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Introduction

J.H.C. Whitehead developed in | ]. following | |, the tool of what he called the
homotopy system of a CW-complex X and which we now call the fundamental crossed complex
I1X, of the CW-complex X with its skeletal filtration X,. Full details of this construction are
covered in the book | ]

A key innovation in Whitehead’s paper was the notion of free crossed module, and the
theorem that the group m(X U {e3}, X, z), regarded as a crossed m;(X,z)-module, can be
presented as the free crossed module on the characteristic maps of the 2-cells. An exposition
of Whitehead’s proof is in [ |, and the proof of a much more general result using a 2-
dimensional Seifert-van Kampen Theorem is in | | and | ]

Also covered in that book is the monoidal closed structure on crossed complexes, giving an
exponential law

Crs(A® B, C) = Crs(A,CRS(B, ()).

This is derived from a clear and intuitive description of a monoidal closed structure on the
equivalent category of (strict) cubical w-groupoids with connections. The complications of the
description of the tensor product of crossed complexes relate to the complications of the cell
structure of the product of two cells E™, E™ where EV is a singleton, E* = {0,1} Ue! and for
n>2, E" = Ue !t Uem However for filtered spaces X,,Y, there is a natural morphism

X, ® 1Y, — II(X, ® ;) (1)

*This is a typed, expanded and revised version of some handwritten notes dated 6:00am 26,/07/1992.
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which is an isomorphism for C'W-complexes with their skeletal filtrations.

Note that the tensor product C'® D of two crossed complexes is equipped with two projec-
tions p : C®D — C,py: C®D — D. A diagonal for a crossed complex C' is a morphiam
¢ : C — C ® C such that p1¢, pa¢ are each homotopic to the identity C' — C. If X, is a
CW-filtration, then the cellular approximation theorem and the isomorphism (1) implies that
I1X, admits a diagonal.

The book [ | explains how the category of crossed complexes is convenient for many
purposes of algebraic topology, and has advantages over the widely used category of chain
complexes with a group of operators. As Whitehead wrote in the Introduction to | |, but
in our terminology: crossed complexes have better realisation properties than chain complexes
with a group of operators. For example crossed complexes completely capture weak homotopy
2-types, which is not so for chain complexes with a group of operators. We note from | ]
that:

e there is a functor V from crossed complexes to chain complexes with a groupoid of operators
(§7.4.11);

e V has a right adjoint, and so preserves colimits (Prop. 7.4.29);

o if X, is the skeletal filtration of a C'W-complex, then VII(X,) is isomorphic to the cellular
chain complexes of the universal covers of X at its various vertices, with the fundamental
groupoid (X, X) as groupoid of operators (Prop. 8.4.2); and

e V preserves tensor products (Theorem 9.5.4).

One of the themes of the book | | is that the category of crossed complexes is con-
venient both for geometric intuition and for calculation. The aim of this note it to illustrate
the latter by calculating diagonal approximations C — C' ® C' for the fundamental crossed
complexes of the Klein Bottle and the Torus. The usual diagrams for these spaces are given
in the next section, and we note that the 2-cell k£ of the Klein bottle can be regarded as the
generator of a free crossed module with boundary

d(k)=b—a+b+a. (2)

Thus this setup reflects the geometry more than the usual chain complex algebra, in which we
have

(k) = 20,

unless we work with chain complexes of universal covers. In that context the equation (2)
becomes the more complicated

O(k) = (b)) — (@)~ + (0)" +a (3)

since the 1-dimensional chains of the universal cover are freely generated as a (K )-module
by elements @, b, and the map from 7 K! to the 1-dimensional chains of the universal cover is a



derivation. This fact is of course related to the Fox free differential calculus, which is foreseen
in [ ].

A further advantage of the category of crossed complexes is that the functor Il : FTop — Crs
is defined homotopically; this contrasts with the usual somewhat circuitous route for the cellular
chain complex of a C'W-complex as determined using singular homology. However the major
properties of II are not established directly, but via a category of multiple groupoids hinted at
above.

The aim of this note is to illustrate the methods of crossed complexes by giving some
simple examples of calculation with these tools, namely of diagonal approximations for the
fundamental crossed complexes of the Torus and Klein Bottle.

1 Diagonals for the fundamental crossed complexes of
the Klein Bottle, Torus and Projectivs Plane

Standard diagrams for the Klein Bottle K and Torus T are as follows:

b b

a k a a t a
b b
K T

Here e denotes the base point. Let C' = IIT,, ¢’ = IIK,. Then C; = C] is the free group on
generators a,b and Cy, C) are the free crossed Cj-modules on the generator ¢ for the torus, k
for the Klein bottle with

ot=—-b—a+b+a, 0k=b—a+b+a.

In dimension 1, both of the tensor products C ® C, C'® C" are the free group on generators
ay, by, az, be; in dimension 2 they are respectively the free crossed (C'®C');- module on generators

a; ® az,a; @ by, by @ ag, by & by
and t1, ty for the Torus, k1, ko for the Klein bottle, where always if ¢, d are in dimension 1, then
decwd)=—d—c+d+c,

while for ¢ =1, 2:



5ti:—bi—ai—|—bi—|—a1,
6ki:bi—ai+bi+ai.

A diagonal A : C - C®C,A’: " — C'" ® C' is given in dimension 1 by
ACL:A/GZCL1+(12, Ab:A,b:bl—Fbg
Hence

Aét:A(—b—a—i—b—l—a) = —bg—bl—ag—a1+bl+b2—|—a1+a2,
ANok=ANDb—a+b+a) =b+by—as—a+b +b+a+ a.
We need to find elements of (C' ® ')y, (C" ® C")y with these elements as boundary.

We first consider the Klein Bottle K and for this consider the following subdivided square
diagram, whose boundary is A’dk:

by
bif —bi®by |by T
by
by
a1 a X bg a k’l ai 2 (4)
b [
by
as ke Q2] ay;® —b; Va2
ba b

In order to determine the element of (C” ® C’), this represents, we use double groupoid tech-
niques, which apply here since all the cells are of square shape.

Recall from | , | that given a crossed module M = (u : M — P) we obtain a
double groupoid A(M) which is P in dimension 1 and whose squares are quintuples (m : a § d),
such that a,b,¢,d € P,m € M and p(m) = —b — a + ¢ + d. This is also written

C

amdrﬁ.
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In particular the corner square denoted by ~1in diagram (4) corresponds to the quintuple
(0:=by§ 0).
Vertical and horizontal compositions of quintuples are defined by

u Ve
= v+ u? c+d
v 1d
[
1
u m _ ub+m
a b a+b

Of course these formulae are determined by the convention for the quintuple and the need to
get the correct boundaries for the compositions.

So we can evaluate in the associated crossed module the total composition in diagram (4).
The first column evaluates to

o = kg4 (a1 ® by)™ + (—by @ by)¥1 72
and the second column evaluates to

B =as® by + (k1)*
so that the final result is

y=a"+ B,
and we therefore may set

A'(k) =1.

Note that pi(y) = k1, pa(y) = ke, since py(az) = 0, pa(by) = 0.

Maybe the conclusion is that the 2-dimensional diagram (4) is more revealing than the
formula for v. However the formula may be better for further computation.



Note also that equivalent ways of evaluation, e.g. rows first and then columns, are equal
by the interchange law, and the resulting crossed module elements are equal by the rules for
crossed modules, particularly the second rule!, which is equivalent to the interchange law.

The work for the Torus is similar but simpler. We consider the diagram

by by
ax t1 a1 aq ® bsy ay

h b e ©)
al  ay®b, Va1 as !

by b

So we can set
A(t) = (a3 ® by)"2 4 (1)1 4 4y @ by + (£5)2,

Finally we consider the Projective Plane, P, with cell structure e U e! U €2, and with
boundary of the 2-cell e given by de = 2a, say. Thus a diagonal in dimension 1 is given by
A = aq + as. The following is a diagram whose boundary is a; + as + a1 + as:

aq
e1 0
4 - (6)
azf (—ay) ® (—ag) a2 € az 1
ay

This evaluates in the crossed module to
(—a1) ® (—az) +€1" + ey

and this is the value we can take for Ae.
An alternative procedure is to use the methods of van Kampen diagrams as in Section 3.1.ii

of | ].

1The reader of | ] should note that the final section omits the second rule for a crossed module.
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