in algebraic topology, Brown University, Providence, R. I. (1962).
[15] P. Gabriel and M. Zisman, Calculus of Fractions and Homotopy Theory, Ergebnisse der Mathematik und ihrer Grenzgebiete, Vol. 35 (Springer, Berlin, 1967).
[16] P. J. Higgins, Presentations of groupoids, with application to groups, Proc. Cambridge Phil. Soc. 60 (1964) 7-20.
[17] P. J. Higgins, Categories and Groupoids (Van Nostrand, New York, 1971). (Available as Theory and Applications of Categories Reprint, 7 (2005).)
[18] S. Hintze, Polysets, \square-sets and semi-cubical sets, M.Phil. Thesis, Warwick (1973).
[19] P. J. May, Simplicial Methods in Algebraic Topology (Van Nostrand, New York, 1967).
[20] J. Ratcliffe, Free and projective crossed modules, J. London Math. Soc. (2) 22 (1980) 66-74.
[21] J. H. C. Whitehead, On adding relations to homotopy groups, Annals of Math. 42 (1941) 409-28.
[22] J. H. C. Whitehead, Combinatorial homotopy I, Bull. American Math. Soc. 55 (1949) 213-245.
[23] J. H. C. Whitehead, Combinatorial homotopy II, Bull. American Math. Soc. 55 (1949) 453-96.
[24] J. H. C. Whitehead, A certain exact sequence, Annals of Math. 52 (1950) 51-110.

Additional bibliography

[25] R. Brown, P.J. Higgins, R. Sivera, Nonabelian algebraic topology: filtered spaces, crossed complexes, cubical homotopy groupoids, EMS Tracts in Mathematics Vol. 15, 703 pages. (August 2011). http://pages.bangor.ac.uk/~mas010/nonab-a-t.html
[26] R. Brown and P.J. Higgins, Tensor products and homotopies for ω-groupoids and crossed complexes, J. Pure Appl. Algebra 47 (1) (1987) 1-33.
R. Brown and P.J. Higgins, The classifying space of a crossed complex. Math. Proc. Cambridge Philos. Soc. 110 (1) (1991) 95-120.

[^0]: ${ }^{*}$ This is a version of the paper with this title published in the J. Pure Appl. Algebra, 22 (1981) 11-41, revised initially by the first author in May, 1999, and later, to take into account later views of both authors, and to make minor clarifications. The main change is to avoid the J_{0} condition on filtered space which was used in the published version - this is done by defining higher homotopy groupoids using homotopy classes rel vertices of I^{n}. This makes the theory nearer to standard homotopy theory, and is also essential for later work in defining the homotopy crossed complexes for filtered function spaces, when the J_{0} condition is unlikely to be fulfilled. It is hoped that this version will be useful to readers. We also change here to a notation used in later works, and replacing \mathbf{X} by X_{*}, for a filtered space, and π by Π for the fundamental crossed complex of a filtered space. We also change the term 'homotopy full' to 'connected', and the term 'filtered homotopy' to 'thin homotopy', to agree with terminology in [25] in the additional bibliography.
 ${ }^{\dagger}$ r.brown@bangor.ac.uk

[^1]: ${ }^{1}$ The full account of such a notion in which a homotopy f_{t} of filtered maps f_{0}, f_{1} should satisfy $f_{t}\left(X_{n}\right) \subseteq Y_{n+1}$, in analogy with cellular homotopies, was given in references [26,27], and also in [25].

[^2]: ${ }^{2}$ A cubical face operator d is simply a product of various ∂_{j}^{τ} s. This product may be empty, so that we allow $d=1$. We say d does not involve ∂_{n+1}^{τ}, if d cannot be written as $d^{\prime} \partial_{n+1}^{\tau}$.

[^3]: ${ }^{3}$ More recent, and published, work on cubical theory is by Jardine, J. F., Categorical homotopy theory, Homology, Homotopy Appl., 8 (2006), 71-144.

