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Abstract

Les complexes croisés sont analogues à des complexes de châıne mais avec les propriétés non-
abéliennes des modules croisés de dimensions 1 et 2. lIs interviennent dans la théorie homotopique
et la cohomologie des groupes. Ici on montre que la catégorie Crs des complexes croisés a une
bonne structure de catégorie avec modele pour la théorie d’homotopie, en prenant les classes déjà
connues pour les équivalence faibles et les fibrations, et une nouvelle notion de cofibration. Les
preuves utilisent la structure monöıdale fermée sur les complexes croisés développée par Brown et
Higgins, laquelle fournit des objets cylindre et cocylindre adéquats pour Crs.

INTRODUCTION.

The definition of crossed complex is motivated by the principal example, the fundamental crossed com-
plex πX of a filtered space

X∗ : X0 ⊆ X1 ⊆ · · · ⊆ Xn ⊆ · · · ⊆ X∞

([8], 5). In this crossed complex, π0X∗ is the set π0X0; π1X∗ is the fundamental groupoid π1(X1,X0);
and for n > 2,πnX∗ is the family of relative homotopy groups πn(Xn, Xn−l,p), for all p in X0. This
structure is also equipped with boundary maps from πnX∗ to πn−1X∗, n > 1, and operations of π1X∗
on πnX∗ for n > 2, all satisfying appropriate axioms (see Section 1). It is because of the widespread
use of crossed complexes (summarised below) that it is necessary to discuss their appropriate homo-
topy theory, and this is our aim. Crossed complexes with a single vertex and satisfying a freeness
condition were used by Whitehead in [26], under the name “homotopy systems”, for discussing reali-
sation problems and models of low-dimensional homotopy types. They were also used in his famous
paper [27] on simple homotopy types, again for realisation problems, although this application has
been neglected up to now.. These aspects are taken up in [1], where free, reduced crossed complexes
are seen as constituting the first level in a tower of approximations to homotopy theory. The functor

π : (filtered spaces) → (crossed complexes)

satisfies a Generalised Van Kampen Theorem; ie., it preserves certain colimits [8]. This result includes
the usual Van Kampen Theorem, and other basic results in homotopy theory, for example the relative
Hurewicz Theorem, and the result of Whitehead that π2(X ∪ {e2

λ},X) is a free crossed π1(X)-module.
It also implies new results on second homotopy groups [6]. There is a classifying filtered-space functor

B∗ : (crossed complexes) → (filtered spaces)
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such that πB∗ is naturally equivalent to the identity ([8], Section 9. and [l1]). For a crossed complex
C, the space (B∗C)∞ is written BC and called simply the classifying space of the crossed complex C.
The main result of [11] is the homotopy classification result, that if X∗ is the filtered space of skeleta
of a CWcomplex X, then there is a bijection of homotopy classes

[X, BC] ∼= [πX∗,C] (see [5] for a summary).

A crossed complex is of rank n if it is zero above dimension n. The crossed complexes of rank 1 are
the groupoids, and these are well known to be models of homotopy 1-types. The crossed complexes
of rank 2 are the crossed modules (of groupoids). These are models of homotopy 2-types. Thus the
Generalised Van Kampen Theorem enables the computation in some cases of the 2-type of a union of
spaces1.

In homological algebra, it is common to consider a free resolution of an algebraic object, for exam-
ple of a module, and such a resolution is a chain complex of free modules. It is explained in [l3] how
crossed modules arise in considering identities among relations for a presentation of a group, and the
general idea of a crossed resolution is explained in the survey article [4]. From this point of view, it
is not surprising that crossed complexes have been used to interpret the cohomology Hn(G, A) of a
group G with coefficients in a G-module A (cf. [15,17,20,21]). It now seems reasonable to regard the
replacement of chain complexes by crossed complexes as the first step towards a non-abelian homo-
logical algebra. It is these twin relations of crossed complexes to homological algebra and to homotopy
theory which make it essential to have a satisfactory homotopy theory for crossed complexes.

The definition of a homotopy of morphisms of crossed complexes is well known and due to White-
head [26]. It is exploited in [17] for the representation of cohomology of a group and in [9] for the
theory of extensions of groups. However the theory of chain complexes has another type of homotopy
theory due to Quillen [22], which is important in homological and homotopical algebra, and which
involves defining notions of weak equivalence, fibration and cofibration, to obtain the structure of closed
model category. For crossed complexes, weak equivalences are defined in [7] and fibrations in [16],
We use the methods of [22] to define cofibrations of crossed complexes and we prove in Theorem 2.12
that the weak equivalences, fibrations and cofibrations satisfy the axioms for a closed model category in
the sense of [22], However, we do not know if one further axiom is satisfied: is it true that a pushout
of a weak equivalence by a cofibration is again a weak equivalence?

The proof of Theorem 2.12 requires machinery on crossed complexes developed by R. Brown and
P.J. Higgins in [10]. They use ω-groupoid methods from [7] to give the category Crs of crossed
complexes a symmetric, monoidal closed structure, with internal hom functor CRS(−,−) and tensor
product − ⊗ −, analogous to corresponding functors on chain complexes. If B and C are crossed
complexes, then CRS(B, C) is: in dimension 0, the morphisms B → C ; in dimension 1, the homotopies
of morphisms; in higher dimensions, the higher homotopies. Thus the closed structure on Crs includes
a satisfactory theory of homotopy equivalences. But, in a similar manner to chain complexes, the
definitions and applications of fibrations and cofibrations are not so straightforward, and it is useful
to take weak equivalences rather than equivalences as basic. It is this theory that we develop.

In §1 we recall some basic definitions of crossed complexes, and weak equivalences. In §2 we
follow [16] in defining fibrations, and follow [22] in deriving a definition of cofibration. We then
prove that, with respect to these classes of morphisms, Crs is a closed model category. In §3 we derive
a Whitehead type Theorem: If a morphism of cofibrant objects in Crs is a weak equivalence then it is also
a homotopy equivalence. In §4 we point out other homotopical results for crossed complexes which
may be obtained using the methods of double categories with connections due to Spencer [23] and
Spencer-Wong [24].

1See for example R.Brown and C.D. Wensley, ‘Computation and homotopical applications of induced crossed modules’,
J. Symbolic Computation 35 (2003) 59-72.
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A different approach to abstract homotopy theory is given by Kamps - Porter [19] in terms of
homotopy and cohomotopy systems. In these, a category is enriched over the category of cubical sets,
and certain Kan extension conditions are imposed to allow manipulation of homotopies. This approach
is useful for crossed complexes because the equivalence of crossed complexes and ω-groupoids [7],
which is used in [10] to obtain the monoidal closed structure on Crs, also allows the category Crs to
be enriched over ω-groupoids. The latter, as cubical sets, satisfy a strong form of the Kan extension
condition. The consequences of this will be developed elsewhere by the second author and Kamps.

The second author would like to thank Prof. R. Brown for arranging from the University College of
North Wales, Bangor, support for his visit as Academic Visitor in 1986/87 where this work was carried
out.

1 PRELIMINARIES.

A crossed complex C of groupoids [7] is a sequence

· · · // Cn
δ // Cn−1

// · · · // C2
δ // C1

δ0
//

δ1
// C0

satisfying the following conditions:

(i) C1 is a groupoid with C0 as its set of vertices and δ0, δ1 its initial and final maps. We write
C1(p, q) for the set of arrows from p to q(p, q in C0) and C1(p) for the group C1(p, p).

(ii) For n > 2,Cn is a family of groups {Cn(P)}p∈C and for n > 3, the groups Cn(p) are abelian.

(iii) The groupoid C1 operates on the right on each Cn( for n > 2) by an action denoted (x,a) 7→ xa.
Here, if x ∈ Cn(p) and a ∈ C1(p,q), then we have xa ∈ Cn(q). We use additive notation for all
groups Cn(p) and the groupoid C1.

(iv) For n > 2, δ : Cn → Cn−l is a morphism of groupoids over C0 and preserves the action of C1,
where C1 acts on the group C1(p) by conjugation: xa = −a + x + a.

(v) δδ = 0 : Cn → Cn−2 for n > 3 (and δ0δ = δ1δ : C2 → C0 as follows from (iv).

(vi) If c ∈ C2, then δc operates trivially on Cn for n > 3 and operates on C2 as conjugation by c, that
is

xδc = −c + x + c (x, c ∈ C(p)).

In any crossed complex C, βc denotes the base point of c, that is, if C ∈ C0 then βc = c, if
C ∈ C1(p, q) or C ∈ Cn(q) for n > 2, then βC = q.

A morphism of crossed complexes f : B → C is a family of morphisms of groupoids fn : Bn →
Cn(n > 1) all inducing the same map of vertices f0 : B0 → C0 and compatible with the boundary
maps δ : Bn → Bn−l, Cn → Cn−l and the actions of B1, C1 on Bn,Cn. We denote by Crs the resulting
category of crossed complexes.

The basic example we have in mind is the fundamental crossed complex πX∗ of a filtered space
X∗, as described in the Introduction.

It follows from observations by Brown-Higgins in [7], p.238, that the category Crs is complete and
cocomplete. The coproduct in Crs is just disjoint union

⊔
, while colimits in Crs are constructed in

Section 6 of [8]. Moreover the paper [10] defines for any crossed complex B an internal hom functor
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CRS(B, −) and its left adjoint, a tensor product − ⊗ B. This gives Crs the structure of a symmetric,
monoidal closed category.

Write C(n) for the crossed complex freely generated by one generator cn in dimension n. So C(0)

is ∗; C(1) is the groupoid I and for n > 2, C(n) is in dimensions n and n − 1 an infinite cyclic group
with generators cn and δcn respectively, and is otherwise trivial. Let S(n − l) be the (n − 1)-skeleton
of C(n), with inclusions S(n − 1) → C(n). If En−l and Sn−l denote the skeletal filtrations of the
standard n-ball

En = e0 ∪ en−1 ∪ en

and (n − 1)–sphere Sn−l = e0 ∪ en−l, then it is clear that

C(n) ∼= πEn and S(n − 1) ∼= πSn−l.

We now define a particular kind of morphism j : A → D which we call a crossed complex morphism
of relative free type. Let A be any crossed complex. A sequence of morphisms jn : Dn−l → Dn may be
defined inductively as follows. Set D0 = A. Supposing Dn−l given, choose any family of morphisms

fλ
n : S(mλ − 1) → Dn−l , for λ ∈ Λn

and any mλ, and to construct jn : Dn−l → Dn form the pushout:

⊔
λ∈Λn

S(mλ − 1)
(fλ

n)
//

²²

Dn−1

²²⊔
λ∈Λn

C(mλ) // Dn

Let D = colimn Dn, and let j : A → D be the canonical morphism. We call j : A → D a crossed complex
morphism of relative free type. The images xmλ of the elements cmλ

in D are called basis elements of D

relative to A. We can conveniently write:

D = A ∪ {xmλ}λ∈Λn,n > 0

and may abbreviate this in some cases. For example we may write D = A ∪ xn ∪ xm, analogously to
standard notations for CW-complexes.

We remark that for A = ∅ we get by this construction the crossed complexes of free type which
were considered in [9] under the name “free crossed complexes” and in [11].

If {xλ}λ∈Λ are all the cells of the crossed complex of free type C, then

C(n)⊗ C = (S(n − 1)⊗ C) ∪ {cn ⊗ xλ}λ∈Λ.

Hence the morphism S(n − 1) ⊗ C → C(n) ⊗ C is also a morphism of relative free type. The functor
− ⊗ C on Crs has a right adjoint, and so preserves pushouts. Let f : A → B be any morphism. If
j : A → D is a morphism of relative free type, then so also is the pushout j̄ : B → Q of j and f.
Therefore we get the following

Proposition 1.1 Let C be a crossed complex of free type. If A → D is a morphism of relative free type
then A⊗ C → D⊗ C is also of relative free type. In particular if D is a crossed complex of free type then
the tensor product D⊗ C is also of free type. 2
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We now follow [10] in defining, for n > 0, the n-fold left homotopies B → C from a crossed complex
B to a crossed complex C. These homotopies may also be taken to be the elements of CRS(B,C) in
dimension n ([10], Proposition 3.3). A 0-fold left homotopy B → C is simply a morphism B → C.
For n > 1, an n-fold left homotopy B → C is to be a pair (H, f), where f : B → C is a morphism of
crossed complexes (the base morphism of the homotopy) and H is a map of degree n from B to C (ie.,
H : Bk → Ck+n for each k > 0) satisfying

(i) βH(b) = βf(b) for all b ∈ B ;

(ii) if b,b ′ ∈ B1 and b + b ′ is defined, then

H(b + b ′) = H(b)f(b) + H(b ′);

(iii) if b,b ′ ∈ Bn(n > 2) and b + b ′ is defined, then

H(b + b ′) = H(b) + H(b ′);

(iv) if b ∈ Bn(n > 2), b1 ∈ B1 and bb1 is defined, then

H(bb1) = H(b)f(b1).

Let I be the crossed complex which has vertices 0, 1 and is freely generated by an element c1 from
0 to 1 of dimension 1. Thus I may be regarded as a groupoid. Put PC = CRS(I,C) for any crossed
complex C. Then P is a functor on Crs and there are natural transformations

p0, p1 : P → idCrs and s : idCrs → P

such that
p0s = p1s = idCrs .

Hence the quadruple P = (P : p0,p1, s) forms a cohomotopy in the sense of Kamps [18].
For crossed complexes B, C we have the induced cubical set Q(B, C) such that Q(B, C)n = Crs(B, PnC),

for n > 0. By [8], Corollary 9.6 and [10], Proposition 2.2

Crs(B, PnC) = Crs(⊗nI, CRS(B, C)) = (λCRS(B, C))n, n > 0,

where λ is the functor inducing an equivalence of the category of crossed complexes and ω-groupoids
([7], Theorem 6.2). Therefore Q(C, D), being an ω-groupoid ([8], Corollary 9.6), satisfies the Kan
extension condition for all dimensions ([7], Proposition 7.2).

According to [18], the cohomotopy system P defines in Crs a notion of homotopy between mor-
phisms. In fact, this is essentially the notion of 1-fold left homotopy given above. This notion of
homotopy also leads to the notions of homotopy equivalence, Hurewicz fibration and Hurewicz cofi-
bration, as defined in [18]. Following Kamps [18] and using the analogue of the wellknown standard
procedure for spaces we get

Lemma 1.2 For any crossed complex morphism f : B → C there exists the following factorisation

B
f //

j
##GGGGGGGGGGGGG C

B×C PC

q

;;wwwwwwwwwwwww

where q is a Hurewicz Fibration and j is a strong deformation retract morphism, hence a homotopy
equivalence. 2
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Suppose C is a crossed complex and p ∈ C0. Following Brown-Higgins [7], p.258 and Howie [16]
we define π0(C) to be the set of components of the groupoid C1. Define π1(C,p) to be the cokernel
of δ2 : C2(P) → C1(p) and, for n > 2, define πn(C, p) to be the subquotient Ker δn(p)/Im δn+l(p) of
Cn(p).

A morphism f : B → C in Crs is said to be a weak equivalence if the induced maps

π0B → π0C and πn(B,p) → πn(C, fp).

are isomorphisms, for all n > 1 and p ∈ B0. It follows by standard arguments that any homotopy
equivalence of crossed complexes is a weak equivalence.

2 CLOSED MODEL CATEGORY STRUCTURE ON Crs

Recall that a morphism f : G → H of groupoids is a fibration [3] if, whenever p ∈ G0 and y ∈ H with
δ0y = fp, there exists z ∈ G1 such that fz = y and δ0z = p.

This notion was extended to morphisms in Crs by Howie in [16] in the following way. A morphism
f : E → B in Crs is a fibration if each groupoid morphism fn : En → Bn(n > 1) is a fibration of
groupoids. Other equivalent descriptions of fibrations in Crs were given by Brown-Higgins [28] using
the notion of what we call here “crossed complex of free type”, which is the same notion as that of “free
crossed complex” in [9]. A main fact we need is that if X∗ is the skeletal filtration of a CW-complex,
then the fundamental crossed complex πX∗ of X∗ is of free type.

Proposition 2.1 [28]. Let f : E → B be a morphism of crossed complexes. Then the following conditions
are equivalent:

(i) f is a fibration;

(ii) (Covering homotopy property) if C is a crossed complex of free type, g : C → E is amorphism, n > 1,
and (H ′, fg) is an n-fold left homotopy C → B, then there is an n-fold homotopy (H,g) : C → E

such that fH = H ′;’

(iii) the covering property holds for n = 1;

(iv) if C is a crossed complex of free type then the induced morphism f∗ : CRS(C, E) → CRS(C, B) is a
fibration. 2

Note that this Proposition implies that each Hurewicz fibration in Crs is a fibration.
A morphism which is both a fibration and a weak equivalence is said to be a trivial fibration.
We will say that a morphism f : A → D has the left lifting property (LLP) with respect to the class

F of morphisms in Crs if the dotted arrow completion exists in any commutative square of the form

A //

f
²²

E

p
²²

D //

66mmmmmmmm
B

where p is in the class F. Similarly p has the right lifting property (RLP) with respect to F if the dotted
arrow completion exists in any commutative square of the above form, where f is in F.

Following Quillen [22] we define a cofibration in Crs to be a morphism which has the (LLP) with
respect to trivial fibrations. Trivial cofibrations are morphisms which are cofibrations and weak equiv-
alences. It is easily checked that in a pushout diagram
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A //

f
²²

Ā

f̄
²²

D // D̄

if f is a cofibration then so also is f̄([22]. chap.II. §3).
Let ∅(resp.∗) denote the initial (resp. final) object of Crs. An object C is called cofibrant if the

unique morphism from ∅ to C is a cofibration. Not all crossed complexes are cofibrant. However for
any C the unique morphism C → ∗ is a fibration.

The next proposition, which is analogous to Proposition 2.1, is the key to our results on cofibra-
tions. The proof uses explicitly the structure of CRS(B, C) defined in [10], and which is given above.

Proposition 2.2 The following are equivalent for a morphism f : E → B in Crs:

(i) f is a trivial fibration:

(ii) f0 is surjective; if p, q ∈ E0 and b ∈ B1(f0p, f0q), then there is e ∈ El such that f1e = b; if n > 1
and d ∈ En satisfies δ0d = δ1d for n = 1, δd = 0 for n > 2, and b ∈ Bn+l satisfies δb = fnd, then
there is

e ∈ En+1 such that fn+1e = b and δe = d;

(iii) f has the RLP with respect to S(n − 1) → C(n) for all n > 0;

(iv) if C is a crossed complex of free type then f has the RLP with respect to S(n − 1)⊗ C → C(n)⊗ C

for all n > 0;

(v) if C is a crossed complex of free type then the induced morphism f∗ : CRS(C,E) → CRS(C, B) is a
trivial fibration.

Proof. The equivalences (ii)⇔(iii) and (iv)⇔(v), and the implication (v)⇒ (i) are evident.
The implications (i)⇒ (ii) for n > 2 and (ii)⇒ (i) are straightforward and can be proved by

standard procedures in homological algebra. So we prove only the non-Abelian case n = 1 of (i) ⇒
(ii).

Let p, q ∈ E0 and b ∈ B1(f0p, f0q). By the fibration property there is an element u in E1(p, q ′),
say, such that f1u = b. Hence f0q

′ = f0q and the isomorphism π0(E) → π0(B) determines an element
v ∈ E1(q

′, q). The isomorphism π1(E, q) → π1(B, f0q) shows that there is an element w ∈ π1(E, q)

such that f1w = f1v. Let d = u + v + w. Then f1d = b.
To prove (i)⇒ (v) we assume (i) and show that the morphism

f∗ : CRS(C.E) → CRS(C, B)

satisfies the condition (ii), which can be represented diagrammatically by

S(n − 1)
d̂ //

²²

CRS(C, E)

f∗
²²

C(n)
b̂ //

ê
44jjjjjjjjj
CRS(C,B)

for n > 0, where the morphisms b̂, d̂ and ê are defined by their images b,d, e respectively. For n = 0,
we write H̄ for b̂(c0). For n = l, we write g0, g for d̂(0), d̂(1) respectively and (H̄, fh) for b̂(c1), this
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last being a homotopy from fg0 to fg. For n > 2, we write (K, g) for d̂(δCn) and(H̄, fg) for b̂(cn),
Thus if n = 2,

δ0(K, g) = δ1(K,g) = g,

and for n > 3, δ(K, g) = 0g. Also for n > 2,

δ(H̄, fg) = f∗(K, g) = (fK, fg).

Recall that C is of free type. Let Xk be a basis for Ck, k > 1. We will construct by induction on
k > 0 a family of maps Hk : Ck → En+k.

If n = 0, then H. is to be a morphism C → E. This H. is easily constructed on the basis X using
the fact that f : E → B is a trivial fibration. Hence H. extends over C to give a morphism, also written
H. : C → E. For n > 1, we require the explicit formulae given in [10], Proposition 3.14 for the
boundaries of n-fold left homotopies. These formulae (αn

k ) are as follows:
If (H,g) is 1-fold left homotopy from g0 to g, so that δ0(H,g) = g0, δ1(H,g) = g, then

(α0) g0(c) = δ0H.(c) if c ∈ C,

(α1
1) g0(c) = H.(δ0c) + g(c) + δ(H.c) − H.(δ1C) if c ∈ C1,

(α1
k) g0(c) = [g(c) + H.(δc) + δ(H.c)]H.(βc) if c ∈ Ck(k > 2).

If n > 2 and (H,g) is an n-fold left homotopy, then δ(H.,g) = (K., g), where

(αn
0 ) K0(c) = δH0(c) if c ∈ C0,

(αn
1 ) K1(c) = (−1)n+1H0(δ0c)

g(c) + (−1)nH0(δ
1c) + δ(H1C) if c ∈ C1,

(αn
k ) Kk(c) = δHk(c) + (−1)n+1Hk−1(δc) if c ∈ Ck(k > 2).,

The above formulae will be used with H, g,K replaced by H̄, fg, K̄ in CRS(C, B), in order to construct
an appropriate element (H, g) in CRS(C, E). Thus for all n,k > 0 we require also

(βn
k ) fk+nHk = H̄k .

Suppose now that Hi is defined for 0 6 i 6 k − 1, so that (αn
i ) and (βn

i ) are satisfied for 0 6 i 6
k−1. Then Hk is defined using the fact that f is a trivial fibration and C is of free type. With the above
information, the details are straightforward and are left to the reader. 2

Corollary 2.3 Let C be a crossed complex of free type. Then the morphism S(n − 1)⊗ C → C(n)⊗ C is
a cofibration for all n > 0. In particular, C is cofibrant.

Corollary 2.4 Let j : A → D be a morphism of relative free type. Then j is a cofibration.

Proof By the definition of relative free type, we are given that D is a colimit colimn Dn, where DO = A

and each jn : Dn−l → Dn is a pushout of a coproduct of inclusions of the form S(mλ − 1) → C(mλ).
By Proposition 2.2 (iii), such inclusions are cofibrations. Hence jn is a cofibration. Hence j : A → D is
a cofibration. 2

To obtain a description of trivial cofibrations we need

Lemma 2.5 (i) Let C be a crossed complex. Then the canonical morphisms p0, p1 : PC → C are trivial
fibrations and the induced morphism (p0, p1) : PC → C× C is a fibration;
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(ii) for any fibration f : E → B the induced morphism (p0,Pf) : PE → E×B PB is also a fibration.

Proof (i) We prove only that the morphism (p0, p1) : PC → C × C is a fibration. (Using the same
methods one can also show that the canonical morphisms p0, p1 : PC → C are trivial fibrations.) For
n > 0, the elements of (PC)n are the n-fold left homotopies (H, f) : I → C. The formulae for the
boundary operators δ0, δ1 and δ of the crossed complex PC were given in the proof of Proposition 2.2.
Let n > 1 and let

(x, x ′) ∈ Cn × Cn , y ∈ (PC)0 = C1

be such that for n = 1
δ0(x, x ′) = (p0y, p1y)

and for n > 2
(x, x ′) ∈ Cn(p0y)× Cn(p1y).

We define a morphism f : I → C and for k > 0 a family of maps H : Ik → Ck+n as follows, For n = 1
let f(c1) = −x + y + x ′ and for n > 2 let f(c1) = y. We let H : Ik → Ck+n be trivial for k > 2, and be
given by H(0) = x, H(1) = x ′ for k = 1. Then for n > 1,

(p0, p1)(H, f) = (x, x ′),

and for n = 1,
δ0(H, f) = y.

(ii) The required property of the morphism

(p0, Pf) : PE → E×B PB

is to be that for n > 1 there is a completion H of the following commutative square

C(n) ∨ I //

²²

E

f
²²

C(n)⊗ I //

H

55lllllllll
B

where ∨ means the union in Crs with base points 0 ∈ C(n), 0 ∈ I identified. But this completion exists
by the fibration property of the morphism f : E → B. 2

Now we can follow Quillen’s proof ([22], p.3.4) to get:

Proposition 2.6 The following are equivalent for a morphism j : A → D in Crs

(i) j is a trivial cofibration;

(ii) j has the LLP with respect to the fibrations;

(iii) j is a cofibration and a strong deformation retract morphism.

It follows from Lemma 2.5 that each cofibration j : A → D is a Hurewicz cofibration, because j

has the LLP with respect to the trivial fibration p0 : PC → C, for any crossed complex C. Hence j has
the homotopy extension property. We do not expect the converse to hold, since for example in chain
complexes Hurewicz cofibrations are not necessarily cofibrations in the Quillen sense.

Proposition 2.7 Any morphism f : A → B in Crs may be factored f = p → j where j is of relative free
type (and hence a cofibration) and p is a trivial fibration.
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Proof The essential fact needed to apply Quillen’s small object argument ([22], chap. 11, p. 3.3 and
3.4) is the characterisation by Proposition 2.2 of trivial fibrations in Crs by the RLP with respect to the
set of morphisms S(n − 1) → C(n)}n>0 where each S(n − 1) is “sequentially small” in the sense that
Crs(S(n − 1), −) preserves sequential colimits.

For completeness and the convenience of the reader we give more details. We are given f : A → B.
We construct a diagram

A
j0 //

f
++WWWWWWWWWWWWWWWWWWWWWWWWWWWWW E0
j1 //

p0

''OOOOOOOOOOOOOO E1
j2 //

p1

wwoooooooooooooo · · · · · ·

B

as follows. Let E−1 = A and p−1 = f. Having obtained En−l, consider the set Λ of all commutative
diagrams λ of the form

S(mλ − 1)
(fλ)

//

²²

En−1

pn−1

²²
C(mλ)

gλ // B

Define jn : En−l → En by the pushout

⊔
λ∈Λn

S(mλ − 1)
fλ
n //

²²

En−1

jn
²²⊔

λ∈ΛC(mλ)
in

// En

Define pn : En → B by
pnjn = pn−1 and pnin = (gλ)

Let E = colimEn, and let j : A → E and p : E → B be the canonical morphisms. By the above
construction j : A → E is a morphism of relative free type. Proposition 2.2 implies that p : E → B is a
trivial fibration. 2

If B is any crossed complex and ∅ → B is the unique morphism from the initial object then from
the above result we get:

Corollary 2.8 Any crossed complex B is weakly equivalent to a crossed complex of free type.

Corollary 2.9 If f : A → D is a cofibration then it is a retract in the category of maps of Crs of a
morphism of relative free type. In particular, each cofibrant object in Crs is a retract of a crossed complex
of free type.

Proof By Proposition 2.7 f = pj where j is of relative free type and p is a trivial fibration. Hence by
the LLP of f with respect to trivial fibrations, there exists a completion of the following commutative
square
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A
j //

f
²²

E

p
²²

D
idD

//

g
44jjjjjjjjjjj
B

So the following diagram commutes

A
idA //

f

²²

A

j

²²

idA // A

f

²²
D

g // E
p // D

Hence pg = idD and f is a retract of j. 2

The next corollary generalises Corollary 2.6.

Corollary 2.10 Let C be cofibrant. If A → D is a cofibration then A⊗ C → D⊗ C is also a cofibration.
In particular, if D is cofibrant then D⊗ C is also cofibrant.

Corollary 2.11 Any morphism f : B → C in Crs may be factored f = pi where i is a trivial cofibration
and p is a fibration.

Proof By Lemma 1.1 f = qj where q is a fibration and j is a homotopy equivalence. But by Proposition
2.7, j = pi where p is a trivial fibration and i is a cofibration. Also j and p are weak equivalences, so i

is a trivial cofibration. Finally,
f = qj = (qp)i

where qp is a fibration and i is a trivial cofibration. 2

Theorem 2.12 The category Crs of crossed complexes, together with the distinguished classes of weak
equivalences, fibrations and cofibrations defined above, satisfies the following axioms:

CM1: Crs has all finite colimits and limits.

CM2: Suppose given a commutative diagram of the form

A
h //

g
ÂÂ?

??
??

??
??

??
C

f
ÄÄÄÄ

ÄÄ
ÄÄ

ÄÄ
ÄÄ

Ä

B

in Crs. If any two of f,g or h are weak equivalences, then so is the third.

CM3: The classes of cofibrations, fibrations and weak equivalences are closed under retraction in the
category of maps of Crs.

CM4: Suppose given a commutative diagram
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A
f //

j
²²

E

p
²²

D
g // B

in Crs, where p is a fibration and j a cofibration. If either j or p is trivial, then there is a map
h : D → E such that ph = g and hj = f.

CM5: Any crossed complex morphism f may be factored as:

a) f = pi, where p is a fibration and i is a trivial cofibration and

b) f = qj, where q is a trivial fibration and j is a cofibration.

CM1 – CM5 are the closed model axioms (cf. [22]); one says that the category of crossed complexes
is a closed model category.
Proof. CM1 follows, because of the Brown-Higgins result from [8] that Crs is a complete and cocom-
plete category.

CM2 and CM3 are completely trivial.
CM4 follows from the definition of cofibrations and Proposition 2.5. The factorisation axiom CMS

was proved by Proposition 2.7 and Corollary 2.11. 2

3 WHITEHEAD THEOREM FOR CROSSED COMPLEXES.

By Proposition 2.5 a cofibration j : A → D in Crs is a trivial cofibration if and only if it is a strong
deformation retract. Now we prove a dual fact for fibrations of cofibrant objects in Crs.

Proposition 3.1 If p : E → B is a fibration of cofibrant objects in Crs then the following are equivalent:

(i) p is a trivial fibration;

(ii) p has the RLP with respect to cofibrations;

(iii) p is a fibration and a strong deformation coretract.

Proof (i)⇒ (ii) follows from the definition of cofibration.
(ii)⇒ (i). In particular, p has the RLP with respect to S(n − 1) → C(n)(n > 0), hence p is a trivial

fibration by Proposition 2.2.
(iii)⇒ (i). This follows from the fact that a strong deformation coretract is a homotopy equiva-

lence, and hence is a weak equivalence.
(i)⇒ (iii). Let q : E⊗ I → E denote the canonical morphism. Thus q is the constant homotopy of

the identity morphism on E. The coretract and strong deformation may be constructed by completing
in

∅ //

²²

E

p

²²
B

idB

//

s

66nnnnnnnnnnn
B

and

E t E
sp, idE //

(i0, i1)
²²

E

p

²²
E⊗ I pq

//

h

66mmmmmmmmmmm
B
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which is possible, since ∅ → B, by assumption, and

(i0, i1) : E t E → E⊗ I

by Corollary 2.3 for n = 1 and Corollary 2.10, are cofibrations. 2

Theorem 3.2 (The Whitehead Theorem) If a morphism f : C → D of cofibrant objects in Crs is a weak
equivalence then f is also a homotopy equivalence.

Proof By Theorem 2.12 we have the following factorisation of the morphism f:

C
f //

i
ÂÂ?

??
??

??
??

??
D

C̄

p

??ÄÄÄÄÄÄÄÄÄÄÄ

where p is a fibration and i is a trivial cofibration. But f is a weak equivalence and so p is a trivial
fibration. Now C is a cofibrant object and i : C → C̄ is a trivial cofibration. So by lifting in the
following diagram

∅ //

²²

∅

²²

// E

q

²²
C

i // C̄ //

99rrrrrrrrr
B

where q is a trivial fibration, we obtain that C is also a cofibrant object. By Proposition 2.5, i is a
strong deformation retract and by Proposition 3.1, p is a strong deformation coretract and so, finally,
f is a homotopy equivalence. 2

4 DOUBLE CATEGORY METHODS FOR CROSSED COMPLEXES.

Another view of abstract homotopy theory is given by Spencer and Spencer-Wong in [23,24]. Recall
first that GabrielZisman [14] derive exact sequences in homotopy theory in the context of a 2-category
in which all 2-morphisms are invertible. Spencer shows in [23] that 2-categories are equivalent to
special double categories with connection or with thin structure [24], where the thin squares of the
double category derive from the constant 2-morphisms of the 2-category.

Thus for crossed complexes one obtains a double category with thin structure from the 2-category
of crossed complexes, morphisms of crossed complexes, and homotopies of morphisms. The general
results of [23,24] now give the following applications to crossed complexes. Recall first that Vogt [25]
has shown that for spaces strong homotopy equivalence is equivalent to homotopy equivalence. This
result is placed in the abstract setting in [23], Proposition 3.1. So we obtain

Proposition 4.1 A homotopy equivalence of crossed complexes is also a strong homotopy equivalence.

The paper [23] has results on homotopy pullback and homotopy pushout squares - for example,
a composite of homotopy pushouts is a homotopy pushout. The paper [24] has results on homotopy
commutative cubes and homotopy pushouts and pullbacks. For example, Corollary 4.8 of [24] and
its dual apply to give cogluing and gluing theorems for homotopy equivalences of crossed complexes.
Roughly speaking, homotopy pullbacks (pushouts) of homotopy equivalences are homotopy equivalences.
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(4.2) Open Problem. Are homotopy pushouts of weak equivalences also weak equivalences?

Note that the paper [2] obtains a type of model structure, there called a cofibration category,
for the category of reduced crossed complexes of free type. In this category, all objects are cofibrant,
weak equivalences are homotopy equivalences and standard arguments show that homotopy pushouts
of homotopy equivalences are homotopy equivalence. However in many cases one wishes to deal with
the non- free case, and it is in this context that (4.2) remains open.
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A Additional comments and references by R. Brown

A.1 Additional model properties

The Lausanne thesis Orin Sauvageot, STABILISATION DES COMPLEXES CROISÉS which is available
from
http://hopf.math.purdue.edu/cgi-bin/generate?/Sauvageot/thesis
develops some more model properties of the category of crossed complexes. I find myself unable to
follow section 4.2 which claims to prove that the model category of crossed complexes is left proper,
i.e. that a pushout of a weak equivalence by a cofibration is also a weak equivalence. If this were true,
it could be very useful for constructing free crossed resolutions. Part of the problem is that a pushout
as in 4.2.1 does not correspond to a short exact sequence. Also, in general a cofibration need not be
an inclusion, as shown by an example in [27], which gives the fundamental crossed complexes of the
inclusions of CW-complexes S1 ∨ S2 → E2 ∨ S2.

A.2 Crossed complexes and globular ∞-groupoids

The category of crossed complexes is equivalent to a category ∞-Gpds of ∞-groupoids, often called
globular ω-groupoids, as shown in

[29] R. Brown and P.J. Higgins, “The equivalence of ∞-groupoids and crossed complexes”, Cah. Top.
Géom. Diff. 22 (1981) 371-386.

So we have a Quillen model structure on the category of ∞-groupoids. One of the difficulties with
the latter category is to describe precisely the free object G(n) on one generator of dimension n, a
concept which is clear for crossed complexes. It seems likely that the crossed complex corresponding
to G(n) is exactly the fundamental crossed complex of the n-globe.

Another problem is to write down precisely the notion of homotopy for ∞-Gpds, and the monoidal
closed structure.

6Subsumed in the published version of [11].
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The well known category 2-Gpds of 2-groupoids arises as the 2-truncation of ∞-Gpds, and seems to be
quite popular. A Quillen model category structure is established for this in

[30] I. Moerdijk and J. Svensson, ‘Algebraic classification of equivariant homotopy 2-types’, J. Pure
Appl. Algebra, 89 (1993) 187-216.

This does not establish in full detail the functor from pairs of spaces to 2-groupoids, but the details are
included in the more general

[31] R. Brown and G. Janelidze, ‘A new homotopy double groupoid of a map of spaces’, Applied
Categorical Structures 12 (2004) 63-80.

I have found that the useful categories to work in for the groupoid case are crossed complexes or
cubical ω-groupoids, as in [7,8,10]. With the latter one can formulate and prove theorems, while
with the former one can calculate, as shown in

[32] R, Brown and A. Razak Salleh, ‘Free crossed crossed resolutions of groups and presentations of
modules of identities among relations’, LMS J. Comp. and Math. 2 (1999) 28-61.

One also has a clear relation with traditional notions of chain complexes with operators [12]. This is
useful for example to describe, as in [12], the tensor product of crossed complexes in dimensions > 2.
The paper

[33] R. Brown and T. Porter, “On the Schreier theory of non-abelian extensions: generalisations and
computations”. Proceedings Royal Irish Academy 96A (1996) 213-227.

shows the utility of crossed complexes for extension theory. See also

[34] R. Brown and O. Mucuk, “Covering groups of non-connected topological groups revisited”, Math.
Proc. Camb. Phil. Soc, 115 (1994) 97-110.

It should be pointed out that only an idea for a proof of an Eilenberg-Zilber theorem for crossed
complexes is sketched in [11]. A detailed description is given in

[35] A. Tonks, ‘On the Eilenberg-Zilber theorem for crossed complexes’, J. Pure Applied Algebra, 179
(2003) 199-230.

This result is used explicitly in

[36] R. Brown , M. Golasinski, T. Porter, and A. Tonks, “On function spaces of equivariant maps and
the equivariant homotopy theory of crossed complexes”, Indag. Math. 8 (1997) 157-172.

[37] R. Brown , M. Golasinski, T. Porter, and A. Tonks, “On function spaces of equivariant maps and the
equivariant homotopy theory of crossed complexes II: the general topological group case”, K-Theory
23 (2001)129-155.

A main aim of the papers with Philip Higgins was to establish a higher dimensional Seifert-van Kam-
pen theorem which could enable the computation of higher homotopy information. This theorem
established in [7,8] is a higher dimensional nonabelian local-to-global theorem. For a general survey
see

[38] R. Brown, ‘Groupoids and crossed objects in algebraic topology’, Homology, homotopy and ap-
plications, 1 (1999) 1-78.


