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Introduction

The fact that the relative homotopy groups do not satisfy excision makes the computation of ab-
solute homotopy groups difficult in comparison with homology groups. The failure of excision is
measured by triad homotopy groups πn(X;A, B), with n > 3 (for n = 2, this gives a based set),
which fit into an exact sequence .

πn+1(A, A ∩ B)
e→ πn+1(X,B) → πn+1(X; A,B)

→ πn(A, A ∩ B) → πn(X, B) → · · ·

where e is induced by the ‘excision’ inclusion. That e is an isomorphism in a range of dimensions is
shown by the classical Blakers-Massey triad connectivity theorem: if A, B, and A∩B are connected,
{A,B} is an open cover of X and (A, A ∩ B) is p-connected, (B, A ∩ B) is q-connected, then the
triad (X; A,B) is (p + q)-connected. (See, for example, [11, p. 211].) Further, if p, q > 2 and
π1(A∩B) = 0, the critical group πp+q+1(X; A, B) is described in [2] as a tensor product of abelian
groups πp+1(A, A ∩ B)⊗ πq+1(B, A ∩ B).

One of our main results (Theorem 4.2) extends this description of the critical group to the
cases where p, q > 1, π1(A ∩ B) = 1 = 0. Note that if p or q is 1, then one at least of the groups
πp+1(A, A∩B), πq+1(B, A∩B) may be non-abelian, and acts on the other group. In the description
of the critical group, the usual tensor product must be replaced by the tensor product G⊗H defined
in [5, 6], which involves actions of G on H and H on G. This description of πp+q+1(X;A, B) is
a special case of a description of the hyper-relative group πn+1(X; A1, . . . , An) of a ‘connected’
excisive (n+1)-ad as determined by the lower dimensional information involved in the (n+1)-ad;
a precise description is given in Theorem 4.1. As another consequence of Theorem 4.1 we obtain
an exact sequence for a connected space

π2X
E2−→ π4S

2X
H2−→ π1X ∧̃ π1X

P−→ [π1X,π1X] → 1,
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where for a group G, the group G ∧̃ G is obtained from the tensor product G ⊗ G, with action of
G on itself given by conjugation, by factoring by the relations

(x⊗ y)(y⊗ x)−1 = 1 for all x, y ∈ G.

Our other results involve a hyper-relative form of homotopical excision. Let the space Y be
covered by open sets X, B1, . . . Bn and let Ai = X ∩ Bi, for i = 1 . . . n. We regard the excision map
as the inclusion of (n + 1)-ads

X = (X;A1, . . . , An) → Y = (Y;B1, . . . , Bn).

Theorem 6.1 can be interpreted as describing, under appropriate connectivity assumptions,
the group πn+1Y as ‘induced’ from the group πn+1X by the morphisms of ‘lower dimensional
information’ . As a consequence, on taking Y = X ∪ C(A1 ∪ · · · ∪ An), Bi = CAi, we obtain two
forms of a Hurewicz theorem for πn+1(X ∪ A1, · · · , An). We also obtain an explicit description of
the triad homotopy group π3(X ∪ {e3

λ}; A, B) in terms of information on the triad (X; A,B) and the
attaching maps of the 3-cells. This result is analogous to Whitehead’s description of the relative
homotopy group π2(X ∪ {e2

λ}, X) as a free crossed π1X-module on the characteristic maps of the
2-cells e2

λ.
All of our homotopical results are deductions from the Van Kampen theorem for n-cubes of

spaces proved in [7]. This theorem states that the fundamental catn-group functor Π from n-
cubes of spaces to catn-groups preserves certain colimits. The main trick for the applications is to
choose the colimit of n-cubes in a way allied to the given structure of n-cubes. For example, if
X = U1 ∪ · · · ∪ Un then the sets Ui determine, by inclusion of intersections, an n-cube of spaces
X; they also, as a covering of X, determine by intersection with X, a Van Kampen theorem for ΠX.
The analysis of this kind of situation is accomplished in §1, Formalities on n-cubes. The notion of n-
pushout is crucial throughout this paper. In §2, we recall the main facts on catn-groups, the functor
Π, and the Van Kampen theorem. In §3 we discuss a particular kind of colimit of catn-groups,
the universal catn-groups. This notion is applied in §4 to the Blakers-Massey theorem. In §5 we
discuss induced catn-groups –this notion generalizes the notions of induced module and induced
crossed module. Induced catn -groups are applied in §6 to give an ‘excision theorem’ and Hurewicz
theorems for n-cubes of maps.

1 Formalities on n-cubes

The set {0, 1} is given its usual partial order with 0 < 1. The product set {0, 1}n is given the product
partial order. This poset (partially ordered set) is a lattice, with meet operation ∧. That is a ∧ b is
the greatest lower bound of a and b. The bottom element of {0, 1}n is 0 = (0, . . . , 0), and the top
element is 1 = (1, . . . , 1).

Let C be a category. An n-cube in C is a functor {0, 1}n → C, where the poset {0, 1}n is regarded
as a category in the usual way. We write NnC for the class of all these n-cubes. The family
{NnC}n>0 has also the standard cubical face operators ∂α

i and degeneracy operators εi giving a
cubical complex NC, the cubical nerve of C. For instance, a 1-cube in C is a map f : A → B and
∂0

1(f) = A, ∂1
1(f) = B, and ε1(A) = 1A : A → A.

Let X be an n-cube in C, and let α ∈ {0, 1}n be such that ii < . . . < ir are exactly those indices
i for which α1 = 0. The (n − r)-cube RαX is defined to be ∂0

i1
. . . ∂0

ir
X.

There is an important formalism of passing from an n-cube in C to an n-cube of n-cubes in C.
Let X be an n-cube in C. The n-cube X¤ of n-cubes in C is defined by
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X¤(α)(β) = X(α ∧ β), where α, β ∈ {0, 1}n,

where α ∧ β is the meet operation. For example, if n = 2, the square

X :

C //

²²

A

²²
B // X

which is often abbreviated to

C A

B X

determines the square of squares

C C

C C

C A

C A

?

- C C

B B

C A

B X

?
-

X¤ :

Note that, in the general case, if α 6= 1, then X¤(α) is a degeneracy of Rα, X.
We now define the notion of excision for n-cubes. Recall that if a space X is a union of subspaces

A,B, then the ‘excision map’ is the map of pairs

(A, A ∩ B) → (X,B).

Alternatively, we have a square of spaces

A ∩ B //

²²

A

²²
B // X

and the excision map regards this as a ‘map of maps’

(A ∩ B → A) → (B → X).

Suppose now that X is an n-cube in a category C. Then X defines a map of (n − 1)-cubes

eX : ∂0
nX → ∂1

nX;

this we call the excision map of X. This map determines also

(eX)¤ : (∂0
nX)¤ → (∂1

nX)¤

an ‘excision map’ of (n − 1)-cubes of (n − 1)-cubes, or if convenient, an n-cube of (n − 1)-cubes.
In the applications we make essential use of a generalization of pushout squares to pushout

n-cubes. An n-corner in a category C is a functor Y from {0, 1}n\{1} to C. The colimit of such an



HOMOTOPICAL EXCISION, AND HUREWICZ THEOREMS 179

n-comer Y, if it exists, is called the pushout of Y. Then Y and the universal natural transformation
Y → colim Y define an n-cube X in C with X(1) = colim Y and for α 6= 1, X(α) = Y(α). Such an X
we call an n-pushout, or pushout n-cube, in C. Note that the diagrams for 2-corners and 3-corners
are of the following forms respectively:

//

²²

//

²²
//

??ÄÄÄ

ÄÄÄ

²²

??ÄÄÄ

ÄÄÄ

//
??ÄÄÄ

ÄÄÄ

We mention for future reference the following result.

Proposition 1.1 A degenerate n-cube is a pushout n-cube.

2 The fundamental catn-group functor

We recall the notions of catn-groups, crossed squares, fundamental catn-group functor, and also
the Van Kampen theorem for n-cubes which we use extensively.

First, a cat1-group G = (G; s, b) is a group G with two endomorphisms s,b of G satisfying

(i) sb = b, bs = s,

(ii) [Ker s, Ker b] = 1.

From (i) it is easily deduced that s2 = s, b2 = b, Im b = Im s and that s, b are the identity on Im s.
The cat1-group G determines, and in fact is equivalent to, the crossed module b| : Ker s → Im s

(cf. [10, Lemma 2.1]).
Next, a catn-group G = (G; s1, b1 . . . , sn,bn) consists of a group G with n catn-group structures

s1; b1, . . . , sn,bn which commute in the sense that

(iii) sibj = bjsi; sisj = sjsi bibj = bjbi, if i 6= j.

The group G is called the big group of the catn-group G and will be written B(G); the intersection
L(G) =

⋂n
i=1 Ker si is also important in applications and is emphasized in [10, 7].

A morphism f : G → H of catn-groups is a homomorphism f : G → H of groups which commutes
with the si, bi, for i = 1, . . . , n. So we have a category (catn-groups) of catn -groups.

For explicit calculations with catn -groups it is useful to have an equivalent formulation in
terms of ‘crossed n-cubes’. A crossed 2-cube (or crossed square) consists of a commutative square
of homomorphisms of groups

L
λ //

λ ′
²²

M

µ
²²

N ν
// P

actions of P on L, M, N, and a function h : M×N → P satisfying a number of rules which are given
in [10] and, in slightly different formulation, in [7]. Given a cat2-group G = (G; s1, b1, s2, , b2) its
associated crossed square has
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P = Im s1 ∩ Im s2, M = Ker s1 ∩ Im s2,

N = Im s1 ∩Ker s2, L = Ker s1 ∩ Ker s2;

the maps λ ′,µ are induced by b1; the maps λ, ν are induced by b2; the actions of P and the
h-function are determined by conjugation and commutators respectively. It is a theorem of D.
Guin-Waléry and J.-L. Loday that this association gives an equivalence between cat2-groups and
crossed squares [10, §5]. Crossed n-cubes are defined in [8,9], and an equivalence between them
and catn-groups is proved there. We shall use some information on crossed 3-cubes in §4.

In [10, Theorem 1.4] there is defined a functor from n-cubes of fibrations to catn-groups. This
functor may be composed with a standard functor X 7→ X̄ from n-cubes of spaces to n-cubes of
fibrations to give the fundamental catn-group functor Π from n-cubes of spaces to catn-groups [7].

We will use this functor in the case where the n-cube of spaces X is constructed from n sub-
spaces (A1, . . . , An) of the space X(1) = X by taking intersections. Explicitly, one has that X(α)
is the intersection of the Aj such that αj = 0. In this case the big group G of the catn-group ΠX
is π1(Φ) where Φ is the function space of base-pointed maps from In to X which send the faces
∂0

i I
n and ∂1

i I
n into Ai for i = 1, . . . , n. In this framework the group L(ΠX), which is the inter-

section
⋂n

i=1 Ker si, has the following interpretation. It is the fundamental group of the function
space Ψ of base-pointed maps from In to X which send the faces ∂0

i I
n to the base-point and the

faces ∂1
i I

n into Ai for i = 1, . . . , n. In other words L(ΠX) is the hyper-relative homotopy group
πn+1(X; A1 . . . , An).

We recall now the Van Kampen theorem for n-cubes of spaces proved in [7, Theorem 5.4].
An n-cube X is called connected if its associated n-cube of fibrations X̄ has all its spaces X̄(β)
(path-) connected, β ∈ {−1, 0, 1}n; thus not only is each of the original spaces X(α) connected, for
α ∈ {0, 1}n, but also the various homotopy fibres constructed from X are connected. For example,
if X is the square

C
f //

f ′

²²

A

a

²²
B

b
// X

then X is connected if C, A, B, X and the homotopy fibres F(a), F(b), F(f), F(f ′), and F(X) = F(F(f ′) →
F(a)) are all connected.

Theorem 2.1 Let X be an n-cube of spaces and let {Uλ}λ∈Λ be an open covering of X(1). If σ is
a finite, non-empty subset of Λ, then Uσ, the intersection of the sets Uλ for λ ∈ σ, determines by
inverse image an n-cube of spaces Uσ. Suppose that each such Uσ is connected. Then the n-cube X
is connected and the natural homomorphism of catn-groups colim ΠUσ → ΠX = Π colim Uσ is an
isomorphism.

In this theorem the cube structure and the covering of the bottom space X = X(1) are independent.
However in the following we are dealing with a particular situation. We start with an n-covering of
X and we consider the cube which is determined by this covering (see above). As a consequence,
the cubes Uσ are degenerate cubes except for X itself (cf. §1). This leads to a particular type of
catn-group which is discussed in the next section.
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3 Universal catn-groups

Colimits of catn-groups are easily described. To form colimλ Gλ, one first forms the group G =
colim Gλ. The structure maps si, bi on each Gλ determine homomorphisms sibi on G satisfying
conditions (i) and (iii) above. However, there is no reason for (ii) to be satisfied, and so G becomes
only a ‘pre-catn-group’. The catn-group colimλ G is (G/N; s1, b1, . . . , sn,bn) where the normal
subgroup N is generated by the subgroups [Ker si, Ker bi], for i = 1, . . . , n and the structure maps
are induced by those on G (cf. [6]).

We shall also need to consider n-cubes of catn-groups. They were used already in [10], and for
n = 2 in [7].

Definition 3.1 Let G = (G; s1, b1, . . . , sn, bn) be a catn-group. The associated n-cube G¤ of catn-
groups has G¤(1) = G, and for other α ∈ {0, 1}n,G¤(α) has big group the intersection of the
groups Im si(= Imbi) for which αi = 0, with the restricted catn-structure. It is useful to think of
the catn-groups G¤(α) for α 6= 1 as representing the ‘lower dimensional part’ of G.

Proposition 3.2 Let the catn-group G be given as a colimit of catn-groups, G = colimλ Gλ. Let
α ∈ {0, 1}n. Then G¤

λ (α) = colimλ G¤
λ (α).

Proof We recall that B(G) denotes the big group of a catn-group G. Let

G = colimλ B(Gλ), G(α) = colimλ B(G¤
λ (α)).

Let N and N(α) be the normal subgroups of G and of G(α) generated by the [Ker si, Ker bi]. Let
S be the composite of the si for which ai = 0. Since S = SS,S preserves colimits. So

G(α) = colimλ SB(Gλ) = S colimλ B(Gλ) = SG.

Thus N(α) is the normal subgroup of SG generated by the [Ker siKer bi]; one can check that this
is SN. Thus

B(colimλ(G¤
λ (α))) = G(α)/N(α) = SG/SN = S(G/N) = SB(G) = B(G¤(α)).

This gives the result. 2

If G is a catn-group, we write Gp for the n-corner of catn-groups determined by G¤.

Proposition-Definition 3.3 Let G be a catn-group. The following two conditions are equivalent and
define G as a universal catn-group:

(i) the n-cube G¤ of catn-groups is a pushout cube in the category of catn-groups.

(ii) if H is a catn-group such that Hp = Gp then there is a unique morphism G → H of catn-groups
inducing the identity Gp → Hp.

Proof. That (i) implies (ii) is trivial. 2

To prove that (ii) implies (i), let K be the catn-group colim Gp. Propositions 1.1 and 3.2 show
that Kp = Gp. Condition (ii) gives a morphism G → K, and the definition of K gives a morphism
K → G. By the two universal properties, these morphisms are the inverse of each other.

The implication of this definition is that if G is universal, then its big group G is determined by
the family of subgroups Pi = Im si and their interrelated catn-group structures.
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If G is a cat2-group with associated crossed square

L
λ //

λ ′

²²

M

µ

²²
N ν

// P

then the 2-cube G¤ of cat2-groups has an associated square of crossed squares of the form
[
1 1
1 P

]
−−−−→

[
1 M

1 P

]

y
y

[
1 1
N P

]
−−−−→

[
L M

N P

]

where 1 denotes the trivial group. If this is a push out of crossed squares then the group L is
canonically isomorphic to the tensor product M⊗N defined in [6, 7]. For the convenience of the
reader we recall this definition.

Let the groups M and N be equipped with an action of M on the left of N, written mn, where
m ∈ M, n ∈ N, and an action of N on the left of M written nm. It is always understood that a
group acts on the left of itself by conjugation: xy = xyx−1. The tensor product M⊗N is the group
generated by symbols m⊗ n with the relations

(a) mm ′ ⊗ n = (mm ′ ⊗mn)(m⊗ n),
(a’) m⊗ nn ′ = (m⊗ n)(nm⊗ nn ′),

for all m,m ′ ∈ M,n,n ′ ∈ N.
For the Blakers-Massey theorem in §4 we need to analyse particular kinds of catn-groups and

their corresponding universal catn-groups.

Proposition 3.4 The following are equivalent categories:

(i) the category of cat1-groups (G; s,b) in which s = b;

(ii) the category of crossed modules µ : M → P in which µ = 0;

(iii) the category of catn-groups (G; si,bi), with n > 2, in which si = sj for all i, j.

Proof. The standard equivalence between cat1-groups and crossed modules has (G; s,b) corre-
sponding to µ : Ker s → Im s where µ is the restriction of b, and a crossed module µ : M → P

corresponding to the cat2-group (M o P; s, b) where s(m, p) = (1, p), b(m, p) = (1, (µm)p). The
equivalence between the categories given in (i), (ii) is automatic.

Now recall the rules sb = b, bs = s for a cat2-group. So s = b is equivalent to sb = bs. The
equivalence between the categories given in (i) and (iii) follows. 2

Proposition 3.5 Let Cp,q be the category of catp+q-groups

(G; s1, b1, . . . , sp+q,bp+q)

such that
(s1, b1) = · · · = (sq,bq), (sq+1,bq+1) = · · · = (sp+q, bp+q).
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Then Cp,q is equivalent to the category of crossed squares

L
λ //

λ ′
²²

M

µ
²²

N ν
// P

in which µ = 0 and λ ′ = 0 if q > 2, v = 0 and λ = 0 if P > 2.

Proof The case in which p = q = 1 is the equivalence between cat2-groups and crossed squares,
referred to above. Clearly Cp,q is equivalent to Cp+1,q if p > 2, and to Cp,q+1 if q > 2. Also by
Proposition 3.4, Cp,2 is equivalent to the category of catp+1-groups (G; si, bi) such that s1 = b1

and Cq,2 is equivalent to the category of catq+1-groups such that sq+1 = bq+1 So the required
equivalence follows from Proposition 3.4 and the relation between cat2-groups and crossed squares
(§2). 2

Proposition 3.6 . The inclusion i : Cp,q → (catp+q-groups) preserves colimits.

Proof A colimit in catp+q-groups of objects of Cp,q is itself in Cp,q (This proof was pointed out by
the referee.) 2

Corollary 3.7 Let G be an object of the category Cp,q, with associated crossed square
(

L M

N P

)
.

Then G is a universal catp+q-group if and only if the canonical map M⊗N → L is an isomorphism.

4 The Blakers and Massey theorem

Let {U1, . . . , Un} be an open covering of a space X. Then we have an n-cube X such that X(1) = X

and for α 6= 1, X(α) is the intersection of the sets Ui for which αi = 0. We apply the generalized
Van Kampen theorem to this n-cube X and to the covering {U1, . . . , Un} of X.

Theorem 4.1 Let {U1 . . . , Un} be an open covering of the space X such that each face ∂0
iX of the

associated cube X is a connected (n − 1)-cube. Then X is a connected n-cube and its fundamental
catn-group ΠX is universal.

Proof If σ is a non-empty finite subset of {1, . . . , n}, the cube Xσ is defined to be X∩Uσ; it coincides
with X¤(α) where αi = 0 if and only if i ∈ σ.

Since ∂0
iX is connected for i = 1, . . . , n, each subcube RαX of X is connected for α 6= 1. For

α 6= 1, X¤(α) is a degeneracy of Rα(X), and hence X¤(α) is connected. Hence each cube Xσ is
connected. By the Van Kampen theorem for n-cubes (see §2) the cube X is connected and

ΠX = colim Xσ.

Hence ΠX = colim ΠX¤(α), where α 6= 1. But the n-cube of catn-groups Π(X¤) is isomorphic to
(ΠX)¤, and hence ΠX is universal. 2

Remark 4.2 The particular case in which n = 2 was treated in [7].
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We will now apply this theorem to a still more particular situation. Recall that if (X; A, B) is
a triad, that is, A and B are subspaces of X, containing the base-point, then the triad homotopy
groups πi(X; A, B) fit into a long exact sequence (C = A ∩ B)

· · · → πi+1(A,C) → πi+1(X, B) → πi+1(X; A, B) → πi(A,C) → πi(X,B) → · · · .

As excision does not always hold in homotopy these triad homotopy groups are not always trivial
in the excision situation X = A ∪ B.

Theorem 4.3 (Blakers-Massey theorem) Let X be the union of open subspaces A, B such that A,B
and C = A ∩ B are path-connected, and the pairs (A, C), (B, C) are respectively p-connected and
q-connected. Then the triad (X; A, B) is (p + q)-connected, and the generalized Whitehead product
induces a map

[ , ] : πp+1(A,C)⊗ πq+1(B,C) → πp+q+1(X; A,B)

which is an isomorphism.

Proof. Let X be the (p + q + 1)-ad (X;A, . . . , A, B, . . . , B) with q copies of A and p copies of B. By
symmetry, the fundamental catp+q-group ΠX of X belongs to the category Cp,q (cf. §3). Consider
the cover U1, . . . , Up+q of X where U1 = . . . = Uq = A,Uq+1 = . . . = Up+q = B. Theorem 4.1
shows first that X is connected, and hence that (X;A, B) is (p + q)-connected. Theorem 4.1 also
shows that ΠX is universal. By Corollary 3.7, the theorem is proved once we have checked that
the crossed square associated to ΠX as an object of the category Cp,q, is canonically isomorphic to
the crossed square

πp+q+1(X; A, B) //

²²

πq+1(B, C)

²²
πp+1(A, C) // π1C

with h-function given up to sign by the generalized Whitehead product.
The identification of the groups and actions in the crossed square of ΠX follows from the

construction of ΠX (cf. §2). The universal example for the generalized Whitehead product is the
triad (Ep+1 ∨ Eq+1; Ep+1 ∨ Sq, Sp ∨ Eq+1). Let W be the (p + q + 1)-ad constructed from this triad
in the same way as X is constructed from (X; A, B). Then ΠW belongs to the category Cp,q and its
associated crossed square is of the above form with X,A, B, C replaced by

X ′ = Ep+1 ∨ Eq+1, A ′ = Ep+1 ∨ Sq, B ′ = Sp ∨ Eq+1, C ′ = Sp ∨ Sq.

At this stage there arise questions of sign conventions and orientations, none of which affect the
statement of the theorem. It is common in the literature to make conventions so that a square
whose arrows are boundary maps is anticommutative (cf. [1, p. 105]). For our purposes, we want
crossed squares to be commutative, and we assume the conventions are arranged in this way. Then
the generalized Whitehead product [tp+1, tq+l] in πr(X

′; A ′, B ′), where r = p + q + 1, is defined
using the following diagram (cf. [1, p. 108]):
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0

²²

0

²²
0 // πr(X

′;A ′, B ′)
d2 //

d1
²²

πr−1(A
′, C ′) oo //

d4
²²

πr−1(X
′, B ′)

πr−1(B
′, C ′)

d3

//

²²

πr−2(C
′) oo //

²²

πr−2(B
′)

πr−1(X
′, A ′)

OO

πr−2(A
′)

OO

The element [ιp+1, ιq+1] is the unique element which in the above central square maps as follows:

[ιp+1, ιq+1] //

²²

±[ιp+1ιq]

²²
[ιp, ιq+1] // [ιp, ιq]

where the signs depend on conventions, and the other Whitehead products are relative or absolute.
One now has to examine separately the cases where p, q > 1 and those in which p or q is 1. If

p, q > 1, then πp+q+1(X
′; A ′, B ′) ∼= Z generated by [ιp+1, ιq+1] while the crossed square associated

to ΠX ′ is

Z 0 //

0
²²

Z

²²
Z // 0

This crossed square is universal, and so its h-function Z × Z → Z is (m, n) 7→ ±mn. Hence
h(1, 1) = ±1, as required. The case where p = q = 1 is dealt with in [7] (but without mentioning
the point about sign conventions). Suppose p > 1, q = 1. Then d1 and d4 are isomorphisms, and
[ιp, ι1] ∈ πp(Sp ∨ S1) is the element ι1(ιp) − ιp. The element [ιp, ι2] ∈ πp+1(S

p ∨ E2, Sp ∨ S1) is of
a similar form. Since d1 is an isomorphism, and is part of the crossed square associated with ΠX ′,
the h-function of this crossed square sends (ιp, ι2) to ±[ιp+1, ιq+1], as required. The case where
p = 1, q > 1 is similar. 2

We now give an application combining Theorem 4.1 with the case n = 3 of the equivalence
between catn-groups and crossed n-cubes established in [8, 9]. We do not give definitions here
since we need only one example.

Example 4.4 [8,9]. Consider a crossed 3-cube of the form

L //

²²

ÂÂ?
??

? G

²²

ÂÂ?
??

?

G //

²²

G

²²

G //

ÂÂ?
??

? G

ÂÂ?
??

?

G // G
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in which all the maps G → G are identities. If this crossed cube is universal, then L is canonically
isomorphic to the group G∧̃G defined in [6,7]; that is, L is generated by elements x ∧̃ y, with
x,y ∈ G, with relations

x ∧̃ yz = (x ∧̃ y)(yx ∧̃ yz),

xy ∧̃ z = (xy ∧̃ xz)(x ∧̃ z),

x ∧̃ y = (y ∧̃ x)−1,

where yx = yxy−1, for all x, y, z ∈ G.

Proposition 4.5 For any connected space X, there is an exact sequence

π2X
E2−→ π4S

2X
H2−→ π1X ∧̃π1X

P−→ [π1X, π1X] → 1.

Proof We write the two vertices of the (unreduced) suspension SX of X as v+, v−, and write

C+X = SX \ {v−}, C−X = SX \ {v+}.

These two cones are contractible and have intersection which is homeomorphic to X× (−1, 1), and
so is homotopy equivalent to X. We now cover S2X by the open contractible spaces

U1 = SC+
1 X, U2 = C+

2 C−
1 X, U3 = C−

2 C−
1 X,

where the suffices on the C’s denote the two directions. Then

U1 ∩U2 = C+
2 C−

1 X, U2 ∩U3 = (C−
1 X)× (−1, 1), U3 ∩U1

∼= C−
2 (X× (−1, 1),

so that these double intersections are contractible. Also

U1 ∩U2 ∩U3
∼= X× (−1, 1)2.

Thus in terms of homotopy types, the 3-cube over S2X defined by this cover can be represented as

S2X :

X

²²

//

ºº/
//

//
//

//
//

//
∗

²²

»»2
22

22
22

22
22

22

∗ //

ºº/
//

//
//

//
//

//
∗

22
22

22

»»2
22

22
2∗ //

²²

∗

²²
∗ // S2X

Since X is connected, each face ∂0
iS

2X is connected. By Theorem 4.1, the cube SX is connected,
and its fundamental cat2-group is universal. Equivalently, the fundamental crossed cube Π§2X is
universal. But this crossed cube is the cube of example 4.3 with G = π1X. The homotopy fibre
F(S2X) is equivalent to the homotopy fibre ofX → Ω2S2X. The exact sequence follows. 2

Remark 4.6 As a deduction from Proposition 4.4 we find the formula πS
2K(G, l) ∼= Ker (G ∧̃ G →

G) obtained by other means in [7]. In particular, we obtain a new proof that π4(S
3) ∼= Z.
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5 Induced catn-groups

The notion of inducing catn-group is comparable to that of changing base rings in module theory,
and also to that of inducing representations in group representation theory. In order to explain the
intuitive basis of the construction, we recall from [4] the notion of induced crossed module.

Let Q be a group, and let XMQ be the category of crossed Q-modules. Let f : P → Q be a
homomorphism of groups. Then pullback (fibre product) defines a functor f∗ : XMQ → XMP.
This functor has a left-adjoint f∗ : XMP → XMQ, giving for a crossed P-module M a crossed
Q-module f∗M, the crossed Q-module induced by f.

Since f∗ is a left adjoint, it preserves colimits. This allows one to give presentations of f∗M,
given a presentation of M. Also f∗M can be defined without reference to f∗ as the pushout crossed
module

(1 P)
(1 f)

//

²²

(1 Q)

²²
(M P) // (f∗M Q)

This description shows how induced crossed modules can arise as examples in a Van Kampen type
theorem for the fundamental crossed module π2(X,Y) → π1Y of a based pair, as in [4]. This
example of a crossed module suggests that we think of a crossed module µ : M → P as having P

in dimension 1, M in dimension 2, and that an induced crossed module arises from changing the
lower dimensional part by a morphism f : P → Q.

We recall from [4] a presentation of the induced crossed module.

Proposition 5.1 (4) . If µ : M → P is a crossed P-module, and f : P → Q is a morphism of
groups, then the induced crossed Q-module θ : f∗M → Q has a group presentation with generators
(q, m) ∈ Q×M and relations

(i) (q,m)(q, m ′) = (q,mm ′),

(ii) (q, Pm) = (qf(p),m), item (q, m)(q ′, m ′)(q,m)−1 = (qfµ, (m)q−1q ′,m ′),

for all q, q ′ ∈ Q, m, m ′ ∈ M, p ∈ P. The action of Q on f∗M is determined by q(q ′, m) = (qq ′, m),
and θ is determined by θ(q, m) = qfµ(m)q−1.

In examples, the element of f∗M determined by (q,m) is usually written qm, so that the universal
map M → f∗M is given by m 7→ 1m. Of course this map need not be injective.

We now discuss corresponding notions for catn-groups. For a catn-group G, the ‘lower dimen-
sional part’ of G is the corner Gp of catn-groups determined by G (§3).

Proposition-Definition 5.2 Let f : G → H be a morphism of catn-groups, and let fp : Gp →
Hp, (f¤ : G¤ → H¤) be the morphisms of n-corners (n-cubes) of catn-groups determined by f Then
the following two conditions are equivalent, and define the catn-group H (up to an isomorphism which
is the identity on Hp) as induced from the catn-group G by the morphism fp : Gp → Hp.

(i) If T is the (n + 1)-cube of catn-groups determined by the morphism f¤ : G¤ → H¤, so that
∂0

n+1T = G¤, ∂1
n+1T = H¤, then T is a pushout (n + 1)-cube.

(ii) For any morphism g : G → K of catn-groups such that Kp = Hp and gp = fp, there is a unique
morphism h : H → K of catn-groups such that hg = f.
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Proof That (i) implies (ii) is clear. To prove that (ii) implies (i), let K be the catn-group which
is the pushout of the (n + 1)-corner determined by T. For each (n + 1)-multi-index α 6= 1, the
(n + 1)-cube determined by the map of n-cubes (G¤(α))¤ → (Hp(α))¤ is degenerate, and so an
(n + 1)-pushout by Proposition 1.1. By Proposition 3.2, K¤(α) = H¤(α). Hence Kp = Hp. The
two universal properties give an isomorphism H → K which induces the identity Hp → Kp. 2

An example of inducing which will occur in connection with the Hurewicz theorem is when
each vertex catn-group of Hp is a trivial catn-group.

Proposition and Notation 5.3 Suppose that the morphism f : G → H of catn-groups presents H as
induced from G by fp, and that H is the catn-group (H; 1, 1, . . . , 1) in which all si, bi are trivial. Then
H is the factor group of G, the big group of G, by the normal subgroup generated by s1(G), . . . , sn(G).
This catn-group H will be denoted by triv(G).

The proposition is clear from the universal property 5.2 (ii).
It will be useful to describe induced catn-groups more explicitly for n = 2, using in this case

the equivalence between cat2-groups and crossed squares given in [9] (see §2 above). To this end
we first recall that the category XMQ of crossed Q-modules has a coproduct which is described
in [3] as follows. Let M, N be crossed Q-modules. Then N acts on M, and M acts on N, via the
given actions of Q. Let MoN denote the semidirect product with injections i ′ : M → MoN, m 7→
(m, 1), and j ′ : N → M oN, n 7→ (1,n); let {M, N} denote the subgroup of M oN generated by
(nm m−1, mnn−1), for all m ∈ M,n ∈ N; let q : M o N → M ◦ N = (M o N)/{M, N} be the
projection and let i = qi ′, j = qj ′. Then M ◦N, with the morphisms i, j, is the coproduct of M,N
in the category XMQ.

Remark 5.4 The above construction of a group M ◦ N with morphisms i : M → M ◦N, j : N →
M ◦ N requires only actions of M on N and N on M. If also these actions are compatible in the
sense of [7], then i : M → M ◦N, j : N → M ◦N may be given the structure of crossed modules.

Proposition 5.5 In the following cubical diagram of homomorphisms of groups

L

λ
²²

λ ′ //

δ

¼¼2
22

22
22

22
22

2 N

ν ²² β

¼¼2
22

22
22

22
22

2

M
µ //

α

»»2
22

22
22

22
22

22
P

γ

22
22

22

»»2
22

22
2T

τ ′ //

τ
²²

S

σ
²²

R ρ
// Q

suppose that the front and back squares are crossed squares, that the cube is a morphism of these
crossed squares, and that the front crossed square is induced from the back crossed square by α,β,γ.
Consider R⊗ S and γ∗L as crossed Q-modules. Then T is isomorphic to the coproduct (R⊗ S) ◦ (γ∗L)
factored by the relations

(i) i(αm⊗ βn) = jh(m, n),

(ii) i(qαλl⊗ s) = j(ql)j(sql−1),

(iii) i(r⊗ qβλ ′l) = j(rql)j(ql−1),
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for all r ∈ R, s ∈ S, l ∈ L,m ∈ M, n ∈ N, q ∈ Q. The maps τ, τ ′ are determined by the usual maps
R⊗ S → R,R⊗ S → S, and on j(γ∗L) by τ : ql 7→ q(αλl), τ ′ : ql 7→ q(βλ ′l), while δ : L → T is given
by δ(l) = j ′(l). The h-function of the induced crossed square is (r, s) 7→ i(r⊗ s). 2

The proof of Proposition 5.4 is a direct verification.

6 Applications of induced catn-groups: the excision
and Hurewicz theorems

In this section we show that a Hurewicz type theorem for ΠX follows from a description of the
excision map, which is more general and has other applications. The general situation is given by
the following theorem.

Theorem 6.1 (Excision Theorem) . Let the space Y be the union of open sets X, B1 . . . , Bn, and
let Ai = X ∩ Bi, for i = 1, . . . , n. Let X and Y be the n-cubes determined by the (n + 1)-ads
(X; A1, . . . , An) and (Y; B1, . . . , Bn). Assume that X and each ∂0

iY is connected, for 1 6 i 6 n. Then
Y is connected and the morphism f : ΠX → ΠY determined by the inclusion X → Y presents ΠY as
the catn-group induced from ΠX by the corner morphism fp : (ΠX)p → (ΠY)p.

Proof Let T be the (n + 1)-cube of catn-groups determined by the morphism f : ΠX → ΠY of
fundamental catn-groups. We prove that T is a pushout (n + 1)-cube by applying the Van Kampen
theorem (Theorem 2.1).

The space Y is given to have the open cover V = {V1, . . . , Vn,Vn+1} where Vn+1 = X, Vi = Bi

for i 6 1 6 n. Let V be the (n + 1)-cube of n-cubes of spaces in which V(1) = Y and for
1 6= α ∈ {0, 1}n+1, V(α) = Y ∩ V ∩ . . . Vi where i1 < . . . < ir are exactly those indices i such
that αi = 0. Then T, the (n + 1)-cube of catn-groups defined above, may be identified with the
(n + 1)-cube of catn-groups ΠV(α) for each α ∈ {0, 1}n+1. Thus to apply Theorem 2.1 we have
only to prove that each n-cube of spaces V(α) is connected, for α ∈ {0, 1}n+1,α 6= 1.

Write α ∈ {0, 1}n+1 as (β,γ) where β ∈ {0, 1}n, Y ∈ {0, 1}. If γ = 0, then V(α) = RβX, and so
V(α) is connected, since X is connected. If γ = 1 then β 6= 1 (since α 6= 1) and V(α) = RβY is
connected since each ∂0

iY is connected, for i = 1, . . . , n. The result follows. 2

As a corollary we obtain our first version of the Hurewicz theorem for (n + 1)-ads. Recall from
§5 that a catn-group G determines an induced catn-group triv(G) with trivial corner.

Theorem 6.2 (Hurewicz Theorem, version 1) . Let (X; A1, . . . , An) be an (n + 1)-ad such that
each Ai is closed in X, and the associated n-cube X is connected. Then the space

Y = X ∪ C(A1 ∪ . . . ∪An)

is n-connected and Hn+1(Y) is canonically isomorphic to the big group of the catn-group triv(ΠX).

Proof Let v be the vertex of the cone in Y = X ∪ C(A1 ∪ . . . ∪ An). The cover of Y given by
V = {CA1, . . . , CAn,X} determines, by intersection with the n-cube of (Y; CA1, . . . , CAn), as in
the proof of Theorem 6.1, an (n+ 1)-cube of n-cubes which is homotopy equivalent to the (n+ 1)-
cube of n-cubes determined by the open cover {CA1, . . . , CAn, Y\{v}} of Y. So the Van Kampen
theorem may be applied to the cover V, even though it is not an open cover. Apart from openness,
the hypotheses of Theorem 6.1 hold. Since the fundamental catn-group ΠY has trivial corner, the
result follows. 2
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The n-connectivity of Y was proved directly by M. Zisman in 1981, in response to a question of
Loday.

Let G be a catn-group. The abelianization of G is the catn-group Gab obtained by the abelian-
ization of the big group of G. The maps si, bi become sab

i and bab
i respectively. (Note that

[Ker sab
i , Ker bab

i ] = 1 since Gab is abelian.)

Theorem 6.3 (Hurewicz Theorem, version II) . Let (X;A1, . . . , An) be an (n + 1)-ad such that
each Ai is closed in X and the associated n-cube X is connected. Then the hyper-relative homology
group Hn(X; A1, . . . , An) is isomorphic to the subgroup

⋂n
i=1 Ker sab

i of the catn-group (ΠX)ab.

Proof It is immediate that Hn+1(Y) = Hn+1(X; Al, . . . , An) where Y is the space described in
Theorem 6.2. With the notation of §1 we have

⋂n
i=1 Ker sab

i = L((ΠX)ab). On the other hand,
Theorem 6.2 says that

Hn+1(X; A1 . . . , An) = triv(ΠX) = L(triv(ΠX)).

Hence Theorem 6.3 follows from the algebraic

Lemma 6.4 Let G be a catn-group (n > 1). Then L(Gab) = L(triv(G)).

Proof. Let H = (H; 1, . . . , 1) be a trivial catn-group (with n > 1). Then H is abe1ian because H → 1
is a crossed module. So H is equal to its abelianization. By universality any map G → H factors
uniquely through Gab. As H = triv(H) the map Gab → H factors uniquely through triv(Gab). As
a result triv(G) = triv(Gab) Therefore it suffices to prove the lemma when G is abelian (which
means the big group of G is abelian).

When G is abelian the big group G splits as a cartesian product ΠGα, where α runs over {0, 1}n.
The group Im si is the sub-group of G consisting of all the factors Gα, such that the ith index of α

is 1. Therefore

L(G) =

n⋂

i=1

Ker si = G0 = G/{Im si} = triv(G) = L(triv(G)).

2

Remark 6.5 Under the hypothesis of Theorem 6.2 there exist a catn-group ΠX (such that
πn+1(X; A1 . . . An) = L(ΠX)) and also an abelian catn-group HX (such that
Hn+1(X; A1 . . . , An) = L(HX)). Then Theorem 6.3 is equivalent to

HX = (ΠX)ab.

This shows that our result is a direct analogue of the classical Hurewicz theorem: if X is a
connected space, then H1(X) is the abelianization of π1(X).

We now consider computations involving attaching 3-cells. We use the explicit description of
induced crossed squares of §5.

Proposition 6.6 Let (Z; U,V) be a triad such that

(i) the interiors of U, V cover Z;

(ii) U, V and W = U ∩ V are connected; and
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(iii) the pairs (U, W), (V, W) are 1-connected.

Let fk : (S2; E2
+E2

−) → (Z,U, V), where k ∈ K, be a family of pointed maps and let the space Z ∪ {e3
k}

be formed by attaching 3-cells to Z using fkS2 → Z. Then the triad homotopy group

T = π3(Z ∪ {e3
k};U, V)

is describable as follows. For each k ∈ K, let

uk = fk(ι+) ∈ π2(U, W),
vk = fk(ι−) ∈ π2(V, W),
wk = fk(ι) ∈ π1(W)

be the images of generators

ι+ ∈ π2(E
2
+, S1), ι− ∈ π2(E

2
−, S1), ι ∈ π1(S

1),

where ∂(ι+) = ∂(ι−) = ι. Let C be the free crossed π1(W)-module on generators 1 such that ∂lk = wk

where k ∈ K. Then T is isomorphic as crossed π1(W)-module to the coproduct (π2(U, W)⊗π2(V ,W))◦
C with relations

uk ⊗ vk ′ = [lk, lk ′]
quk ⊗ s = qlk

sql−1
k

r⊗ qvk = rqlk
ql−1

k



 (*)

Proof. We replace the space Z∪ {e3
k} by the mapping cylinder Y = M(f)∪∨

kE3
k where f :

∨
kS2

k →
Z is determined by the fk, for k ∈ K. Then Y can be covered by open sets X,B1,B2 such that the
triad (Y;B1,B2) is homotopy equivalent to (Z ∪ {e3

k}; U, V) and (X; X ∩ B1, X ∩ B2) is homotopy
equivalent to E = (

∨
k E3

k;
∨

k(E2
+)k,

∨
k(E2

−)k), The assumptions of the Excision Theorem 6.1
apply to Y with the cover X,B1,B2, and so it is sufficient to show that Proposition 5.4 gives for
π3(Y;B1, B2) the presentation of our proposition.

Let F be the free group on the set K. The crossed square ΠE is

F
1 //

1
²²

F

1
²²

F 1
// F

with h-map the commutator. Thus the relations (*) are particular cases of the relations (i), (ii),
(iii) of Proposition 5.4. The proof is completed by showing that these particular cases imply the
general case. The details are left to the reader. 2

Remark 6.7 The above methods are a development of those used in [5] to deduce the relative
Hurewicz theorem from a Van Kampen theorem for filtered spaces.
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