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Introduction

Almost 40 years ago J.H.C. Whitehead showed in [11] that, for connected CW -complexes X,Y with dim
X 6 n and πY = 0 for 2 6 i 6 n − 1, the homotopy classification of maps X → Y can be reduced to
a purely algebraic problem of classifying, up to an appropriate notion of homotopy, the π1-equivariant chain
homomorphismsC∗X̃ → C∗Ỹ between the cellular chain complexes of the universal covers. The classification
of homotopy equivalences Y ' Y can similarly be reduced to a purely algebraic problem. Moreover, the
algebra of the cellular chains of the universal covers closely reflects the topology, and provides pleasant and
interesting exercises.

These results ought to be a standard piece of elementary algebraic topology. Yet, perhaps because of the
somewhat esoteric exposition given in [11], and perhaps because of a lack of worked examples, they have
remained largely ignored. The purpose of the present paper is to rectify this situation. We shall show the utility
of Whitehead’s results by using them to give new and clearer treatments of various known classifications.

In Section 1 we recall the relevant definitions and theorems from [11], and then in Section 2 we use the notions
of equivariant cohomology and twisted degree to obtain three fairly general classification results as corollaries.
In the subsequent sections these three corollaries are applied to specific examples: in Section 3, 4 and 6 we
give a succinct algebraic account of work of P. Olum [8] on maps between n-manifolds, including maps of lens
spaces and maps from a surface to the projective plane; in Section 5 we recover a classification of generalized
lens spaces which was first obtained by S. Jajodia in [6].

In view of the ease with which Whitehead’s methods handle the classifications of Olum and Jajodia, it is
surprising that the papers [8] and [6] (both of which were written after the publication of [11]) make respectively
no use, and so little use, of [11].

We note here that B. Schellenberg, who was a student of Olum, has rediscovered in [9] the main classification
theorems of [11]. The paper [9] relies heavily on earlier work of Olum.

The present paper is a revised version of part of my M.Sc. dissertation [5]. I would like to thank Professor
R. Brown for suggesting that this work be carried out, and for his permission to reproduce in Section 6 the
calculations of [3].
∗This is a retyped version prepared for R. Brown for possible use in his work for the book on Nonabelian algebraic topology. The

paper was published in Exposition. Math. 6 (2) (1988) 97–110.
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1 Whitehead’s results

All spaces are assumed to be connected CW -complexes with a 0-cell chosen as base-point, and all maps are
assumed to preserve base-points.

The universal cover X̃ of a space X has a canonical CW -structure for which the projection of p : X̃ → X
is cellular. For each k-cell ek of X we can choose a “preferred” k-cell of X̃ which covers ek, the base-point
of X̃ being the preferred 0-cell covering the base-point of X . We shall abuse notation slightly and denote the
preferred k-cell also by ek.

There is a left action of π1X on X̃ , and this induces a left π1X-action on the chain group CkX̃ = Hk(X̃
k,

X̃k−1). This group can be regarded as the free Z[π1X]-module with basis the preferred k-cell ek of X̃; and the
boundary homomorphism ∂k: CkX̃ → Ck−1X̃ can be regarded as a Z[π1X]-module homomorphism.

Any cellular map of spaces f : X → Y determines a unique base-point preserving lift f̃ : X̃ → Ỹ ; and a
homomorphism π1f : π1X → π1Y which in turn yields a homomorphism π1f : Z[π1X] → Z[π1Y ] ; and a
π1f -equivariant chain homomorphism f∗ : C∗X̃ → C∗Ỹ which sends the base-point in C0X̃ to the base-point
in C0Ỹ . For any homomorphism θ : π1X → π1Y we denote by (X,Y )θ the set of pointed cellular maps
from X and Y over θ, and we denote by (C∗X̃, C∗Ỹ )θ the set of θ-equivariant base-point preserving chain
homomorphisms from C∗X̃ to C∗Ỹ . Thus there is a function

(X,Y )θ → (C∗X̃, C∗Ỹ )θ.

Now two base-point preserving chain homomorphisms f∗, g∗ : C∗X̃ → C∗Ỹ , where f∗ is θ-equivariant and g∗
is θ′-equivariant say, are free homotopic (written f∗ ' g∗) if and only if there is an element w ∈ π1Y and a
family of θ-equivariant homomorphisms µk : CkX̃ → Ck+1Ỹ for k > 0, such that

wgk − fk = ∂k+1µk + µk−1∂k (k > 0 and µ−1∂0 = 0).

If w can be chosen to be the identify element of π1Y then f∗ and g∗ are said to be based homotopic (and we
write f∗'. g∗). It is easily checked that both ' and '. are equivalence relations.

Recall that two homomorphisms θ, φ : π1X → π1Y are conjugate if there is an element w ∈ π1Y such that
θx = w(φx)w−1 for all x ∈ π1X . We shall denote the conjugacy class of θ by [θ], and the set of conjugacy
classes of homomorphisms π1X → π1Y by [π1X,π1Y ].

We denote by [X,Y ] the set of free homotopy (i.e.base-point allowed to traverse a loop) classes of maps
X → Y , and by [X,Y ]. the set of based homotopy (i.e. base-point fixed) classes of maps X → Y . Similarly
we denote by [C∗X̃, C∗Ỹ ] and [C∗X̃, C∗Ỹ ]. the set of free and based homotopy classes of equivariant base-
point preserving chain homomorphisms C∗X̃ → C∗Ỹ . There are obvious quotient maps

q0 : [X,Y ]→ [π1X,π1Y ], q′0 : [X,Y ].→ [π1X,π1Y ]

q1 : [C∗X̃, C∗Ỹ ]→ [π1X,π1Y ], q′1 : [C∗X̃, C∗Ỹ ].→ [π1X,π1Y ].

For any homomorphism θ : π1X → π1Y we write

[X,Y ]θ = q−1
0 [θ], [X,Y ]θ· = q′

−1
0 [θ],

[C∗X̃, C∗Ỹ ]θ = q−1
1 [θ], [C∗X̃, C∗Ỹ ]θ· = q′−1

1 [θ].
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The above function (X,Y )θ → (C∗X̃, C∗Ỹ )θ induces functions

[X,Y ]θ → [C∗X̃, C∗Ỹ ]θ (*)

[X,Y ]θ· → [C∗X̃, C∗Ỹ ]θ· (**)

Theorem 1.1 (J.H.C. Whitehead [11]). Let X,Y be reduced CW -complexes such that dim X 6 n and
πiY = 0 for 2 6 i 6 n− 1. Let θ : π1X → π1Y be any homomorphism. Then the functions (*) and (**) are
bijections. Moreover, these bijections respect free and based homotopy equivalences.

This theorem follows immediately from Theorems 5, 6, 7, 9, 10 and 12 in [11]. An outline of an alternative
proof can be found in [4].

2 Equivariant cohomology and twisted degree

Throughout this section X and Y are n-dimensional (n > 2) reduced CW -complexes with πiY = 0 for
2 6 i 6 n− 1.

Let θ : π1X → π1Y be a homomorphism. Then the group π1X acts on πnY via θ and the standard action of
π1Y on πnY . We denote the θ-equivariant cohomology of X̃ with coefficients in πnY by H∗(X̃, πnY, θ). This
cohomology can equivalently be thought of as the cohomology of X with local coefficients in πnY . (See for
example [10] for a general discussion on equivariant cohomology.)

Corollary 2.1 There is a (non-canonical) bijection

[X,Y ]θ·
∼= Hn(X̃, πnY, θ).

There is also a (non-canonical) surjection

Hn(X̃, πnY, θ)→ [X,Y ]θ. 2

This corollary is obtained from the above theorem of Whitehead using the following lemma.

Lemma 2.2 If f∗, g∗ : C∗X̃ → C∗Ỹ are respectively θ-, θ′-equivariant chain homomorphisms such that
[θ] = [θ′], then there exists a θ-equivariant chain homomorphism g∗ : C∗X̃ → C∗Ỹ such g′k = fk for
0 6 k 6 n− 1 and g′∗ ' g∗. 2

The proof of the corollary and lemma involves only standard arguments of homological algebra, and is left to
the reader.

By the twisted degree deg(f) of a map f : X → Y we shall mean the induced homomorphism of equivariant
cohomology groups

deg(f) : Hn(Ỹ , πnY, id)→ Hn(X̃, πnY, π1f).
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WhenX and Y are n-manifolds (see section 3) this is exactly the notion of twisted degree which was introduced
in [8].

Now let θ = π1f , and for a givenw ∈ π1Y let φ = w(π1f)w−1 = π1X → π1Y . Then there is an isomorphism

w̄ : Hn(X̃, πnY, θ) ∼= Hn(X̃, πnY, φ)

which maps the element represented by α ∈ Homθ(CnX̃, πnY ) to the element represented by wα ∈ Homφ

(CnX̃, πnY ).

If two maps f, g : X → Y are homotopic, with w ∈ π1Y the element involved in the corresponding chain
homotopy f∗ ' g∗ (so π1f = w(π1g)w−1), then it is readily seen that

deg(f) = w̄ deg(g).

Thus we have a necessary condition for two maps to be homotopic. The following corollary to the above
theorem of Whitehead gives necessary and sufficient conditions. Again, the proof contains no surprises and is
left to the reader.

Corollary 2.3 Let f, g : X → Y be maps such that:
i) the homomorphism

Hn(Ỹ , πnY, id)→ Homid(HnỸ , πnY )

which is induced by the inclusion HnỸ → CnỸ has an injective homomorphism in the image;
ii) the surjection

Homπ1f (CnX̃, πnY )→ Hn(X̃, πnY, π1f)

is also injective.

Then f ' g if and only if there is an element w ∈ π1Y such that π1g = w−1(π1f)w and deg(f) = w̄ deg(g).

Also, f '. g if and only if π1f = π1g and deg(f) = deg(g). 2

Finally in this section we give a result for calculating all the possible degrees of maps X → Y .

Note that any θ-equivalent homomorphism α : CnX̃ → HnỸ induces a homomorphism

ᾱ : Hn(Ỹ , πnY, id)→ Hn(X̃, πnY, θ);

ᾱ maps an n-cocycle φ : CnỸ → πnY to the n-cocycle φx : CnX̃ → πnY .

Corollary 2.4 Let f : X → Y be a map with π1f = θ say. Then the degrees of the maps X → Y including
the homomorphism θ on fundamental groups are precisely the homomorphisms

deg(f) + ᾱ : Hn(Ỹ , πnY, id)→ Hn(X̃, πnY, θ)

with α ∈ Homθ(CnX̃,HnỸ ). 2

Again the proof contains no surprises and is left to the reader.
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3 Maps of n-manifolds

Throughout this section X and Y are n-manifolds (n > 2) with a reduced CW -structure, and πiY = 0 for
2 6 i 6 n− 1.

We shall use the corollaries obtained in Section 2 to recover some classification results in [8].

Now the elements of π1X can be divided into two classes, those whose representative paths are orientation-
preserving, and those represented by orientation reversing paths, with the obvious meanings. The product of
two elements is orientation-reversing if and only if exactly one of the elements is orientation-preserving. A
homomorphism θ : π1X → π1Y is orientation-true if it respects both orientation-preserving and orientation-
reversing elements. If θ is not orientation-true then it is orientation-false.

Let us recall the following proposition of Olum [8, 2.1] on the equivariant cohomology of X̃ . The proof is
analogous to its counterpart in ordinary cohomology.

Proposition 3.1 Suppose Y is compact, and θ : π1X → π1Y is any homomorphism. Then

Hn(X̃, πnY, θ) =


0 if X is not compact,
Z if X is compact and θ is orientation-true,
Z2 if X is compact and θ is orientation-false.

2

Theorem 3.2 (Olum [8]). Suppose either X or Ỹ is not compact. Then two maps f, g : X → Y are free
homotopic if and only if [π1f ] = [π1g]. Furthermore, every homomorphism π1X → π1Y is induced by some
map X → Y .

Proof If f and g are homotopic then the induced chain homomorphisms f∗ and g∗ are also homotopic. It
is a simple algebraic exercise to deduce from the above definition of a chain homotopy that if f∗ ' g∗ then
[π1f ] = [π1g].

If Ỹ is not compact then πnY = HnỸ = 0 and so the result is very well known. Alternatively it follows from
the preceding paragraphs and the surjection of Corollary 2.1.

If X̃ is not compact then the result follows from Proposition 3.1 and the surjection of Corollary 2.1. 2

Theorem 3.3 (Olum [8]). Suppose both X and Ỹ are compact. If θ : π1X → π1Y is an orientation-true
homomorphism then there is a bijection.

[X,Y ]θ·
∼= Z.

If θ is orientation-false then there is a bijection

[X,Y ]θ·
∼= Z2.
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Proof The bijections follow from Corollary 2.1 and Proposition 3.1. 2

In this section, the twisted degree of a map X → Y is simply (multiplication by) an integer. Also, the funda-
mental group π1Y is finite. We shall denote its order by |π1Y |.
In the following two theorems we shall assume that X and Y have just a single n-cell (and are thus compact).
This assumption is made to simplify the proofs. 2

Theorem 3.4 (Olum [8]). Suppose Ỹ is compact and that X and Y each have just a single n-cell. Let
f, g : X → Y be maps with π1f orientation-true. Then f and g are free homotopic if and only if π1f =
w(π1g)w−1 for some w ∈ π1Y and deg(f) = +deg(g) or −deg(g) according as w is orientation-preserving
or orientation-reversing.

Furthermore, the degrees of the maps X → Y inducing π1f on fundamental groups are precisely the integers
deg(f) + k|π1Y | with k = 0,±1,±2, . . .

Proof Let PY be the subgroup of π1Y of index 1 or 2, consisting of the orientation-preserving elements, and
let RY = π1Y \ PY . Let NY ∈ Z[π1Y ] be group-ring element

NY =
∑
x∈PY

x−
∑
y∈RY

y.

Thus for x ∈ PX , y ∈ RY we have

xNY = NY and yNY = −NY.

Let e′n be the single n-cell of Y . Then the homology group HnỸ is the subgroup of CnỸ consisting of all
integer multiples of NY e′n.

The last assertion of the theorem follows easily from Corollary 2.4. The first assertion will follow from Corol-
lary 2.3 once we have proved that the hypotheses of Corollary 2.3 are satisfied.

Since every non-trivial homomorphismHnỸ = Z→ πnY = Z is injective, hypothesis (i) is certainly satisfied.

To see that (ii) is satisfied, let X̄ be the compact orientable cover of X with π1X̄ = PX , the group of
orientation preserving elements of π1X . Let en be the n-cell of X . Then the homology group HnX̄ is the
subgroup of CnX̄ generated by (1 − ȳ)en where ȳ ∈ π1X : PX is the element represented by a y ∈ RX
(if RX = ∅ then ȳ = 0). Let q∗ : C∗X̃ → C∗X̄ be the canonical quotient map. Now any π1f -equivariant
homomorphism φ : Cn−1X̃ → πnY induces an equivariant homomorphism φ̄ : Cn−1X̄ → πnY such that
φ = φ̄qn−1. Considering en now to be an element of CnX̃ we have

φ∂n((1− y)en) = φ̄qn−1∂n((1− y)en)

= φ̄∂nqn((1− y)en)

= φ̄∂n((1− ȳ)en)

= φ̄(0)

= 0.
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But also, since π1f is orientation-true.

φ∂n((1− y)en) = (1− π1fy)φ∂ne
n

= 2φ∂ne
n.

It follows that φ∂nen = 0, and hence hypothesis (ii) is satisfied. 2

The modifications needed to obtain based homotopy versions of Theorems 3.2 and 3.3 are easy and are left to
the reader. 2

Theorem 3.5 (Olum [8]). Suppose Ỹ is compact, thatX , Y have just a single n-cell, and that πiX = πiY = 0
for 2 6 i 6 n− 1. If f : X → Y is a map with π1f = θ say, then there exists a based homotopy equivalence
X → Y inducing θ if only and only if θ is an orientation-true isomorphism and deg(f) ≡ ±1 modulo |π1Y |.

Proof Suppose g : X → Y is a based homotopy equivalence with π1g = θ, and with based homotopy inverse
g′ : X → Y . Then θ is an isomorphism. Now if deg(g) = m and deg(g′) = m′, then deg(identity)= 1 and
hence deg(g) = ±1. Thus by Theorem 3.4 deg(f) ≡ ±1 modulo |π1Y |. Since the identity homomorphism
deg(g′g) factors through Hn(X̃, πn, θ), it follows from Proposition 3.1that θ must be orientation-true.

Conversely suppose θ is an orientation-true isomorphism and deg(f) ≡ ±1 modulo |π1Y |. Then, by Theorem
3.4 there is a map g : X → Y with π1g = θ and deg(g) = ±1. Let g′ : Y → X be any map with π1g

′ = θ−1.
Then π1(g′g) = identity and hence, by Theorem 3.4, deg(g′g) ≡ 1 modulo |π1Y |. If deg(g′) = m′ then
1 ≡ deg(g′g) = m′(±1) modulo |π1Y |. Therefore m′ ≡ ±1 modulo |π1Y | and, by Theorem 3.4 we can
choose g′ such that m′ = ±1. Then deg(g′g) = deg(gg′) = 1 and the result follows from Theorem 3.4. 2

4 Lens spaces

In this section we recover a result of Olum [8] on the homotopy type of lens spaces.

A (2n− 1)-dimensional (n > 1) lens space L is determined by an integer m > 3 and integers q1, . . . , qn each
coprime to m (see for example [8]); we write L = L(m, q1, . . . , qn). The fundamental group π1L is the cyclic
group Zm of orderm, and we denote one of its generators by x. The space L can be given a CW -structure with
one cell ek in each dimension k. The chain group CkL̃ is then the free Z[Zm]-module on ek, and the boundary

homomorphisms ∂k+1 : Ck+1L̃̃→ CkL̃ are given by

2∂2k(e
2k) = (1 + x+ x2 + · · ·+ xm−1)e2k−1 1 6 k 6 n,

∂2k+1(e2k+1) = (x(q̄k) − 1)e2k 0 6 k 6 n

where 1 6 q̄k 6 m such that qk q̄k ≡ 1 modulo m, q̄0 = 1.

Let L′ = L(m′, q′1, . . . q
′
n) be another lens space with cells denoted by e′k and with fundamental group Zm′

generated by an element y.
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For each integer p, 1 6 p 6 m′, such that pm ≡ 0 modulo m′, there is a homomorphism Zm → Zm′ , x→ yp,
and this exhausts the possible homomorphisms.

Theorem 4.1 Olum [8]. Let p be an integer such that there is a homomorphism θp : Zm → Zm′ . The (twisted)
degrees of the maps L→ L′ inducing θp are precisely those integers congruent to

p(pm/m′)nq′1q
′
2 . . . q

′
nq̄1 . . . q̄n

modulo m′. There is a homotopy equivalence L→ L′ inducing θp if and only if m = m′ and

q1q2 . . . qn ≡ ±pn+1q′1 . . . q
′
n modulo m′

for some integers p comprime to m.

Proof Let us simplify notation by setting

σj(w) = 1 + w + w2 + · · ·+ wj−1

for w ∈ π1Y . For a fixed integer p such that 1 6 p 6 m′ and pm ≡ 0 modulo m′, let f∗ : C∗L̃ → C∗L̃′ be a
base-point preserving θp-equivariant chain homomorphism given by

fk(e
k) = Fke

′k

say, where Fk ∈ Z[Zm′ ]. Since f∗ is base-point preserving we have

F0 = 1 (i)

and the equations fk∂k+1 = ∂k+1fk+1 are equivalent to

F2k+1(y(q̄′k) − 1) = F2k(y
pq̄k − 1). (ii)

F2k+2σm′(Y ) = F2k+1σm(yp) (iii)

Multiplying both sides of (ii) by σp(q̄k)(qk)(y
(q̄k)) we obtain the equivalent equations

F2k+1 ≡ F2kσp(q̄k)(qk)(y
(q̄k)) modulo σm′(y) (ii)′

Let ∈: Z[Zm′ ]→ Z be the augmentation map. Then (iii) is equivalent to

m′ ∈ (F2k+2) = m ∈ (F2k+1) (iii)′

Now deg(f∗) =∈ (F2n+1) and so, from (i), (ii)′ and (iii)′ we have

deg(f∗) =∈ (F2n+1)

= pq′nq̄n ∈ (F2n) modulo m′

= (pm/m′)q′nq̄n ∈ (F2n−1)

...

≡ p(pm/m′)nq′1 . . . q′nq̄1 . . . q̄n modulo m′.

The theorem now follows from Theorems 3.4 and 3.5. 2
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5 Generalized lens spaces

In this section we recover a result of S. Jajodia [6] on the homotopy classification of generalized lens spaces.

Let Γ be a group with presentation 〈x1, . . . , xn : Rm〉 where R is a word in the xi and m is an integer. For
a fixed integer q coprime to m, a generalized lens space L = L(Γ, q) is obtained by attaching a 3-cell to the
standard cellular model of the presentation via an attaching map representing Rq − 1. This space has a CW -
structure with one cell ek in dimensions k = 0, 2, 3, and n cells e1, e2, . . . , en in dimension 1. The chain
group CkL̃ is the free Z[Γ]-module on the k-cell. The boundary homomorphisms ∂k+1 : Ck+1L̃ → CkL̃ are
given by

∂1(e1) = (x1 − 1)e0,

∂2(e2) = (1 +R+R2 + · · ·+Rm−1)
∑

16i6n

(∂R/∂x1)ei

when ∂R/∂xi is the Reidemeister-Fox derivative (see for example [2]),

∂3(e3) = (Rq − 1)e2.

Let L′ = L(Γ, q′) be another generalized lens space, where q′ is coprime to m. We identify the 2-skeleton of
L′ with that of L, and we denote the 3-cell of L′ by e′3.

Let us introduce a homotopy invariant D(f) of a map f : L → omit ±L′ which is more easily handled than
the twisted degree deg(f). Suppose that the corresponding π1f -equivariant chain homomorphism f∗ : C∗L̃→
C∗L̃ is given in dimension 3 by f3(e3) = F3e

′3 where F3 ∈ Z[Γ]. Then, letting ∈: Z[Γ] → Z denote the
augmentation map, we define

D(f) =∈ (F3).

Proposition 5.1 Two maps f, g : L → L′ are free homotopic if and only [π1f ] = [π1g] and D(f) = D(g).
There is a free homotopy equivalence L → L′ inducing π1f : Γ → Γ if and only if π1f is an automorphism
and D(f) ≡ ±1 modulo m. 2

Proof It is straightforward to check that if f ' g then [π1f ] = [π1g] and D(f) = D(g). The converse of this
follows from the lemma in Section 2 and the fact that H3(L̃′) is generated as Z[Γ]-module by (1 + R + · · · +
Rm−1)e′3.

This second claim of the proposition is proved in a similar fashion to the proof in Theorem 3.5. 2

Theorem 5.2 (Jajodia [6]). Suppose the word R is a primitive element of the free group on the xi (i.e. R is
contained in some basis of the group). Then the spaces L, L′ have the same free homotopy type if and only
if ±qq′±1 is a quadratic residue modulo m (i.e. if and only if there is an integer t coprime to m such that
qq′ ≡ ±(tq)2 modulo m).
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Proof Suppose there is a free homotopy equivalence L→ L′ inducing θ : Γ→ Γ. Then θ is an automorphism.
By Proposition 4.13 in [7], there exists a w ∈ Γ and an integer t coprime to m such that θR = wRtw−1. Set
θ′ = w−1θw. It is easily checked that there is a θ′-equivariant homomorphism f∗ : C∗L̃→ C∗L̃′ with

f0(e0) = e0,

f1(ei) =
∑

16i6n

(∂θ′xi/∂xj)ej ,

f2(e2) = σt(R)e2,

where σj(R) = 1 + R + R2 + · · ·Rj−1. It follows from the lemma in Section 2 that any θ-equivariant
chain homomorphism C∗L̃ → C∗L̃′ is free homotopic to such an f∗. Now for such an f∗ let us suppose that
f3(e3) = F3e

′3 where F3 ∈ Z[Γ]. Then the equality f2∂3 = ∂3f3 implies

(Rq
′ − 1)F3 = (Rtq − 1)σ1(R)

or equivalently

σq′(R)F3 ≡ σtq(R)σt(R) modulo σm(R).

If f∗ is induced by f : L→ L̃′, then this last equation yields

q′D(f) = q′ε(F3) ≡ t2q modulo m

or equivalently

qq′D(f) ≡ (tq)2 modulo m.

Since we have supposed the existence of an homotopy equivalence L → L′, it follows from Proposition 5.1
that qq′ ≡ ±(tq)2modulo m.

Conversely, suppose that there is a t coprime to m such that qq′ ≡ ±(tq)2 modulo m. Since R is primitive,
it is shown in Section 2 of [6] that there is an automorphism θ : Γ → Γ such that θR = wRtw−1 for some
wεΓ. Let f : L → L′ be any map over θ. From the preceding paragraph we see that D(f) ≡ ±1 modulo m.
It follows from Proposition 5.1 that L and L′ are free homotopy equivalent. 2

6 Maps from a surface to the projective plane

In this section we recover some results of [8]. The calculations of this section are essentially those of the
preprint [3] mentioned in [1].

We consider the homotopy classification of maps from a compact, connected, closed surface to the projective
plane. The case of maps inducing an orientation-true homomorphism of fundamental groups is covered by
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Theorem 3.5, so here we just consider the case of maps over orientation-false homomorphisms. Since the
based-homotopy classification of such maps is essentially covered by Theorem 3.3, we restrict ourselves to the
classification up to free homotopy.

Let P be the projective plane. It has a CW -structure with one cell e′k in each dimension k = 0, 1, 2. The fun-
damental group Z2 with generator y. The chain group CkP̃ is the free Z[Z2]-module on e′k, and the boundary
homomorphisms are given by

∂1(e′1) = (y − 1)e′0,

∂2(e′2) = (y + 1)e′1.

Let M be a compact, connected, closed surface. Then M has a CW -structure with a 0-cell e0, 1-cells
e1, e2, . . . , em, and a 2-cell e2. The fundamental group π1M has a presentation 〈x1, . . . , xm : R〉 where
the x1 correspond to the ei. The boundary homomorphism ∂1 is given by

∂1(ei) = (x1 − 1)e0 for 1 6 i 6 m.

The boundary homomorphism ∂2 is given by the Reidemeister-Fox derivative and depends onR. To write down
∂2 we consider separately the orientable and non-orientable cases.

M non-orientable

In this case R = x2
1x

2
2 . . . x

2
m and ∂2 is given by

∂2(e2) =
∑

16i6m

x2
1x

2
2 . . . x

2
i−1(1 + xi)ei.

Theorem 6.1 (Olum [8]). Suppose M is non-orientable and let θ : π1M → π1P be an orientation-false
homomorphism. If there are precisely an odd number k of xi such that θxi = y, then there is just one free
homotopy class of maps M → P inducing θ. If k is even then there are two free homotopy classes of maps
(corresponding to the twisted degree being even or odd).

Proof Since θ is orientation-false we have k < m. Now for any two integers p and q whose sum is k, it is
easily checked that there is a θ-equivariant chain homomorphism f∗ : C∗M̃ → C∗P̃ given by

f0(e0) = e′0,

f1(ei) =

{
e′1 if θxi = y,
0 if θxi = 1,

f2(e2) = (p+ q)e′2.

By the lemma in Section 2 this exhausts, up to homotopy, all the possible θ-equivariant chain homomorphisms.
Let g∗ : C∗M̃ → C∗P̃ be the corresponding chain homomorphism for integers p′ + q′ = k. Now if µj :

CjM̃ → Cj+1P̃ for j = 0, 1 are θ-equivariant homomorphisms and w is an element of π1P satisfying

wg1 − f1 = ∂2µ1 + µ0∂1,
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then clearly there exist integers si such that

µ0∂1(ei) = si(y − 1)e′1 (1 6 i 6 m)

and hence ∂2µ1 = 0. Thus there are integers ri such that

µi(ei) = ri(1− y)e′2 (1 6 i 6 m)

It follows that

µ1∂2(e2) =
∑

16i6m

ri(1 + θxi)(1− y)e′2

= 2r(1− y)

for some r.

Thus if f∗ ' g∗ then there is a w ∈ Z2 and an integer r such that

w(p′ + q′y)− (p+ qy) = 2r(1− y),

Conversely, if there is a w and r such that this equality holds, then it is readily seen that f∗ ' g∗.
If k is odd then w and r can always be found and there is just one free homotopy class of chain homomorphism.
If however k is even then w and r can only be found if either p and p′ are both odd or both even; there are thus
two free homotopy classes of chain homomorphisms. The theorem follows from the theorem of Whitehead in
Section 1. 2

M orientable

In this case m is even and R is the product

R = [x1, x2][x3, x4] · · · [xm−1, xm]

of the commutators [xi, xi+1] = xixi+1x
−1
i x−1

i+1. The boundary homomorphism ∂2 is given by

∂2(e2) =
∑

16i6m/2

γi(e2i−1 + x2i−1e2i − x2i−1x2ix
−1
2i−1e2i−1 − [x2i−1, x2i]e2i)

where γi is a product of commutators.

Theorem 6.2 (Olum [8]). SupposeM is orientable and let θ : π1M → π1P be an orientation-false homomor-
phism. Then there are two homotopy classes of maps M → P inducing θ (corresponding to the twisted degree
being even or odd).
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Proof It is easily checked that for each integers p there is a θ-equivariant chain homomorphsm f∗ : C∗M̃ →
C∗P̃ given by

f0(e0) = e′0,

f1(ei) =

{
e′1 if θxi = y,
0 if θxi = 1,

f2(e2) = p(1− y)e′2.

By the lemma in Section 2 this exhausts up to homotopy all the possible chain homomorphisms. Let g∗ :
C∗M̃ → C∗P̃ be the chain homomorphism corresponding to the integers p′. Arguing as in the preceding proof
one can show that f∗ ' g∗ if and only if there is a w ∈ Z2 and integers ri such that

(p′w − p)(1− y) =
∑

16i6m/2

{r2i−1(1− θx2i) + r2i(θx2i−1 − 1)}(1− y).

Now since θ is orientation-false at least one xi maps onto y. It follows that there are precisely two free homotopy
classes of chain homomorphisms, and the theorem follows from the theorem of Whitehead in Section 1. 2
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