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We explain how the computation of induced crossed modules allows the computation

of certain homotopy 2-types and, in particular, second homotopy groups. We discuss
various issues involved in computing induced crossed modules and give some examples

and applications.
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Introduction

The interactions between topology and combinatorial and computational group theory
are largely based on the fundamental group functor

π1 : (based spaces) → (groups).

At the beginning of the 20th century there was an aim to generalize the non-commutative
fundamental group to higher dimensions, hopes which seemed to be dashed in 1932 by
the proof that the definition of higher homotopy groups πn then proposed by Čech led
to commutative groups for n ≥ 2.

Nonetheless, in the late 1930s and 1940s Whitehead developed properties of the second
relative homotopy group functor

Π2 : (based pairs of spaces) → (crossed modules),
(X, A, a) 7→ (∂ : π2(X, A, a) → π1(A, a)),

where a ∈ A ⊆ X (see Section 4). In 1950 MacLane and Whitehead suggested that crossed
modules modelled homotopy 2-types (3-types in their notation) and evidence has grown
that crossed modules can be regarded as “2-dimensional groups”. Part of this evidence
is the 2-dimensional version of the Van Kampen Theorem proved by Brown and Higgins
in 1978, which allows new computations of homotopy 2-types and so second homotopy
groups. This result should be seen as a higher-dimensional, non-commutative, local-to-
global theorem, illustrating themes in Atiyah’s article (Atiyah, 2002). It is interesting
to note that the computation of these second homotopy groups is obtained through the
computation of a larger non-commutative structure. This work also throws emphasis on
the problem of explicit computation with crossed modules, the discussion of which is the
theme of this paper.
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Our main emphasis in this paper is on induced crossed modules, which were defined
in Brown and Higgins (1978) and studied further in papers by the authors (Brown and
Wensley, 1995, 1996). Given the crossed module M = (µ : M → P ) and a morphism of
groups ι : P → Q, the induced crossed module ι∗M has the form (∂ : ι∗M → Q), a crossed
module over Q, and comes with a morphism of crossed modules (ι∗, ι) : M→ ι∗M:

M
ι∗ //

µ

��

ι∗M

∂

��
P ι

// Q

Their study requires a solution to many of the general computational problems of crossed
modules.

In the case µ = 0, when M is simply a P -module, ι∗M is the usual induced Q-module
M ⊗ZP ZQ.

Even in the case M = P , µ = idP , we know of no relation between the induced
crossed module (∂ : ι∗P → Q) and other standard algebraic constructions, although,
interestingly, im ∂ = NQ(ιP ) the normal closure of ιP in Q. Thus the induced crossed
module construction replaces this normal closure by a bigger group on which Q acts, and
which has a universal property not usually enjoyed by NQ(ιP ).

A long-term project at Bangor is the development of a share library for the compu-
tational group theory program GAP (The GAP Group, 2002), providing functions to
compute with these higher-dimensional structures. The first stage of this project saw
the production of the library XMod1, containing functions for crossed modules and their
derivations and for cat1-groups and their sections. The manual for XMod1 was included
in Schönert et al. (1997) as Chapter 73. In particular, Alp (1997) enumerated all isomor-
phism classes of cat1-structures on groups of order at most 47. This library has recently
been rewritten for GAP4, with XMod2 included with the 4.3 release. Related libraries
include Heyworth’s IdRel (Heyworth and Wensley) for computing identities among the
relators of a finitely presented group, and Moore’s GpdGraph and XRes (Moore, 2001)
for computing with finite groupoids; group and groupoid graphs; and crossed resolutions.
These libraries are available at the HDDA website (Higher-dimensional Discrete Algebra).

1. Crossed Modules

A crossed module M (over P ) consists of a morphism of groups µ : M → P , called the
boundary of M, together with an action of P on M , written (m, p) 7→ mp, satisfying for
all m, n ∈ M , p ∈ P the axioms:

CM1) µ(mp) = p−1(µm)p, CM2) nµm = m−1nm.

When CM1) is satisfied, but not CM2), the structure is a pre-crossed module (Brown and
Huebschmann, 1982; Hog-Angeloni et al., 1993), having a Peiffer subgroup C generated
by Peiffer commutators 〈m,n〉 = m−1n−1m nµm, and an associated crossed module
(µ′ : M/C → P ) with µ′ induced by µ.

Some standard algebraic examples of crossed modules are:

(i) normal subgroup crossed modules (i : N → P ) where i is an inclusion of a normal
subgroup, and the action is given by conjugation;
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(ii) automorphism crossed modules (χ : M → Aut(M)) in which (χm)(n) = m−1nm;
(iii) Abelian crossed modules (0 : M → P ) where M is a P -module;
(iv) central extension crossed modules (µ : M → P ) where µ is an epimorphism with

kernel contained in the centre of M .

For our purposes, an important standard construction is the free crossed Q-module

Fω = (∂ : F (ω) → Q)

on a function ω : Ω → Q, where Ω is a set and Q is a group. The group F (ω) has a
presentation with generating set Ω×Q and relators

(m, q)−1 (n, p)−1 (m, q) (n, pq−1(ωm)q) ∀ m,n ∈ Ω, p, q ∈ Q.

The action is given by (m, q)p = (m, qp) and the boundary morphism is defined on
generators by ∂(m, q) = q−1(ωm)q. This construction will be seen later as a special case
of an induced crossed module. The reader should be warned that the group F (ω) can be
very far from a free group: in fact, if ω maps all of Ω to {1Q}, then F (ω) is just the free
Q-module on the set Ω, and in particular is a commutative group.

The major geometric example of a crossed module can be expressed in two ways. Let
(X, A, a) be a based pair of spaces, with a ∈ A ⊆ X. The second relative homotopy group
π2(X, A, a) consists of homotopy classes rel J1 of continuous maps

α : (I2, İ2, J1) → (X, A, a)

where I = [0, 1] and J1 = (I × {0, 1}) ∪ ({1} × I) ⊂ I2. Each such α is a map from the
unit square I2 to the space X mapping three sides of the square to the point a and the
fourth side to a loop at a. Whitehead showed in Whitehead (1946) that there is a crossed
module Π2(X, A, a) with boundary map

∂ : π2(X, A, a) → π1(A, a), α 7→ β = α(I × {0}).

The image of α1 ∈ π2(X, A, a) under the action of β2 ∈ π1(A, a) is illustrated in the
right-hand square of Figure 1.
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Figure 1. Verification of CM2) for Π2(X, A, a).

Whitehead’s main result in Whitehead (1941, 1946, 1949) was:

Theorem 1.1. (Whitehead) If X is obtained from A by attaching 2-cells, then π2(X,
A, x) is isomorphic to the free crossed π1(A, x)-module on the attaching maps of the
2-cells.
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Later Quillen observed that if F → E → B is a based fibration, then the induced
morphism of fundamental groups π1F → π1E may be given the structure of a crossed
module. This fact is of importance in algebraic K-theory.

We also note the following fact, shown in various texts on homological algebra or the
cohomology of groups (e.g. Brown, 1982), and which we relate to topology in Section 4.

1.1. A crossed module M = (µ : M → P ) determines algebraically a cohomology class

kM ∈ H3(cokerµ, ker µ),

called the k-invariant of M, and all elements of this cohomology group have such a
representation by a crossed module.

2. Other Structures Equivalent to Crossed Modules

One aspect of the problem of higher-dimensional group theory is that, whereas there is
essentially only one category of groups, there are at least five categories of equationally
defined algebraic structures which are equivalent to crossed modules, namely:

• cat1-groups (Loday, 1982);
• group-groupoids (Brown and Spencer, 1976a);
• simplicial groups with Moore complex of length 1 (Loday, 1982);
• reduced simplicial T -complexes of rank 2 (Dakin, 1977; Ashley, 1978; Nan Tie,

1989);
• reduced double groupoids with connection (Brown and Spencer, 1976b).

These categories have various geometric models. The 2-cells of some of these are
illustrated in the following pictures:

There is also a polyhedral model, which allows rather general kinds of geometric objects
(Jones, 1984).

Thus, for computation in “2-dimensional group theory”, decisions must be made as to
which category to use to represent a given object, and to compute constructions. One
reason for computing with the crossed module format is that this is closer to the familiar
realm of groups, for which many computational procedures and systems have been found
and constructed. Part of the interest in computations with crossed modules is that such
computations will also yield computations of these other structures, and this makes them
more familiar and understandable.
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2.1. cat1-groups

In a cat1-group C = (e; t, h : G → R) the embedding e : R → G is a monomorphism
while the tail and head homomorphisms t, h : G → R are surjective and satisfy:

CAT1) te = he = idR, CAT2) [ker t, ker h] = {1G}.

When CAT1) is satisfied, but nor CAT2), the structure is a pre-cat1-group with Peiffer
subgroup [ker t, ker h]. A cat1-group C determines a crossed module (∂ : S → R) where
S = ker t and ∂ = h|S . Conversely, a crossed module (µ : M → P ) determines a
cat1-group (e; t, h : P n M → P ) where t(p, m) = p and h(p, m) = p(µm). The axiom
he = idR is equivalent to CM1) for a crossed module, while CAT2) is equivalent to CM2).
When µ is the inclusion of the trivial subgroup in P , the associated cat1-group CP has
e = t = h = idP .

Note also that the semidirect product P n M admits a groupoid structure with t, h as
source and target, and composition ◦ where (p, m)◦(p(µm), n) = (p, mn), making P nM
a group-groupoid, i.e. a group internal to the category of groupoids. This notion has a
long history: the result that crossed modules are equivalent to group-groupoids goes back
to Verdier, it first seems to have been published in Brown and Spencer (1976a), and is
used in Breen (1992). The holomorph Aut(M) n M of a group M is the source of the
cat1-group associated to the automorphism crossed module (χ : M → Aut(M)).

Now a colimit of cat1-groups colimi(ei; ti, hi : Gi → Ri) is easy to describe. One takes
the colimits G′, R′ of the underlying groups Gi, Ri, and finds that the endomorphisms
ei, ti, hi induce endomorphisms e′ : R′ → G′ and t′, h′ : G′ → R′ satisfying axiom
CAT1). The required colimit is the cat1-group C′′ = (e′′; t′′, h′′ : G′′ → R′) which has
G′′ = G′/[ker t′, ker h′] and e′′, t′′, h′′ induced by e′, t′, h′.

When C = (e; t, h : G → R) and ι : R → Q is an inclusion, the induced cat1-group ι∗C
is obtained as the pushout of cat1-morphisms (e, idR) : CR → C and (ι, ι) : CR → CQ (see
Alp, 1997; Alp and Wensley, 2000 for further details).

Further investigation is needed to see whether the use of cat1-groups can be shown to
be more efficient than the direct method for the computation of some colimits of crossed
modules, particularly induced crossed modules. The procedure has three stages: convert
a crossed module M to a cat1-group C; calculate ι∗C; then convert ι∗C to ι∗M.

3. Computing Colimits of Crossed Modules

The homotopical reason for interest in computing colimits of crossed modules is the
2-dimensional Van Kampen Theorem (2-VKT) due to Brown and Higgins (1978). The
formulation and proof of this theorem was found through the notion of double groupoid
with connection, since such structures yield an appropriate algebraic context in which
to handle both “algebraic inverses to subdivision”, and the “homotopy addition lemma”
(which gives a formula for the boundary of a 3-cube).

One form of the 2-VKT states that Whitehead’s fundamental crossed module functor

Π2 : (based pairs of spaces) → (crossed modules)

preserves certain colimits. So for the calculation of certain homotopy invariants, we need
to know how to calculate colimits of crossed modules. To this end, we start by using
some elementary category theory.
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The forgetful functor (crossed modules) → (groups), (µ : M → P ) 7→ P , has a right
adjoint P 7→ (i : P → P ), and so preserves colimits. This shows how to compute the
1-dimensional part of the colimit crossed module in terms of colimits of groups.

The aim now is to transfer the problem to computing colimits of crossed modules over
a fixed group P . To do this, suppose a given morphism of groups ι : P → Q. Then there
is a pullback functor

ι∗ : (crossed modules over Q) → (crossed modules over P ).

This functor has a left adjoint

ι∗ : (crossed modules over P ) → (crossed modules over Q),

which gives our induced crossed module. This construction can be described as a “change
of base” (Brown, 1996). To compute a colimit colimi(µi : Mi → Pi), one forms the group
P = colimiPi, and uses the canonical morphisms φi : Pi → P to form the family of
induced crossed P -modules ((µi)∗ : (φi)∗Mi → P ). The colimit of these in the category
of crossed P -modules is isomorphic to the original colimit. Now if M ′ is the colimit in
the category of groups of the (φi)∗Mi, then there is a canonical morphism M ′ → P and
an action of P on M ′. The resulting (M ′ → P ) is a pre-crossed module, and quotienting
by its Peiffer subgroup gives the required crossed module.

Presentations for induced crossed modules were given in Brown and Higgins (1978),
and more recently families of explicit examples have been computed, partly by hand and
partly using GAP (Brown and Wensley, 1995). Computation of induced crossed modules
is here reduced to problems of computation in combinatorial group theory. A key fact
which makes one expect successful computations is that if (µ : M → P ) is a crossed
module with M finite, and if ι : P → Q is a morphism of finite index, then the induced
crossed Q-module ι∗M is also finite (Brown and Wensley, 1995, Theorem 2.1).

Example 3.1. When µ : M → P and ι : P → Q are subgroup inclusions, there are
complete descriptions of ι∗M in the following cases:

(i) If ι is surjective then ι∗M ∼= M/[M, ker ι] (Brown and Higgins, 1978, Proposition 9).
(ii) If M is Abelian and ιµ(M) is normal in Q then ι∗M is Abelian and is the usual

induced Q-module M ⊗ZP ZQ (Brown and Wensley, 1995, Corollary 1.6).
(iii) If M and P are normal subgroups of Q then ι∗M ∼= M×(Mab⊗I(Q/P )), where I

denotes the augmentation ideal. If in addition M = P then ι∗P ∼= P×(P ab)[Q:P ]−1,
(Brown and Wensley, 1996, Theorem 1.1).

(iv) If M = P = C2, the cyclic group of order 2, µ = idP , and ι : C2 → D2n is the
inclusion to a reflection in the dihedral group D2n, then ι∗P ∼= D2n (Brown and
Wensley, 1995, Example 1.4). The action is not the usual conjugation: when n is
odd the boundary is an isomorphism, but when n is even the kernel and cokernel
are isomorphic to C2.

4. Homotopical Applications

As explained in the Introduction, the fundamental crossed module functor Π2 assigns
a crossed module (∂ : π2(X, A, a) → π1(A, a)) to any based pair of spaces (X, A, a).
Theorem C of Brown and Higgins (1978) is a 2-dimensional Van Kampen type theorem
for this functor. We will use the following consequence:
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Theorem 4.1. (Brown and Higgins, 1978, Theorem D) Let (B, V, b) be a cofibred
pair of spaces, let f : V → A be a based map, and let X be the pushout A ∪f B in the
left-hand diagram below. Suppose also that A,B, V are path-connected, and (B, V, b) is
1-connected. Then the based pair (X, A, a) is 1-connected and the right-hand diagram

V
f //

⊆
��

A

��
B // X

π2(B, V, b)
λ∗ //

δ

��

π2(X, A, a)

δ′

��
π1(V, b)

λ
// π1(A, a)

presents π2(X, A, a) as the crossed π1(A, a)-module λ∗(π2(B, V, b)) induced from the
crossed π1(V, b)-module π2(B, V, b) by the group morphism λ : π1(V, b) → π1(A, a) induced
by f .

As pointed out earlier, when P is a free group on a set Ω and µ is the identity, the
induced crossed module ι∗P is the free crossed Q-module on the function ι|Ω : Ω → Q.
Thus Theorem 4.1 implies Whitehead’s Theorem as stated in Theorem 1.1. A considerable
amount of work has been done on this case, because of the connections with identities
among relations, and methods such as transversality theory and “pictures” have proved
successful (Brown and Huebschmann, 1982; Pride, 1991), particularly in the homotopy
theory of 2-dimensional complexes (Hog-Angeloni et al., 1993). However, the only route
so far available to the wider geometric applications of induced crossed modules is
Theorem 4.1. We also note that this Theorem includes the relative Hurewicz Theorem
in this dimension, on putting A = ΓV , and f : V → ΓV the inclusion.

We will apply this Theorem 4.1 to the classifying space of a crossed module, as defined
by Loday (1982) or Brown and Higgins (1991). This classifying space is a functor B
assigning to a crossed module M = (µ : M → P ) a based CW -space BM with the
following properties:

4.1. The homotopy groups of the classifying space of the crossed module M = (µ : M →
P ) are given by

πi(BM) ∼=

{ cokerµ for i = 1,
ker µ for i = 2,
0 for i > 2.

The first Postnikov invariant of BM is precisely the k-invariant of M as in 1.1.

4.2. The classifying space BP = B(i : 1 → P ) is the usual classifying space of the group
P , and BP is a subcomplex of BM. Further, there is a natural isomorphism of crossed
modules

Π2(BM, BP, x) ∼= M.

4.3. If X is a reduced CW -complex with 1-skeleton X1, then there is a map

X → B(Π2(X, X1, x))

inducing an isomorphism of π1 and π2.

It is in these senses that it is reasonable to say, as in the Introduction, that crossed
modules model all based homotopy 2-types.
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We now give two direct applications of Theorem 4.1.

Corollary 4.1. Let M = (µ : M → P ) be a crossed module, and let ι : P → Q be a
morphism of groups. Let β : BP → BM be the inclusion. Consider the pushout

BP
β //

Bι

��

BM

��
BQ

β′
// X

Then the fundamental crossed module of the based pair (X, BQ, x) is isomorphic to the
induced crossed module (∂ : ι∗M → Q), and this crossed module determines the 2-type of
X. In particular, the second homotopy group π2(X, x) is isomorphic to ker ∂.

Proof. The first statement is immediate from Theorem 4.1. The second statement
follows from results of Brown and Higgins (1991), since the morphism Q → π1(X) is
surjective. The final statement follows from the homotopy exact sequence of (X, BQ, x). 2

Remark. An interesting special case of the last Corollary is when M is an inclusion of
a normal subgroup, since then BM is of the homotopy type of B(P/M). So we have
determined the 2-type of a homotopy pushout

BP
Bp //

Bι

��

BR

��
BQ

p′
// X

in which p : P → R is surjective.

Corollary 4.2. Let ι : P → Q be a morphism of groups, and let ΓBP denote the cone
on BP . Then the fundamental crossed module Π2(BQ ∪Bι ΓBP, BQ, x) is isomorphic
to the induced crossed module (∂ : ι∗P → Q). In particular the second homotopy group
π2(BQ ∪Bι ΓBP, x) is isomorphic to ker ∂.

We also note that in determining the crossed module representing a 2-type we are
also determining the first Postnikov invariant of that 2-type. However it may be more
difficult to describe this invariant as a cohomology class, though this is done in some
cases in Brown and Wensley (1995, 1996).

5. Computational Issues

We now consider some features of the function InducedXMod as implemented in XMod2.
The method selection mechanism of GAP4 allows for special methods when ι is surjective
or injective, and for the cases listed in Example 3.1.

Recall from Proposition 9 of Brown and Higgins (1978) that when ι : P → Q is a
surjection then ι∗M ∼= M/[M,K], where K = ker ι and [M,K] denotes the subgroup
of M generated by the m−1mk for all m ∈ M,k ∈ K. When ι is neither surjective nor
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injective, we obtain a factorization ι = ι2 ◦ ι1 with ι1 surjective and ι2 injective, and
construct the induced crossed module in two stages:

M
(ι1)∗ //

µ

��

(ι1)∗M
(ι2)∗ //

∂1

��

ι∗M

∂

��
P ι1

// im ι ι2
// Q

The first stage is easily constructed as a quotient group, so in the following subsections
we restrict to the case when both ι and µ are subgroup inclusions.

Note that computation of free crossed modules, as described in Section 1, is in general
difficult since the groups are usually infinite, and is not attempted in the current version
of the package.

5.1. copower of groups

The construction of induced crossed modules, described in Brown and Higgins (1978);
Brown and Wensley (1995), involves the copower M ~∗ T , namely the free product of
groups Mt, t ∈ T , each isomorphic to M . Here T is a transversal for the right cosets
of P in Q, in which the representative of the subgroup P is taken to be the identity
element. The group Mt = {(m, t) | m ∈ M} has product (m, t)(n, t) = (mn, t) and Q
acts by (m, t)q = (mp, u) where tq = (ιp)u in Q. The map δ′ : M ~∗ T → Q is defined by
(m, t) 7→ t−1(ιµm)t.

The GAP function IsomorphismFpGroup enables the construction of finitely presented
groups FM,FP, FQ isomorphic to the groups M,P,Q; monomorphisms Fµ : FM →
FP, F ι : FP → FQ mimicking the inclusions M → P → Q; and an action of FP on
FM . If FM has γ generators then a finitely presented group FC, isomorphic to M ~∗ T
and with γ |T | generators, may be constructed using functions in the GAP Tietze package
(The GAP Group, 2002, Chapter 46). The relators of FC comprise | T | copies of the
relators of FM , suitably renumbered.

5.2. tracing Tietze transformations

Let Ω be a generating set for FM and let ΩFP be the closure of Ω under the action
of FP . Then ι∗(M) ∼= FC/FN where FN is the normal closure in FC of the Peiffer
elements

〈(n, s), (m, t)〉 = (n, s)−1(m, t)−1(n, s)(m, t)δ′(n,s) (m,n ∈ ΩFP , s, t ∈ T ). (1)

The homomorphism ι∗ is induced by the projection pr1m = (m, 1FQ) onto the first
factor, and the boundary δ of ι∗M is induced from δ′ as shown in the following diagram:

FM
ι∗ //

µ

��

FC/FN

δ

��
FP ι

// FQ

Thus a finitely presented group FI ∼= ι∗M is obtained by adding to the relators of FC
further relators corresponding to the list of elements in equation (1), and the presentation
may be simplified by applying Tietze transformations.
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As well as returning an induced crossed module, the construction should return a
morphism of crossed modules (ι∗, ι) : M → ι∗M. When Tietze transformations are
applied to the initial presentation for FI, during the resulting simplification some of
the first γ generators may be eliminated, so the projection pr() may be lost. In order to
preserve this projection, and so obtain the morphism ι∗, it is necessary to record for each
eliminated generator g a relator gw−1 where w is the word in the remaining generators
by which g was eliminated.

A significant advantage of GAP is the free availability of the library code, which enables
the user to modify a function so as to return additional information. For the XMod1
version of the package, the Tietze transformation code was modified so that the resulting
presentation contained an additional field presI.remember, namely a list of (at least)
γ | T | relators expressing the original generators in terms of the final ones. In more
recent releases of GAP an equivalent facility has been made generally available using the
TzInitGeneratorImages function.

5.3. polycyclic groups

Recall that a polycyclic group is a group G with power-conjugate presentation having
generating set {g1, . . . , gn} and relations

{goi
i = wii(gi+1, . . . , gn), g

gj

i = w′
ij(gj+1, . . . , gn) ∀ 1 ≤ j < i ≤ n}. (2)

These are implemented in GAP as PcGroups (see, The GAP Group, 2002, Chapters 43,
44). Since subgroups M ≤ P ≤ G have induced power-conjugate presentations, if T is a
transversal for the right cosets of P in G, then the relators of M ~∗ T are all of the form
in (2). Furthermore, all the Peiffer relations in equation (1) are of the form g

gj

i = gp
k, so

one might hope that a power conjugate presentation would result. Consideration of the
cyclic-by-cyclic case in the following example shows that this does not happen in general.

Example 5.1. Let Cn be cyclic of order n with generator x, and let α : x 7→ xa be an
automorphism of Cn of order p. Take G = 〈g, h | gp, hn, g−1h−1g ha〉 ∼= Cp n Cn. When
M = P = Cn � G cases (ii) and (iii) of Example 3.1 apply, and ι∗Cn

∼= Cp
n.

It follows from the relators that hig = ghai, 0 < i < n, and that h−1(ghi(1−a))h =
gh(i+1)(1−a). So if we put gi = ghi(1−a), 0 ≤ i < n, then g

gj

i = g[j+a(i−j)].
When M = P = Cp = 〈g | gp〉 and ι : Cp → G, we may choose as transversal
T = {1G, h, h2, . . . , hn−1}. Then M ~∗ T has generators {(g, hi) | 0 ≤ i < n}, all of order
p, and relators {(g, hi)p | 0 ≤ i < n}. The additional Peiffer relators in equation (1) have
the form

(g, hi)(g, hj) = (g, hj)(gk, hl) where hih−jghj = gkhl

so k = 1 and l = [j + a(i − j)]. Hence θ : ι∗M → Q, (g, hi) 7→ gi is an isomorphism,
and ι∗M is isomorphic to the identity crossed module on Q. Furthermore, if we take
M to be a cyclic subgroup Cm of Cp then ι∗M is the normal subgroup crossed module
(i : Cm n Cn → Cp n Cn).

5.4. identifying ι∗M

From some of the special cases listed in Example 3.1 and from other examples, we
know that many of the induced groups ι∗M are direct products. However the generating
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Table 1.

|Q| M P Q ι∗M ker ∂

12 C2 C2 A4 H+
8 C4

C3 C3 A4 SL(2, 3) C2

18 C2 C2 C2 n C2
3 [54, 8] C3

S3 S3 C2 n C2
3 [54, 8] C3

20 C2 C2 H5 D10 C2

C2 C2
2 D20 D10 I

C2
2 C2

2 D20 D20 I

21 C3 C3 H+
7 H7+ I

sets in the presentations that arise following the Tietze transformation do not in general
split into generating sets for direct summands, as the following simple case shows.

Example 5.2. Let Q = S4, the symmetric group of degree 4, and M = P = A4, the
alternating subgroup of Q of index 2. Since the Abelianization of A4 is cyclic of order
3, case (iii) in Section 3 shows that ι∗M ∼= A4 × C3. However a typical presentation for
A4 × C3 obtained from the program is

〈x, y, z | x3, y3, z3, (xy)2, zy−1z−1x−1, yzyx−1z−1, y−1x2y2x−1〉,

and one generator for the C3 summand is yzx2.
Using the function IsomorphismPermGroup we obtain a permutation group of degree

12 with generating set
{(1, 2, 3)(4, 10, 8)(5, 11, 6)(7, 12, 9), (1, 4, 5)(2, 6, 7)(3, 9, 10)(8, 12, 11), (2, 5, 8)(3, 4, 7)(6, 12, 10)}.

On applying IsomorphismPcGroup to the permutation group we obtain a 4-generator
polycyclic group with composition series

A4 × C3 � A4 � C2
2 � C2 � I,

where each subgroup drops the generator gi, i = 1 . . . 4 and g1g2g4 is a generator for the
normal C3. In these representations the cyclic summand ker ∂ = C3 remains hidden, and
an explicit search among the normal subgroups must be undertaken to find it.

6. Results

In this section we list the crossed modules induced from subgroups of groups of order
at most 23 (excluding 16), except that the special cases mentioned earlier enable us to
exclude Abelian and dihedral groups; the case when P is normal in Q; and the case when
Q is a semidirect product Cm n Cn.

In Table 1 we assume a given inclusion ι : P → Q of a subgroup P of a group Q,
and a normal subgroup M of P . We list the isomorphism types of ι∗M and the kernel
of ∂ : ι∗M → Q. Recall that this kernel is realized as a second homotopy group in
Corollary 4.1. Labels I, Cn, D2n, An, Sn denote the identity, cyclic, dihedral, alternating
and symmetric groups of order 1, n, 2n, n!/2 and n!, respectively. The group Hn is the
holomorph of Cn and H+

n is its positive subgroup in degree n, while SL(2, 3) and GL(2, 3)
are the special and general linear groups of order 24 and 48. Labels of the form [m,n]
refer to the nth group of order m according to the GAP4 numbering.
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Table 2.

M P ι∗M ker ∂ Aut(ι∗M)

C2 C2 GL(2, 3) C2 S4C2

C3 C3 C3 SL(2, 3) C6 [144, 183]

C3 S3 SL(2, 3) C2 S4

S3 S3 GL(2, 3) C2 S4C2

C′
2 C′

2 [128, ?] C4C3
2

C′
2 C2

2 , C4 H+
8 C4 S4C2

C′
2 D8 C3

2 C2 SL(3, 2)

C2
2 C2

2 S4C2 C2 S4C2

C2
2 D8 S4 I S4

C4 C4 [96, 219] C4 [96, 227]

C4 D8 S4 I S4

D8 D8 S4C2 C2 S4C2

Table 2 contains the results of calculations with Q = S4, where C2 = 〈(1, 2)〉,
C ′

2 = 〈(1, 2)(3, 4)〉, and C2
2 = 〈(1, 2), (3, 4)〉. The final column specifies the automorphism

group Aut(ι∗M).
An interesting problem is to obtain a clearer understanding of the geometric signifi-

cance of these tables.
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