Ronnie Brown
van Kampen
Theorem
Higher
dimensions?
A homotopy double
groupoid
Commutative
cubes
Some
calculations of 2-types

Still higher dimensions: filtered spaces

Tri-ads
Pushouts and cubical tricks

Prospects?

Some strict higher homotopy groupoids: intuitions, examples, applications, prospects.

Ronnie Brown

Transpennine Topology Triangle- TTT74 July 5, 2010

Ronnie Brown

van Kampen

 TheoremHigher
dimensions?

A homotopy
double
groupoid
Commutative
cubes
Some
calculations of
2-types
Still higher
dimensions:
filtered spaces
Tri-ads
Pushouts and
cubical tricks
Prospects?

Origin of these ideas: van Kampen theorem for the fundamental groupoid on a set of base points:

Ronnie Brown

van Kampen

Theorem

Higher dimensions?

A homotopy
double
groupoid

Commutative cubes

Some

calculations of 2-types
Still higher dimensions: filtered spaces

Tri-ads
Pushouts and cubical tricks

Prospects?

Origin of these ideas: van Kampen theorem for the fundamental groupoid on a set of base points:

Ronnie Brown

van Kampen

Theorem

Higher dimensions?

A homotopy
double
groupoid

Commutative cubes

Some

calculations of 2-types
Still higher dimensions: filtered spaces

Tri-ads
Pushouts and cubical tricks

Prospects?

Origin of these ideas: van Kampen theorem for the fundamental groupoid on a set of base points:

van Kampen Theorem

Higher dimensions?

A homotopy double
groupoid
Commutative cubes

Some

 calculations of 2-typesStill higher dimensions: filtered spaces

Tri-ads
Pushouts and cubical tricks

Prospects?

Origin of these ideas: van Kampen theorem for the fundamental groupoid on a set of base points:

$$
\pi_{1}\left(W, W_{0}\right) \longrightarrow \pi_{1}\left(U, W_{0}\right)
$$

Pushout of groupoids if

Ronnie Brown

van Kampen

Theorem

Higher dimensions?

A homotopy double
groupoid
Commutative cubes

Some

 calculations of 2-typesStill higher dimensions: filtered spaces

Tri-ads
Pushouts and cubical tricks

Prospects?

Origin of these ideas: van Kampen theorem for the fundamental groupoid on a set of base points:

$$
\begin{gathered}
\pi_{1}\left(W, W_{0}\right) \longrightarrow \pi_{1}\left(U, W_{0}\right) \\
\downarrow \\
\pi_{1}\left(V, W_{0}\right) \longrightarrow \pi_{1}\left(X, W_{0}\right)
\end{gathered}
$$

Pushout of groupoids if

$$
X=\operatorname{Int} U \cup \operatorname{Int} V, W=U \cap V
$$

Ronnie Brown

van Kampen

Theorem

Higher
dimensions?
A homotopy
double
groupoid
Commutative cubes

Some

 calculations of 2-typesStill higher dimensions: filtered spaces

Tri-ads
Pushouts and cubical tricks

Prospects?

Origin of these ideas: van Kampen theorem for the fundamental groupoid on a set of base points:

$$
\begin{gathered}
\pi_{1}\left(W, W_{0}\right) \longrightarrow \pi_{1}\left(U, W_{0}\right) \\
\downarrow \\
\pi_{1}\left(V, W_{0}\right) \longrightarrow \pi_{1}\left(X, W_{0}\right)
\end{gathered}
$$

Pushout of groupoids if $X=\operatorname{Int} U \cup \operatorname{Int} V, W=U \cap V$
$W_{0} \subseteq W$ meets each path component of W

Ronnie Brown

van Kampen

Theorem

Higher
dimensions?
A homotopy
double
groupoid
Commutative cubes

Some
calculations of 2-types

Still higher dimensions: filtered spaces

Tri-ads
Pushouts and cubical tricks

Prospects?

Origin of these ideas: van Kampen theorem for the fundamental groupoid on a set of base points:

```
\pi
    \downarrow
\pi
```

Pushout of groupoids if $X=\operatorname{Int} U \cup \operatorname{Int} V, W=U \cap V$
$W_{0} \subseteq W$ meets each path component of W

This allows the complete computation of $\pi_{1}(X, x)$ as a small part of the larger structure $\pi_{1}\left(X, W_{0}\right)$.

Ronnie Brown

van Kampen

Theorem

Higher dimensions?

A homotopy

Origin of these ideas: van Kampen theorem for the fundamental groupoid on a set of base points:

Pushout of groupoids if $X=\operatorname{Int} U \cup \operatorname{Int} V, W=U \cap V$
$W_{0} \subseteq W$ meets each path component of W

This allows the complete computation of $\pi_{1}(X, x)$ as a small part of the larger structure $\pi_{1}\left(X, W_{0}\right)$.

Such computation involves choices and may not be algorithmic.

Ronnie Brown

van Kampen

Theorem

Higher

dimensions?
A homotopy double groupoid
Commutative cubes

Some

calculations of 2-types

Still higher dimensions: filtered spaces

Tri-ads

Pushouts and cubical tricks

Prospects?

Ronnie Brown

van Kampen

Theorem

Higher
dimensions?
A homotopy
double
groupoid
Commutative
cubes

Some

calculations of 2-types

Still higher
dimensions:
filtered spaces
Tri-ads
Pushouts and cubical tricks

Prospects?
This success is contrary to the general philosophy of homological algebra.

Ronnie Brown

van Kampen

Theorem

Higher
dimensions?
A homotopy
double
groupoid
Commutative
cubes

Some

Still higher

This success is contrary to the general philosophy of homological algebra.
Nonabelian cohomology yields only exact sequences.

van Kampen

 TheoremHigher dimensions?

A homotopy double
groupoid
Commutative
cubes
Some

Still higher dimensions:

This success is contrary to the general philosophy of homological algebra.
Nonabelian cohomology yields only exact sequences.
It seems the success is because groupoids have structure in dimensions 0 and 1

This success is contrary to the general philosophy of homological algebra.
Nonabelian cohomology yields only exact sequences. It seems the success is because groupoids have structure in dimensions 0 and 1 and so can model the geometry of the interactions of W_{0}, W, U, V

This success is contrary to the general philosophy of homological algebra.
Nonabelian cohomology yields only exact sequences. It seems the success is because groupoids have structure in dimensions 0 and 1 and so can model the geometry of the interactions of W_{0}, W, U, V allowing integration of homotopy 1-types.
Ronnie Brown
van KampenTheorem
Higher
dimensions?
A homotopydouble
groupoid
Commutative
cubes
Some
calculations of
2-types
Still higher
dimensions:
filtered spaces
Tri-ads
Pushouts and
cubical tricks
Prospects?

Alexander Grothendieck

......people are accustomed to work with fundamental groups and generators and relations for these and stick to it, even in contexts when this is wholly inadequate, namely when you get a clear description by generators and relations only when working simultaneously with a whole bunch of base-points chosen with care - or equivalently working in the algebraic context of groupoids, rather than groups. Choosing paths for connecting the base points natural to the situation to one among them, and reducing the groupoid to a single group, will then hopelessly destroy the structure and inner symmetries of the situation, and result in a mess of generators and relations no one dares to write down, because everyone feels they won't be of any use whatever, and just confuse the picture rather than clarify it. I have known such perplexity myself a long time ago, namely in Van Kampen type situations, whose only understandable formulation is in terms of (amalgamated sums of) groupoids.

Conclusion: All of 1-dimensional homotopy theory is better expressed in terms of groupoids rather than groups.

Ronnie Brown
van Kampen
Theorem
Higher
dimensions?
A homotopy
double
groupoid
Commutative
cubes
Some
calculations of
2-types
Still higher
dimensions:
filtered spaces
Tri-ads
Pushouts and
cubical tricks
Prospects?

Conclusion: All of 1-dimensional homotopy theory is better expressed in terms of groupoids rather than groups. van Kampen Theorem,

Ronnie Brown
van Kampen Theorem Higher dimensions?
A homotopy double
groupoid
Commutative cubes
Some
calculations of 2-types
Still higher dimensions: filtered spaces
Tri-ads
Pushouts and cubical tricks
Prospects?

Conclusion: All of 1-dimensional homotopy theory is better expressed in terms of groupoids rather than groups. van Kampen Theorem, covering spaces,

```
Ronnie Brown
van Kampen
Theorem
Higher
dimensions?
A homotopy
double
groupoid
Commutative
cubes
Some
calculations of
2-types
Still higher
dimensions:
filtered spaces
Tri-ads
Pushouts and
cubical tricks
Prospects?
```

Conclusion: All of 1-dimensional homotopy theory is better expressed in terms of groupoids rather than groups. van Kampen Theorem, covering spaces, orbit spaces and orbit groupoids.

van Kampen

 Theorem Higher dimensions?A homotopy double
groupoid
Commutative cubes

Some

calculations of 2-types

Still higher dimensions: filtered spaces

Tri-ads
Pushouts and cubical tricks

Prospects?
van Kampen Theorem

Higher dimensions?

A homotopy double
groupoid
Commutative cubes

Some

calculations of 2-types

Still higher dimensions: filtered spaces

Tri-ads
Pushouts and cubical tricks

Prospects?

Conclusion: All of 1-dimensional homotopy theory is better expressed in terms of groupoids rather than groups. van Kampen Theorem, covering spaces, orbit spaces and orbit groupoids.
R. Brown, 'Topology and Groupoids', 2006. (First edition, 1968)
van Kampen Theorem

Higher dimensions?

A homotopy double
groupoid
Commutative cubes

Some calculations of 2-types

Still higher dimensions: filtered spaces

Tri-ads
Pushouts and cubical tricks

Prospects?

Conclusion: All of 1-dimensional homotopy theory is better expressed in terms of groupoids rather than groups.
van Kampen Theorem,
covering spaces, orbit spaces and orbit groupoids.
R. Brown, 'Topology and Groupoids', 2006. (First edition, 1968)

Question: Can groupoids be useful in higher homotopy theory?
van Kampen Theorem

Higher dimensions?

A homotopy double
groupoid
Commutative cubes

Some calculations of 2-types

Still higher dimensions: filtered spaces

Tri-ads
Pushouts and cubical tricks

Prospects?

Conclusion: All of 1-dimensional homotopy theory is better expressed in terms of groupoids rather than groups.
van Kampen Theorem,
covering spaces, orbit spaces and orbit groupoids.
R. Brown, 'Topology and Groupoids', 2006. (First edition, 1968)

Question: Can groupoids be useful in higher homotopy theory?
Can the use of groupoids allow for nonabelian higher homotopy groupoids,

Still higher

Conclusion: All of 1-dimensional homotopy theory is better expressed in terms of groupoids rather than groups.
van Kampen Theorem,
covering spaces, orbit spaces and orbit groupoids.
R. Brown, 'Topology and Groupoids', 2006. (First edition, 1968)

Question: Can groupoids be useful in higher homotopy theory? Can the use of groupoids allow for nonabelian higher homotopy groupoids, thus achieving the aims of the workers in topology of the early 20th century to find higher dimensional nonabelian versions of the fundamental group?
van Kampen Theorem

Higher dimensions?

A homotopy double
groupoid
Commutative cubes

Some

Still higher
dimensions:

Conclusion: All of 1-dimensional homotopy theory is better expressed in terms of groupoids rather than groups.
van Kampen Theorem,
covering spaces, orbit spaces and orbit groupoids.
R. Brown, 'Topology and Groupoids', 2006. (First edition, 1968)

Question: Can groupoids be useful in higher homotopy theory? Can the use of groupoids allow for nonabelian higher homotopy groupoids, thus achieving the aims of the workers in topology of the early 20th century to find higher dimensional nonabelian versions of the fundamental group?
People have been overawed by the Eckmann-Hilton argument to suppose higher homotopy theory has to be abelian, and anything else is a mirage.
van Kampen Theorem

Higher dimensions?

A homotopy double groupoid

Commutative cubes

Some

Still higher dimensions: filtered spaces

Tri-ads
Pushouts and cubical tricks

Prospects?

Conclusion: All of 1-dimensional homotopy theory is better expressed in terms of groupoids rather than groups.
van Kampen Theorem,
covering spaces,
orbit spaces and orbit groupoids.
R. Brown, 'Topology and Groupoids', 2006. (First edition, 1968)

Question: Can groupoids be useful in higher homotopy theory? Can the use of groupoids allow for nonabelian higher homotopy groupoids, thus achieving the aims of the workers in topology of the early 20th century to find higher dimensional nonabelian versions of the fundamental group?
People have been overawed by the Eckmann-Hilton argument to suppose higher homotopy theory has to be abelian, and anything else is a mirage.
That argument does not apply to partial compositions.
Ronnie Brown
van Kampen
Theorem
Higher
dimensions?
A homotopy
double
groupoid
Commutative
cubes
Some
calculations of
2-types
Still higher
dimensions:
filtered spaces
Tri-ads
Pushouts and
cubical tricks
Prospects?

Can one do analogous things in higher dimensions using homotopically defined objects with structure in dimensions $0,1, \ldots, n$?

```
Ronnie Brown
van Kampen
Theorem
Higher
dimensions?
A homotopy
double
groupoid
Commutative
cubes
Some
calculations of
2-types
Still higher
dimensions:
filtered spaces
Tri-ads
Pushouts and
cubical tricks
Prospects?
```

Can one do analogous things in higher dimensions using homotopically defined objects with structure in dimensions $0,1, \ldots, n$?
Can there be homotopy invariants with universal properties in dimensions >1 ?
Ronnie Brown
van KampenTheorem
Higher
dimensions?
A homotopy
double
groupoid
Commutative
cubes
Some
calculations of
2-types
Still higher
dimensions:
filtered spaces
Tri-ads
Pushouts and
cubical tricks
Prospects?

Can one do analogous things in higher dimensions using homotopically defined objects with structure in dimensions $0,1, \ldots, n$?
Can there be homotopy invariants with universal properties in dimensions >1 ?
Clue: Whitehead's Theorem (1941-1948):
$\pi_{2}\left(A \cup\left\{e_{\lambda}^{2}\right\}, A, x\right) \rightarrow \pi_{1}(A, x)$
Ronnie Brown
van Kampen Theorem

Higher
dimensions?
A homotopy
double
groupoid
Commutative cubes

Some
calculations of 2-types

Still higher dimensions: filtered spaces

Tri-ads
Pushouts and cubical tricks

Prospects?

Can one do analogous things in higher dimensions using homotopically defined objects with structure in dimensions $0,1, \ldots, n$?
Can there be homotopy invariants with universal properties in dimensions >1?
Clue: Whitehead's Theorem (1941-1948):
second relative homotopy group of A union 2-cells is a
Ronnie Brown
van Kampen Theorem

Higher
dimensions?
A homotopy
double
groupoid
Commutative cubes

Some calculations of 2-types

Still higher dimensions: filtered spaces

Tri-ads
Pushouts and cubical tricks

Prospects?

Can one do analogous things in higher dimensions using homotopically defined objects with structure in dimensions $0,1, \ldots, n$?
Can there be homotopy invariants with universal properties in dimensions >1?
Clue: Whitehead's Theorem (1941-1948):
second relative homotopy
$\pi_{2}\left(A \cup\left\{e_{\lambda}^{2}\right\}, A, x\right) \rightarrow \pi_{1}(A, x)$ group of A union 2-cells is a free crossed $\pi_{1}(A, x)$-module.
van Kampen Theorem

Higher
dimensions?
A homotopy double
groupoid
Commutative cubes

Some calculations of 2-types

Still higher dimensions: filtered spaces

Tri-ads
Pushouts and cubical tricks

Prospects?

Can one do analogous things in higher dimensions using homotopically defined objects with structure in dimensions $0,1, \ldots, n$?
Can there be homotopy invariants with universal properties in dimensions >1 ?
Clue: Whitehead's Theorem
(1941-1948):
second relative homotopy
$\pi_{2}\left(A \cup\left\{e_{\lambda}^{2}\right\}, A, x\right) \rightarrow \pi_{1}(A, x)$ group of A union 2-cells is a free crossed $\pi_{1}(A, x)$-module.
This freeness looks like a universal property in dimension 2 !

What are the 2nd relative homotopy groups

$$
\pi_{2}(X, A, x) \rightarrow \pi_{1}(A, x) ?
$$

Ronnie Brown
van Kampen
Theorem
Higher
dimensions?
A homotopy
double
groupoid
Commutative
cubes
Some
calculations of
2-types
Still higher
dimensions:
filtered spaces
Tri-ads
Pushouts and
cubical tricks
Prospects?

What are the 2nd relative homotopy groups

$$
\pi_{2}(X, A, x) \rightarrow \pi_{1}(A, x) ?
$$

Ronnie Brown
van Kampen
Theorem
Higherdimensions?
A homotopy
double
groupoid
Commutative
cubes
Some
calculations of
2-types
Still higher
dimensions:
filtered spaces
Tri-ads
Pushouts and
cubical tricks
Prospects?

What are the 2nd relative homotopy groups

$$
\pi_{2}(X, A, x) \rightarrow \pi_{1}(A, x) ?
$$

Ronnie Brown
van Kampen
Theorem
Higherdimensions?
A homotopy
double
groupoid
Commutative
cubes

Some

where thick lines show constant paths.
Compositions are as follows:

What are the 2nd relative homotopy groups

$$
\pi_{2}(X, A, x) \rightarrow \pi_{1}(A, x) ?
$$

Ronnie Brown

van Kampen Theorem

Higher
dimensions?
A homotopy
double
groupoid
Commutative
cubes

where thick lines show constant paths.
Compositions are as follows:

Still higher dimensions:
filtered spaces
Tri-ads
Pushouts and
cubical tricks
Prospects?

What are the 2nd relative homotopy groups

$$
\pi_{2}(X, A, x) \rightarrow \pi_{1}(A, x) ?
$$

Ronnie Brown

van Kampen Theorem

Higher
dimensions?
A homotopy
double
groupoid
Commutative
cubes
Some
calculations of
2-types
Still higher dimensions:
filtered spaces
Tri-ads
Pushouts and cubical tricks

What are the 2nd relative homotopy groups

$$
\pi_{2}(X, A, x) \rightarrow \pi_{1}(A, x) ?
$$

Ronnie Brown

van Kampen Theorem

Higher
dimensions?
A homotopy

where thick lines show constant paths.
Compositions are as follows:

Whole construction involves choices, which is unaesthetic.

Some

Still higher dimensions: filtered spaces

Tri-ads
Pushouts and cubical tricks

Prospects?
Ronnie Brown
van Kampen
Theorem
Higher
dimensions?
A homotopydouble
groupoid
Commutative
cubes
Some
calculations of
2-types
Still higher
dimensions:
filtered spaces
Tri-ads
Pushouts and
cubical tricks
Prospects?

Consider the figures:

Ronnie Brown

van Kampen
Theorem
Higher
dimensions?
A homotopy double
groupoid
Commutative
cubes
Some
calculations of 2-types

Still higher
dimensions:
filtered spaces
Tri-ads
Pushouts and
cubical tricks
Prospects?

Consider the figures:

Consider the figures:

Ronnie Brown
van Kampen
Theorem
Higher
dimensions?
A homotopy
double

Commutative
cubes

Some

calculations of 2-types

Still higher dimensions: filtered spaces

Tri-ads
Pushouts and cubical tricks

Prospects?

Consider the figures:

Ronnie Brown

van Kampen
Theorem
Higher dimensions?

A homotopy double
groupoid
Commutative
cubes

Some

calculations of 2-types

Still higher dimensions: filtered spaces

Tri-ads
Pushouts and cubical tricks

Prospects?

From left to right gives subdivision.

Consider the figures:

Ronnie Brown
van Kampen
Theorem
Higher
dimensions?
A homotopy

double
groupoid
Commutative
cubes
Some
calculations of
2-types
Still higher
dimensions:
filtered spaces
Tri-ads
Pushouts and
cubical tricks
Prospects?

From left to right gives subdivision. From right to left should give composition.

Consider the figures:

Ronnie Brown
van Kampen
Theorem
Higher
dimensions?
A homotopy

double
groupoid
Commutative
cubes
Some
calculations of
2-types
Still higher
dimensions:
filtered spaces
Tri-ads
Pushouts and
cubical tricks
Prospects?

From left to right gives subdivision.
From right to left should give composition. What we need for local-to-global problems is:

Consider the figures:

Ronnie Brown
van Kampen
Theorem
Higherdimensions?
A homotopy

double
groupoid
Commutative
cubes
Some
calculations of
2-types
Still higher
dimensions:
filtered spaces
Tri-ads
Pushouts and
cubical tricks
Prospects?

From left to right gives subdivision.
From right to left should give composition. What we need for local-to-global problems is: Algebraic inverses to subdivision.

Consider the figures:

Ronnie Brown

van Kampen Theorem

Higher dimensions?

A homotopy double
groupoid
Commutative cubes

Some
calculations of
2-types
Still higher
dimensions:
filtered spaces
Tri-ads
Pushouts and cubical tricks

Prospects?

From left to right gives subdivision.
From right to left should give composition.
What we need for local-to-global problems is:
Algebraic inverses to subdivision.
We know how to cut things up, but how to control algebraically putting them together again?

Brown-Higgins $1974 \rho_{2}(X, A, C)$:

Ronnie Brown

van Kampen
Theorem
Higher
dimensions?
A homotopy
double
groupoid
Commutative
cubes
Some
calculations of 2-types

Still higher
dimensions:
filtered spaces
Tri-ads
Pushouts and
cubical tricks
Prospects?

Brown-Higgins $1974 \rho_{2}(X, A, C)$:
homotopy classes rel vertices of maps $[0,1]^{2} \rightarrow X$ with edges to A and vertices to C

Ronnie Brown
van Kampen
Theorem
Higher
dimensions?
A homotopy
double
groupoid
Commutative
cubes
Some
calculations of 2-types
Still higher dimensions: filtered spaces
Tri-ads
Pushouts and cubical tricks
Prospects?

Brown-Higgins $1974 \rho_{2}(X, A, C)$:
homotopy classes rel vertices of maps $[0,1]^{2} \rightarrow X$ with edges to A and vertices to C

Ronnie Brown

van Kampen
Theorem
Higher
dimensions?
A homotopy
double
groupoid
Commutative cubes

Some

calculations of 2-types
Still higher dimensions: filtered spaces

Tri-ads
Pushouts and cubical tricks
Prospects?

Brown-Higgins $1974 \rho_{2}(X, A, C)$:
homotopy classes rel vertices of maps $[0,1]^{2} \rightarrow X$ with edges to A and vertices to C

Ronnie Brown

van Kampen
Theorem
Higher
dimensions?
A homotopy
double
groupoid
Commutative cubes

Some
calculations of 2-types

Still higher dimensions: filtered spaces

Tri-ads
Pushouts and cubical tricks

Prospects?

$$
\rho_{2}(X, A, C) \equiv \xi \pi_{1}(A, C) \Longrightarrow C
$$

Brown-Higgins $1974 \rho_{2}(X, A, C)$:
homotopy classes rel vertices of maps $[0,1]^{2} \rightarrow X$ with edges to A and vertices to C

Ronnie Brown

van Kampen
Theorem
Higher
dimensions?
A homotopy
double
groupoid
Commutative cubes

Some
calculations of 2-types

Still higher dimensions: filtered spaces

Tri-ads
Pushouts and cubical tricks

Prospects?

$$
\rho_{2}(X, A, C) \equiv \xi \pi_{1}(A, C) \Longrightarrow C
$$

Childish idea:

Brown-Higgins $1974 \rho_{2}(X, A, C)$:
homotopy classes rel vertices of maps $[0,1]^{2} \rightarrow X$ with edges to A and vertices to C

$$
\rho_{2}(X, A, C) \equiv \xi \pi_{1}(A, C) \Longrightarrow C
$$

Childish idea: glue two squares if, for example, the right side of one is the same as the left side of the other.

Brown-Higgins $1974 \rho_{2}(X, A, C)$:
homotopy classes rel vertices of maps $[0,1]^{2} \rightarrow X$ with edges to A and vertices to C

$$
\rho_{2}(X, A, C) \equiv \xi \pi_{1}(A, C) \Longrightarrow C
$$

Childish idea: glue two squares if, for example, the right side of one is the same as the left side of the other. Thus these are partial algebraic compositions defined under geometric conditions.

Brown-Higgins $1974 \rho_{2}(X, A, C)$:
homotopy classes rel vertices of maps $[0,1]^{2} \rightarrow X$ with edges to A and vertices to C

$$
\rho_{2}(X, A, C) \equiv \xi \pi_{1}(A, C) \Longrightarrow C
$$

Childish idea: glue two squares if, for example, the right side of one is the same as the left side of the other. Thus these are partial algebraic compositions defined under geometric conditions.
That is my definition of higher dimensional algebra.

We would like to make a horizontal composition of classes:

$$
\langle\langle\alpha\rangle\rangle+2\langle\langle\beta\rangle\rangle
$$

Ronnie Brown
van KampenTheorem
Higher
dimensions?
A homotopy
double
groupoid
Commutative
cubes
Some
calculations of
2-types
Still higher
dimensions:
filtered spaces
Tri-ads
Pushouts and
cubical tricks
Prospects?

We would like to make a horizontal composition of classes:

$$
\langle\langle\alpha\rangle\rangle+2\langle\langle\beta\rangle\rangle
$$

Ronnie Brown
van Kampen
Theorem
Higher
dimensions?
A homotopy
double
groupoid
Commutative
cubes
Some
calculations of
2-types
Still higher
dimensions:
filtered spaces
Tri-ads
Pushouts and
cubical tricks
Prospects?

We would like to make a horizontal composition of classes:

$$
\langle\langle\alpha\rangle\rangle+2\langle\beta \beta\rangle
$$

Ronnie Brown
van Kampen
Theorem
Higher
dimensions?
A homotopy
double
groupoid
Commutative
cubes
Some
calculations of
2-types
Still higher
dimensions:
filtered spaces
Tri-ads
Pushouts and
cubical tricks
Prospects?

But the condition for the composition $+_{2}$ to be defined on classes in ρ_{2} gives at least one homotopy h in A.

We would like to make a horizontal composition of classes:

$$
\langle\langle\alpha\rangle\rangle+2\langle\beta \beta\rangle
$$

But the condition for the composition $+_{2}$ to be defined on classes in ρ_{2} gives at least one homotopy h in A. So we can form

We would like to make a horizontal composition of classes:

$$
\langle\langle\alpha\rangle\rangle+2\langle\langle\beta\rangle\rangle
$$

where thick lines show constant paths,

We would like to make a horizontal composition of classes:

$$
\langle\langle\alpha\rangle\rangle+2\langle\langle\beta\rangle\rangle
$$

where thick lines show constant paths, and define

We would like to make a horizontal composition of classes:

$$
\langle\langle\alpha\rangle\rangle+2\langle\langle\beta\rangle\rangle
$$

where thick lines show constant paths, and define

$$
\langle\langle\alpha\rangle\rangle+2\langle\langle\beta\rangle\rangle=\left\langle\left\langle\alpha+{ }_{2} h++_{2} \beta\right\rangle\right\rangle
$$

To show +2 well defined,
van Kampen
Theorem
Higher
dimensions?
A homotopy
double
groupoid
Commutative
cubes
Some
calculations of 2-types

Still higher
dimensions:
filtered spaces
Tri-ads
Pushouts and
cubical tricks
Prospects?

To show +2 well defined, let $\phi: \alpha \equiv \alpha^{\prime}$

Ronnie Brown

van Kampen
Theorem
Higher
dimensions?
A homotopy
double
groupoid
Commutative
cubes
Some
calculations of 2-types

Still higher dimensions: filtered spaces

Tri-ads
Pushouts and cubical tricks

To show +2 well defined, let $\phi: \alpha \equiv \alpha^{\prime}$ and $\psi: \beta \equiv \beta^{\prime}$,

Ronnie Brown

van Kampen
Theorem
Higher
dimensions?
A homotopy
double
groupoid
Commutative
cubes

Some

calculations of 2-types

Still higher dimensions: filtered spaces

Tri-ads
Pushouts and cubical tricks

Prospects?

To show +2 well defined, let $\phi: \alpha \equiv \alpha^{\prime}$ and $\psi: \beta \equiv \beta^{\prime}$, and let $\alpha^{\prime}+2 h^{\prime}+2 \beta^{\prime}$ be defined.
Ronnie Brown
van KampenTheorem
Higher
dimensions?
A homotopy
double
groupoid
Commutative
cubes
Some
calculations of
2-types
Still higher
dimensions:
filtered spaces
Tri-ads
Pushouts and
cubical tricks
Prospects?

To show +2 well defined, let $\phi: \alpha \equiv \alpha^{\prime}$ and $\psi: \beta \equiv \beta^{\prime}$, and let $\alpha^{\prime}+2 h^{\prime}+2 \beta^{\prime}$ be defined. We get a picture in which dash-lines denote constant paths.

Ronnie Brown
van Kampen
Theorem
Higher
dimensions?
A homotopy
double
groupoid
Commutative
cubes
Some
calculations of 2-types
Still higher dimensions: filtered spaces
Tri-ads
Pushouts and cubical tricks
Prospects?

To show +2 well defined, let $\phi: \alpha \equiv \alpha^{\prime}$ and $\psi: \beta \equiv \beta^{\prime}$, and let $\alpha^{\prime}+2 h^{\prime}+2 \beta^{\prime}$ be defined. We get a picture in which dash-lines denote constant paths.
Ronnie Brownvan KampenTheorem
Higher
dimensions?
A homotopy
double
groupoid
Commutative
cubes
Some
calculations of
2-types
Still higher
dimensions:
filtered spaces
Tri-ads
Pushouts and
cubical tricks
Prospects?

To show +2 well defined, let $\phi: \alpha \equiv \alpha^{\prime}$ and $\psi: \beta \equiv \beta^{\prime}$, and let $\alpha^{\prime}+2 h^{\prime}+2 \beta^{\prime}$ be defined. We get a picture in which dash-lines denote constant paths.
Ronnie Brown
van Kampen
Theorem
Higherdimensions?
A homotopydouble
groupoid
Commutative
cubes
Some
calculations of
2-types
Still higher
dimensions:
filtered spaces
Tri-ads
Pushouts and
cubical tricks

Can you see why the middle 'hole' can be filled appropriately?

To show +2 well defined, let $\phi: \alpha \equiv \alpha^{\prime}$ and $\psi: \beta \equiv \beta^{\prime}$, and let $\alpha^{\prime}+2 h^{\prime}+2 \beta^{\prime}$ be defined. We get a picture in which dash-lines denote constant paths.
Ronnie Brown
van Kampen
Theorem
Higherdimensions?
A homotopydoublegroupoid
Commutativecubes
Somecalculations of
2-types
Still higher
dimensions:
filtered spaces
Tri-ads

Can you see why the middle 'hole' can be filled appropriately? Thus $\rho(X, A, C)$ has in dimension 2

To show +2 well defined, let $\phi: \alpha \equiv \alpha^{\prime}$ and $\psi: \beta \equiv \beta^{\prime}$, and let $\alpha^{\prime}+2 h^{\prime}+2 \beta^{\prime}$ be defined. We get a picture in which dash-lines denote constant paths.

Can you see why the middle 'hole' can be filled appropriately? Thus $\rho(X, A, C)$ has in dimension 2 compositions in directions 1,2

To show +2 well defined, let $\phi: \alpha \equiv \alpha^{\prime}$ and $\psi: \beta \equiv \beta^{\prime}$, and let $\alpha^{\prime}+{ }_{2} h^{\prime}+2 \beta^{\prime}$ be defined. We get a picture in which dash-lines denote constant paths.

Can you see why the middle 'hole' can be filled appropriately? Thus $\rho(X, A, C)$ has in dimension 2 compositions in directions 1,2 satisfying the interchange law

To show +2 well defined, let $\phi: \alpha \equiv \alpha^{\prime}$ and $\psi: \beta \equiv \beta^{\prime}$, and let $\alpha^{\prime}+2 h^{\prime}+2 \beta^{\prime}$ be defined. We get a picture in which dash-lines denote constant paths.

Can you see why the middle 'hole' can be filled appropriately? Thus $\rho(X, A, C)$ has in dimension 2 compositions in directions 1,2 satisfying the interchange law and is a double groupoid,

To show +2 well defined, let $\phi: \alpha \equiv \alpha^{\prime}$ and $\psi: \beta \equiv \beta^{\prime}$, and let $\alpha^{\prime}+2 h^{\prime}+2 \beta^{\prime}$ be defined. We get a picture in which dash-lines denote constant paths.

Can you see why the middle 'hole' can be filled appropriately? Thus $\rho(X, A, C)$ has in dimension 2 compositions in directions 1,2 satisfying the interchange law and is a double groupoid, containing as a substructure $\pi_{2}(X, A, x), x \in C$ and $\pi_{1}(A, C)$.
Ronnie Brown
van Kampen
Theorem
Higherdimensions?
A homotopy
double
groupoid
Commutative
cubes
Some
calculations of
2-types
Still higher
dimensions:
filtered spaces
Tri-ads
Pushouts and
cubical tricks
Prospects?

In dimension 1, we still need the 2-dimensional notion of commutative square:

```
Ronnie Brown
van Kampen
Theorem
Higher
dimensions?
A homotopy
double
groupoid
Commutative
cubes
Some
calculations of
2-types
Still higher
dimensions:
filtered spaces
Tri-ads
Pushouts and
cubical tricks
Prospects?
```

In dimension 1, we still need the 2-dimensional notion of commutative square:

```
Ronnie Brown
van Kampen
Theorem
Higher
dimensions?
A homotopy
double
groupoid
Commutative
cubes
Some
calculations of
2-types
Still higher
dimensions:
filtered spaces
Tri-ads
Pushouts and
cubical tricks
Prospects?
```


$$
a b=c d \quad a=c d b^{-1}
$$

In dimension 1, we still need the 2-dimensional notion of commutative square:

Easy result: any composition of commutative squares is commutative.

In dimension 1, we still need the 2-dimensional notion of commutative square:

Ronnie Brown

van Kampen
Theorem
Higher
dimensions?
A homotopy double groupoid

Commutative
cubes
Some
calculations of
2-types
Still higher dimensions: filtered spaces

Tri-ads
Pushouts and cubical tricks

Prospects?

Easy result: any composition of commutative squares is commutative.
In ordinary equations:

$$
a b=c d, e f=b g \text { implies } a e f=a b g=c d g .
$$

In dimension 1, we still need the 2-dimensional notion of commutative square:

Ronnie Brown

van Kampen Theorem

Higher
dimensions?
A homotopy double

groupoid

Commutative
cubes
Some
calculations of
2-types
Still higher dimensions: filtered spaces

Tri-ads
Pushouts and cubical tricks

Prospects?

Easy result: any composition of commutative squares is commutative.
In ordinary equations:

$$
a b=c d, e f=b g \text { implies } a e f=a b g=c d g .
$$

The commutative squares in a category form a double category!

In dimension 1, we still need the 2-dimensional notion of commutative square:

Ronnie Brown

van Kampen Theorem

Higher
dimensions?
A homotopy double

groupoid

Commutative
cubes
Some

Still higher dimensions: filtered spaces

Tri-ads
Pushouts and cubical tricks

Prospects?

Easy result: any composition of commutative squares is commutative.
In ordinary equations:

$$
a b=c d, e f=b g \text { implies } a e f=a b g=c d g .
$$

The commutative squares in a category form a double category! Compare Stokes' theorem! Local Stokes implies global Stokes.
Ronnie Brown
van Kampen
Theorem
Higherdimensions?
A homotopy
double
groupoid
Commutative
cubes
Some
calculations of
2-types
Still higher
dimensions:
filtered spaces
Tri-ads
Pushouts and
cubical tricks
Prospects?

What is a commutative cube?

Ronnie Brown

van Kampen
Theorem
Higher
dimensions?
A homotopy double
groupoid
Commutative
cubes
Some
calculations of 2-types

Still higher
dimensions:
filtered spaces
Tri-ads
Pushouts and
cubical tricks
Prospects?

What is a commutative cube?

Ronnie Brown

van Kampen
Theorem
Higher
dimensions?
A homotopy double groupoid

Commutative
cubes

Some

calculations of 2-types

Still higher dimensions: filtered spaces

Tri-ads

Pushouts and cubical tricks

Prospects?

What is a commutative cube?

Ronnie Brown

van Kampen
Theorem
Higher
dimensions?
A homotopy double groupoid

Commutative cubes

Some

calculations of 2-types

Still higher dimensions: filtered spaces

Tri-ads
Pushouts and cubical tricks

Prospects?

We want the faces to commute!

We might say the top face is the composite of the other faces:

Ronnie Brown
van KampenTheorem
Higher
dimensions?
A homotopy
double
groupoid
Commutative
cubes
Some
calculations of
2-types
Still higher
dimensions:
filtered spaces
Tri-ads
Pushouts and
cubical tricks
Prospects?

We might say the top face is the composite of the other faces: so fold them flat to give:

```
Ronnie Brown
van Kampen
Theorem
Higher
dimensions?
A homotopy
double
groupoid
Commutative
cubes
Some
calculations of
2-types
Still higher
dimensions:
filtered spaces
Tri-ads
Pushouts and
cubical tricks
Prospects?
```

We might say the top face is the composite of the other faces: so fold them flat to give:

Ronnie Brown

van Kampen
Theorem
Higher
dimensions?
A homotopy double
groupoid
Commutative
cubes
Some
calculations of 2-types

Still higher dimensions: filtered spaces

Tri-ads
Pushouts and cubical tricks

Prospects?

We might say the top face is the composite of the other faces: so fold them flat to give:

Ronnie Brown

van Kampen
Theorem
Higher
dimensions?
A homotopy
double
groupoid
Commutative
cubes

Some

calculations of 2-types

Still higher dimensions: filtered spaces

Tri-ads
Pushouts and cubical tricks

Prospects?

which makes no sense!

We might say the top face is the composite of the other faces: so fold them flat to give:

Ronnie Brown

van Kampen
Theorem
Higher
dimensions?
A homotopy double
groupoid
Commutative
cubes

Some

calculations of 2-types
Still higher dimensions: filtered spaces

Tri-ads
Pushouts and cubical tricks

Prospects?

which makes no sense! Need fillers:

We might say the top face is the composite of the other faces: so fold them flat to give:

Ronnie Brown

van Kampen
Theorem
Higher
dimensions?
A homotopy double
groupoid
Commutative
cubes

Some

calculations of 2-types

Still higher dimensions: filtered spaces

Tri-ads
Pushouts and cubical tricks

Prospects?

which makes no sense! Need fillers:

To resolve this, we need some special squares called thin: First the easy ones:
Ronnie Brown
van KampenTheorem
Higherdimensions?
A homotopy
double
groupoid
Commutative
cubes
Some
calculations of
2-types
Still higher
dimensions:
filtered spaces
Tri-ads
Pushouts and
cubical tricks
Prospects?

To resolve this, we need some special squares called thin: First the easy ones:

Ronnie Brown

van Kampen
Theorem
Higher
dimensions?
A homotopy double
groupoid
Commutative
cubes
Some
calculations of 2-types

Still higher dimensions: filtered spaces

Tri-ads
Pushouts and cubical tricks
Prospects?

To resolve this, we need some special squares called thin: First the easy ones:

Ronnie Brown

van Kampen
Theorem
Higher
dimensions?
A homotopy double
groupoid
Commutative
cubes
Some
calculations of 2-types

Still higher dimensions: filtered spaces

Tri-ads
Pushouts and cubical tricks

Prospects?

$$
\begin{array}{ccc}
\left(\begin{array}{ccc}
1 & 1 & 1 \\
\hline & 1 & 1
\end{array}\right) & \left(\begin{array}{ccc}
a & 1 & a \\
& 1 &
\end{array}\right) & \left(\begin{array}{ccc}
1 & b & 1 \\
& b &
\end{array}\right) \\
\square & \text { 二 or } \varepsilon_{2} a & \mid \text { or } \varepsilon_{1} b
\end{array}
$$

To resolve this, we need some special squares called thin:
First the easy ones:

Ronnie Brown

van Kampen
Theorem
Higher
dimensions?
A homotopy double
groupoid
Commutative
cubes

Some

calculations of 2-types

Still higher dimensions: filtered spaces

Tri-ads
Pushouts and cubical tricks

To resolve this, we need some special squares called thin:
First the easy ones:

Ronnie Brown

van Kampen Theorem

Higher
dimensions?
A homotopy double
groupoid
Commutative
cubes
Some
calculations of 2-types

Still higher dimensions: filtered spaces

Tri-ads
Pushouts and cubical tricks

$$
\begin{array}{ccc}
\left(\begin{array}{lll}
1 & 1 & 1
\end{array}\right) & \left(\begin{array}{ccc}
a & 1 & a \\
& 1 & 1
\end{array}\right) & \left(\begin{array}{ccc}
1 & b & 1 \\
& b
\end{array}\right) \\
\square & \text { 二 or } \varepsilon_{2} a & \mid \text { or } \varepsilon_{1} b \\
\text { laws } & {\left[\begin{array}{ll}
a & -
\end{array}\right]=a} & {\left[\begin{array}{c}
b \\
\mid
\end{array}\right]=b}
\end{array}
$$

Then we need some new ones:

To resolve this, we need some special squares called thin:
First the easy ones:

Ronnie Brown

van Kampen
Theorem
Higher
dimensions?
A homotopy double
groupoid
Commutative
cubes
Some
calculations of 2-types

Still higher dimensions: filtered spaces

Tri-ads
Pushouts and cubical tricks

$$
\begin{array}{ccc}
\left(\begin{array}{lll}
1 & 1 & 1
\end{array}\right) & \left(\begin{array}{ccc}
a & 1 & a \\
& 1 &
\end{array}\right) & \left(\begin{array}{lll}
1 & b & 1 \\
& b &)
\end{array}\right. \\
\square & \text { 二 or } \varepsilon_{2} a & \text { । । or } \varepsilon_{1} b \\
\text { laws } & {\left[\begin{array}{cc}
a & -
\end{array}\right]=a} & {\left[\begin{array}{c}
b \\
\mid
\end{array}\right]=b}
\end{array}
$$

Then we need some new ones:

$$
\left(\begin{array}{lll}
a & a & 1 \\
& 1 & 1
\end{array}\right)
$$

$$
\left(\begin{array}{lll}
1 & 1 & a
\end{array}\right)
$$

These are the connections

To resolve this, we need some special squares called thin:
First the easy ones:

Ronnie Brown

van Kampen Theorem

Higher
dimensions?
A homotopy double
groupoid
Commutative
cubes
Some
calculations of 2-types

Still higher dimensions:
filtered spaces
Tri-ads
Pushouts and cubical tricks

$$
\begin{array}{ccc}
\left(\begin{array}{ccc}
1 & 1 & 1
\end{array}\right) & \left(\begin{array}{ccc}
a & 1 & a \\
1 & 1 &
\end{array}\right) & \left(\begin{array}{ccc}
1 & b & 1 \\
& b &
\end{array}\right) \\
\square & \text { 二 or } \varepsilon_{2} a & \left|\mid \text { or } \varepsilon_{1} b\right. \\
\text { laws } & {\left[\begin{array}{ll}
a & -
\end{array}\right]=a} & {\left[\begin{array}{c}
b \\
1
\end{array}\right]=b}
\end{array}
$$

Then we need some new ones:

$$
\left(\begin{array}{lll}
a & a & 1 \\
& 1 & 1
\end{array}\right)
$$

$$
\left(\begin{array}{lll}
1 & 1 & a
\end{array}\right)
$$

These are the connections
Ronnie Brown
van Kampen
Theorem
Higherdimensions?
A homotopy
double
groupoid
Commutative
cubes
Some
calculations of
2-types
Still higher
dimensions:
filtered spaces
Tri-ads
Pushouts and
cubical tricks
Prospects?

What are the laws on connections?

Ronnie Brown

van Kampen
Theorem
Higher
dimensions?
A homotopy double
groupoid
Commutative
cubes
Some
calculations of 2-types

Still higher dimensions:
filtered spaces
Tri-ads
Pushouts and
cubical tricks
Prospects?

What are the laws on connections?

$$
[\rfloor]=11 \quad[\Gamma]=\approx \quad \text { (cancellation) }
$$

van Kampen
Theorem
Higher
dimensions?
A homotopy double
groupoid
Commutative
cubes
Some
calculations of 2-types

Still higher dimensions: filtered spaces

Tri-ads
Pushouts and cubical tricks

Prospects?

What are the laws on connections?

```
Ronnie Brown
```

van Kampen
Theorem
Higher
dimensions?
A homotopy double groupoid

Commutative cubes

Some

calculations of 2-types

Still higher dimensions: filtered spaces

Tri-ads
Pushouts and cubical tricks
Prospects?

$$
\left.\left[\begin{array}{ll}
\Gamma & \bar{Z} \\
1 & \Gamma
\end{array}\right]=\Gamma \quad\left[\begin{array}{ll}
\beth & 1 \\
\overline{-} & -
\end{array}\right]=\right\lrcorner
$$

(cancellation)

$$
\left[\begin{array}{l}
{[]}
\end{array}\right]=
$$

(transport)

What are the laws on connections?

$$
\begin{aligned}
& {[\lrcorner]=11 \quad[\ulcorner]==} \\
& \text { (cancellation) } \\
& {\left[\begin{array}{ll}
\Gamma & \bar{二} \\
1 & 1 \\
\Gamma
\end{array}\right]=\Gamma \quad\left[\begin{array}{ll}
\perp & 1 \\
\hline- & 1
\end{array}\right]=-} \\
& \text { (transport) }
\end{aligned}
$$

These are equations on turning left or right, and so

What are the laws on connections?

$$
\begin{aligned}
& {\left[\lrcorner]=11 \quad\left[\begin{array}{l}
{[\ulcorner]==} \\
\hline
\end{array}\right.\right.} \\
& \text { (cancellation) }
\end{aligned}
$$

$$
\begin{aligned}
& \text { (transport) }
\end{aligned}
$$

These are equations on turning left or right, and so are a part of 2-dimensional algebra.

What are the laws on connections?

$$
\begin{aligned}
& {\left[\lrcorner]=11 \quad\left[\begin{array}{l}
{[\square]}
\end{array}\right]==\right.} \\
& \text { (cancellation) } \\
& {\left[\begin{array}{ll}
\Gamma & \text { 二 } \\
\text { I } & \text { Г }
\end{array}\right]=\Gamma \quad\left[\begin{array}{ll}
\perp & 1 \\
\vdots & -
\end{array}\right]=\downarrow} \\
& \text { (transport) }
\end{aligned}
$$

These are equations on turning left or right, and so are a part of 2-dimensional algebra.
The term transport law and the term connections came from laws on path connections in differential geometry.

Still higher dimensions: filtered spaces

Tri-ads
Pushouts and cubical tricks

Prospects?

What are the laws on connections?

$$
\begin{aligned}
& {\left[\lrcorner]=11 \quad\left[\begin{array}{l}
{[\square]}
\end{array}\right]==\right.} \\
& \text { (cancellation) } \\
& {\left[\begin{array}{ll}
\Gamma & \bar{二} \\
I & I \\
\Gamma
\end{array}\right]=\Gamma \quad\left[\begin{array}{cc}
\perp & 1 \\
\hline- & \perp
\end{array}\right]=\perp} \\
& \text { (transport) }
\end{aligned}
$$

These are equations on turning left or right, and so are a part of 2-dimensional algebra.
The term transport law and the term connections came from laws on path connections in differential geometry. It is a good exercise to prove that any composition of commutative cubes is commutative.

One needs extra structure of connections, or thin structure: double groupoids (with
connection) \simeq

```
Ronnie Brown
van Kampen
Theorem
Higher
dimensions?
A homotopy
double
groupoid
Commutative
cubes
Some
calculations of
2-types
Still higher
dimensions:
filtered spaces
Tri-ads
Pushouts and
cubical tricks
Prospects?
```

One needs extra structure of connections, or thin structure: double groupoids (with connection)

\simeq crossed modules over groupoids

Ronnie Brown
van Kampen
Theorem
Higher
dimensions?
A homotopy
double
groupoid
Commutative
cubes
Some
calculations of
2-types
Still higher
dimensions:
filtered spaces
Tri-ads
Pushouts and
cubical tricks
Prospects?

One needs extra structure of connections, or thin structure: double groupoids (with connection)
\simeq crossed modules over groupoids
Ronnie Brown
van Kampen
Theorem
Higher
dimensions?
A homotopy
double
groupoid
Commutative
cubes
Some
calculations of
2-types
Still higher
dimensions:
filtered spaces
Tri-ads
Pushouts and
cubical tricks
Prospects?

$\rho(X, A, C)$ as double \simeq groupoid

One needs extra structure of connections, or thin structure:
double groupoids (with connection)
\simeq crossed modules over groupoids
Ronnie Brown
van Kampen
Theorem
Higher
dimensions?
A homotopy
double
groupoid
Commutative
cubes
Some
calculations of
2-types
Still higher
dimensions:
filtered spaces
Tri-ads
Pushouts and
cubical tricks
Prospects?

One needs extra structure of connections, or thin structure:
double groupoids (with connection)

$$
\begin{array}{r}
\underset{\text { groupoid }}{ }(X, A, C) \text { as double }
\end{array} \simeq \pi_{2}(X, A, C) \rightarrow \pi_{1}(A, C)
$$

van Kampen theorem for \simeq the double groupoid

$$
\rho(X, A, C)
$$

One needs extra structure of connections, or thin structure:
double groupoids (with connection)

$$
\begin{array}{r}
\underset{\text { groupoid }}{\rho(X, A, C)} \text { as double }
\end{array} \simeq \pi_{2}(X, A, C) \rightarrow \pi_{1}(A, C)
$$

van Kampen theorem for \simeq van Kampen theorem for the double groupoid

$\rho(X, A, C)$

\simeq crossed modules over groupoids

One needs extra structure of connections, or thin structure:
double groupoids (with connection)

$$
\begin{array}{r}
\underset{\text { groupoid }}{ }(X, A, C) \text { as double }
\end{array} \simeq \pi_{2}(X, A, C) \rightarrow \pi_{1}(A, C)
$$

van Kampen theorem for \simeq van Kampen theorem for the double groupoid the crossed module over $\rho(X, A, C) \quad$ groupoid $\pi_{2}(X, A, C)$
So you can calculate some nonabelian crossed modules,

One needs extra structure of connections, or thin structure:
double groupoids (with connection)

$$
\begin{array}{r}
\underset{\text { groupoid }}{\rho(X, A, C)} \text { as double }
\end{array} \simeq \pi_{2}(X, A, C) \rightarrow \pi_{1}(A, C)
$$

van Kampen theorem for \simeq van Kampen theorem for the double groupoid the crossed module over

$$
\rho(X, A, C)
$$

\simeq crossed modules over groupoids

One needs extra structure of connections, or thin structure:
double groupoids (with connection)
\simeq crossed modules over groupoids

$$
\begin{aligned}
\rho(X, A, C) \text { as double } \\
\text { groupoid }
\end{aligned} \quad \simeq \pi_{2}(X, A, C) \rightarrow \pi_{1}(A, C)
$$

So you can calculate some nonabelian crossed modules, i.e. some homotopy 2-types!

Calculation of the corresponding $\pi_{2}(X, x)$ may be tricky!

Computer calculations of the induced crossed module $\delta: \iota_{*}(P) \rightarrow S_{4}$ representing the 2-type of the mapping cone Γ of $B \iota: B P \rightarrow B S_{4}$ for various subgroups P of S_{4}, and of the kernel $\pi_{2}(\delta) \cong \pi_{2}(\Gamma)$ of δ.

Ronnie Brown
van Kampen
Theorem
Higher
dimensions?
A homotopy
double
groupoid
Commutative cubes
\section*{Some}
calculations of
2-types
Still higher dimensions: filtered spaces
Tri-ads
Pushouts and cubical tricks

Computer calculations of the induced crossed module

 $\delta: \iota_{*}(P) \rightarrow S_{4}$ representing the 2-type of the mapping cone Γ of $B \iota: B P \rightarrow B S_{4}$ for various subgroups P of S_{4}, and of the kernel $\pi_{2}(\delta) \cong \pi_{2}(\Gamma)$ of δ.| P | $\iota_{*} P$ | $\pi_{2}(\delta)$ |
| :---: | :---: | :---: |
| C_{2} | $G L(2,3)$ | C_{2} |
| C_{3} | $C_{3} S L(2,3)$ | C_{6} |
| S_{3} | $G L(2,3)$ | C_{2} |
| C_{2}^{\prime} | $C_{2}^{3} H_{8}^{+}$ | $C_{2}^{3} C_{4}$ |
| C_{2}^{2} | $S_{4} C_{2}$ | C_{2} |
| C_{4} | $S L(2,3) \rtimes C_{4}$ | C_{4} |
| D_{8} | $S_{4} C_{2}$ | C_{2} |

Computer calculations of the induced crossed module

 $\delta: \iota_{*}(P) \rightarrow S_{4}$ representing the 2-type of the mapping cone Γ of $B \iota: B P \rightarrow B S_{4}$ for various subgroups P of S_{4}, and of the kernel $\pi_{2}(\delta) \cong \pi_{2}(\Gamma)$ of δ.| P | $\iota_{*} P$ | $\pi_{2}(\delta)$ |
| :---: | :---: | :---: |
| C_{2} | $G L(2,3)$ | C_{2} |
| C_{3} | $C_{3} S L(2,3)$ | C_{6} |
| S_{3} | $G L(2,3)$ | C_{2} |
| C_{2}^{\prime} | $C_{2}^{3} H_{8}^{+}$ | $C_{2}^{3} C_{4}$ |
| C_{2}^{2} | $S_{4} C_{2}$ | C_{2} |
| C_{4} | $S L(2,3) \rtimes C_{4}$ | C_{4} |
| D_{8} | $S_{4} C_{2}$ | C_{2} |

Here $C_{2}=\langle(1,2)\rangle, C_{2}^{\prime}=\langle(1,2)(3,4)\rangle, C_{2}^{2}=\langle(1,2),(3,4)\rangle$;

Computer calculations of the induced crossed module $\delta: \iota_{*}(P) \rightarrow S_{4}$ representing the 2-type of the mapping cone Γ of $B \iota: B P \rightarrow B S_{4}$ for various subgroups P of S_{4}, and of the kernel $\pi_{2}(\delta) \cong \pi_{2}(\Gamma)$ of δ.

P	$\iota_{*} P$	$\pi_{2}(\delta)$
C_{2}	$G L(2,3)$	C_{2}
C_{3}	$C_{3} S L(2,3)$	C_{6}
S_{3}	$G L(2,3)$	C_{2}
C_{2}^{\prime}	$C_{2}^{3} H_{8}^{+}$	$C_{2}^{3} C_{4}$
C_{2}^{2}	$S_{4} C_{2}$	C_{2}
C_{4}	$S L(2,3) \rtimes C_{4}$	C_{4}
D_{8}	$S_{4} C_{2}$	C_{2}

Here $C_{2}=\langle(1,2)\rangle, C_{2}^{\prime}=\langle(1,2)(3,4)\rangle, C_{2}^{2}=\langle(1,2),(3,4)\rangle$; $S L(2,3), G L(2,3)$ and $G L(3,2)$ are linear groups of orders 24,48 and 168 respectively;

Computer calculations of the induced crossed module $\delta: \iota_{*}(P) \rightarrow S_{4}$ representing the 2-type of the mapping cone Γ of $B \iota: B P \rightarrow B S_{4}$ for various subgroups P of S_{4}, and of the kernel $\pi_{2}(\delta) \cong \pi_{2}(\Gamma)$ of δ.

P	$\iota_{*} P$	$\pi_{2}(\delta)$
C_{2}	$G L(2,3)$	C_{2}
C_{3}	$C_{3} S L(2,3)$	C_{6}
S_{3}	$G L(2,3)$	C_{2}
C_{2}^{\prime}	$C_{2}^{3} H_{8}^{+}$	$C_{2}^{3} C_{4}$
C_{2}^{2}	$S_{4} C_{2}$	C_{2}
C_{4}	$S L(2,3) \rtimes C_{4}$	C_{4}
D_{8}	$S_{4} C_{2}$	C_{2}

Here $C_{2}=\langle(1,2)\rangle, C_{2}^{\prime}=\langle(1,2)(3,4)\rangle, C_{2}^{2}=\langle(1,2),(3,4)\rangle$; $S L(2,3), G L(2,3)$ and $G L(3,2)$ are linear groups of orders 24, 48 and 168 respectively;
H_{n} is the holomorph of C_{n}, and H_{n}^{+}is its positive subgroup in degree n.

Computer calculations of the induced crossed module $\delta: \iota_{*}(P) \rightarrow S_{4}$ representing the 2-type of the mapping cone Γ of $B \iota: B P \rightarrow B S_{4}$ for various subgroups P of S_{4}, and of the kernel $\pi_{2}(\delta) \cong \pi_{2}(\Gamma)$ of δ.

P	$\iota_{*} P$	$\pi_{2}(\delta)$
C_{2}	$G L(2,3)$	C_{2}
C_{3}	$C_{3} S L(2,3)$	C_{6}
S_{3}	$G L(2,3)$	C_{2}
C_{2}^{\prime}	$C_{2}^{3} H_{8}^{+}$	$C_{2}^{3} C_{4}$
C_{2}^{2}	$S_{4} C_{2}$	C_{2}
C_{4}	$S L(2,3) \rtimes C_{4}$	C_{4}
D_{8}	$S_{4} C_{2}$	C_{2}

Here $C_{2}=\langle(1,2)\rangle, C_{2}^{\prime}=\langle(1,2)(3,4)\rangle, C_{2}^{2}=\langle(1,2),(3,4)\rangle$; $S L(2,3), G L(2,3)$ and $G L(3,2)$ are linear groups of orders 24, 48 and 168 respectively;
H_{n} is the holomorph of C_{n}, and H_{n}^{+}is its positive subgroup in degree n.
π_{1}, π_{2} give only a pale shadow of the 2-type,

Computer calculations of the induced crossed module $\delta: \iota_{*}(P) \rightarrow S_{4}$ representing the 2-type of the mapping cone Γ of $B \iota: B P \rightarrow B S_{4}$ for various subgroups P of S_{4}, and of the kernel $\pi_{2}(\delta) \cong \pi_{2}(\Gamma)$ of δ.

P	$\iota_{*} P$	$\pi_{2}(\delta)$
C_{2}	$G L(2,3)$	C_{2}
C_{3}	$C_{3} S L(2,3)$	C_{6}
S_{3}	$G L(2,3)$	C_{2}
C_{2}^{\prime}	$C_{2}^{3} H_{8}^{+}$	$C_{2}^{3} C_{4}$
C_{2}^{2}	$S_{4} C_{2}$	C_{2}
C_{4}	$S L(2,3) \rtimes C_{4}$	C_{4}
D_{8}	$S_{4} C_{2}$	C_{2}

Here $C_{2}=\langle(1,2)\rangle, C_{2}^{\prime}=\langle(1,2)(3,4)\rangle, C_{2}^{2}=\langle(1,2),(3,4)\rangle$; $S L(2,3), G L(2,3)$ and $G L(3,2)$ are linear groups of orders 24, 48 and 168 respectively;
H_{n} is the holomorph of C_{n}, and H_{n}^{+}is its positive subgroup in degree n.
π_{1}, π_{2} give only a pale shadow of the 2-type, which is essentially nonabelian, but can be calculated in some cases

Ronnie Brown
van Kampen
Contrast with determining the k-invariant in $H^{3}\left(\pi_{1}(X), \pi_{2}(X)\right)$.

Higher
dimensions?
A homotopy
double
groupoid
Commutative cubes

Some

calculations of 2-types

Still higher dimensions: filtered spaces

Tri-ads
Pushouts and cubical tricks

Prospects?
Ronnie Brown
van Kampen
Theorem
Higher
dimensions?
A homotopy
double
groupoid
Commutative
cubes
Some
calculations of
2-types
Still higher
dimensions:
filtered spaces
Tri-ads
Pushouts and
cubical tricks
Prospects?

Contrast with determining the k-invariant in $H^{3}\left(\pi_{1}(X), \pi_{2}(X)\right)$. It is almost impossible to determine the k-invariant of a union.
van Kampen Theorem

Higher
dimensions?
A homotopy double
groupoid
Commutative cubes

Some

calculations of
2-types
Still higher dimensions: filtered spaces

Tri-ads
Pushouts and cubical tricks

Prospects?

Contrast with determining the k-invariant in $H^{3}\left(\pi_{1}(X), \pi_{2}(X)\right)$. It is almost impossible to determine the k-invariant of a union. It is (under some conditions) possible to determine the crossed module of a union, as a pushout of crossed modules!

Some

Contrast with determining the k-invariant in $H^{3}\left(\pi_{1}(X), \pi_{2}(X)\right)$. It is almost impossible to determine the k-invariant of a union. It is (under some conditions) possible to determine the crossed module of a union, as a pushout of crossed modules! But this is not in the current 'canon' of algebraic/geometric topology.

Higher dimensions?

Ronnie Brown
van Kampen
TheoremHigherdimensions?
A homotopydouble
groupoid
Commutative
cubes
Some
calculations of
2-types
Still higher
dimensions:
filtered spaces
Tri-ads
Pushouts and
cubical tricks
Prospects?

Higher dimensions?
Category FTop of filtered spaces:

$$
X_{*}: X_{0} \subseteq X_{1} \subseteq \cdots \subseteq X_{n} \subseteq \cdots \subseteq X_{\infty}=X
$$

Ronnie Brown

van Kampen
Theorem
Higher
dimensions?
A homotopy
double
groupoid
Commutative
cubes
Some
calculations of 2-types

Still higher dimensions:
filtered spaces
Tri-ads
Pushouts and cubical tricks

Prospects?

Higher dimensions?
Category FTop of filtered spaces:

$$
X_{*}: X_{0} \subseteq X_{1} \subseteq \cdots \subseteq X_{n} \subseteq \cdots \subseteq X_{\infty}=X
$$

Ronnie Brown

Example: n-cube I_{*}^{n}
van Kampen Theorem

Higher
dimensions?
A homotopy double
groupoid
Commutative cubes

Some

calculations of 2-types

Still higher dimensions: filtered spaces

Tri-ads

Pushouts and cubical tricks

Prospects?

Higher dimensions?
Category FTop of filtered spaces:

$$
X_{*}: X_{0} \subseteq X_{1} \subseteq \cdots \subseteq X_{n} \subseteq \cdots \subseteq X_{\infty}=X
$$

Ronnie Brown

van Kampen
Theorem
Higher
dimensions?
A homotopy double
groupoid
Commutative cubes

Some

calculations of 2-types

Still higher dimensions: filtered spaces

Tri-ads

Pushouts and cubical tricks

Prospects?

Example: n-cube I_{*}^{n} $\left(R X_{*}\right)_{n}=\mathrm{FTop}\left(I_{*}^{n}, X_{*}\right)$

Higher dimensions?
Category FTop of filtered spaces:

$$
X_{*}: X_{0} \subseteq X_{1} \subseteq \cdots \subseteq X_{n} \subseteq \cdots \subseteq X_{\infty}=X
$$

Ronnie Brown

van Kampen Theorem

Higher
dimensions?
A homotopy double
groupoid
Commutative cubes

Some

calculations of 2-types

Still higher dimensions: filtered spaces

Tri-ads

Pushouts and cubical tricks

Prospects?

Example: n-cube I_{*}^{n} $\left(R X_{*}\right)_{n}=\mathrm{FTop}\left(I_{*}^{n}, X_{*}\right)$
$R X_{*}=$ cubical set with connections and compositions

Higher dimensions?
Category FTop of filtered spaces:

$$
X_{*}: X_{0} \subseteq X_{1} \subseteq \cdots \subseteq X_{n} \subseteq \cdots \subseteq X_{\infty}=X
$$

Ronnie Brown

van Kampen Theorem

Higher
dimensions?
A homotopy double
groupoid
Commutative cubes

Some

calculations of 2-types

Still higher dimensions: filtered spaces

Tri-ads

Pushouts and cubical tricks

Prospects?

Example: n-cube I_{*}^{n} $\left(R X_{*}\right)_{n}=\mathrm{FTop}\left(I_{*}^{n}, X_{*}\right)$
$R X_{*}=$ cubical set with connections and compositions
$p: R X_{*} \rightarrow \rho X_{*}=\left(R X_{*}\right) / \equiv$

Higher dimensions?
Category FTop of filtered spaces:

$$
X_{*}: X_{0} \subseteq X_{1} \subseteq \cdots \subseteq X_{n} \subseteq \cdots \subseteq X_{\infty}=X
$$

Ronnie Brown

van Kampen
Theorem
Higher
dimensions?
A homotopy
double
groupoid
Commutative cubes

Some

calculations of 2-types

Still higher dimensions: filtered spaces

Tri-ads
Pushouts and cubical tricks

Prospects?

Example: n-cube I_{*}^{n} $\left(R X_{*}\right)_{n}=\mathrm{FTop}\left(I_{*}^{n}, X_{*}\right)$
$R X_{*}=$ cubical set with connections and compositions
$p: R X_{*} \rightarrow \rho X_{*}=\left(R X_{*}\right) / \equiv$
where \equiv is thin homotopy, i.e. homotopy through filtered maps rel vertices of I^{n}

Higher dimensions?
Category FTop of filtered spaces:

$$
X_{*}: X_{0} \subseteq X_{1} \subseteq \cdots \subseteq X_{n} \subseteq \cdots \subseteq X_{\infty}=X
$$

Ronnie Brown

van Kampen Theorem

Higher
dimensions?
A homotopy
double
groupoid
Commutative cubes

Some

calculations of 2-types

Still higher dimensions: filtered spaces

Tri-ads
Pushouts and cubical tricks

Example: n-cube I_{*}^{n} $\left(R X_{*}\right)_{n}=\mathrm{FTop}\left(I_{*}^{n}, X_{*}\right)$
$R X_{*}=$ cubical set with connections and compositions
$p: R X_{*} \rightarrow \rho X_{*}=\left(R X_{*}\right) / \equiv$
where \equiv is thin homotopy, i.e. homotopy through filtered maps rel vertices of I^{n}
Amazing facts:

Higher dimensions?

Category FTop of filtered spaces:

$$
X_{*}: X_{0} \subseteq X_{1} \subseteq \cdots \subseteq X_{n} \subseteq \cdots \subseteq X_{\infty}=X
$$

Example: n-cube I_{*}^{n} $\left(R X_{*}\right)_{n}=\mathrm{FTop}\left(I_{*}^{n}, X_{*}\right)$
$R X_{*}=$ cubical set with connections and compositions
$p: R X_{*} \rightarrow \rho X_{*}=\left(R X_{*}\right) / \equiv$
where \equiv is thin homotopy, i.e. homotopy through filtered maps rel vertices of I^{n}
Amazing facts:

1) The natural structure on $R X_{*}$ of cubical set with compositions and connections is inherited by ρX_{*}, the chief problem being the compositions,

Higher dimensions?
Category FTop of filtered spaces:

$$
X_{*}: X_{0} \subseteq X_{1} \subseteq \cdots \subseteq X_{n} \subseteq \cdots \subseteq X_{\infty}=X
$$

Example: n-cube I_{*}^{n} $\left(R X_{*}\right)_{n}=\mathrm{FTop}\left(I_{*}^{n}, X_{*}\right)$
$R X_{*}=$ cubical set with connections and compositions
$p: R X_{*} \rightarrow \rho X_{*}=\left(R X_{*}\right) / \equiv$
where \equiv is thin homotopy, i.e. homotopy through filtered maps rel vertices of I^{n}
Amazing facts:

1) The natural structure on $R X_{*}$ of cubical set with compositions and connections is inherited by ρX_{*}, the chief problem being the compositions, making ρX_{*} a strict ω-groupoid.

Higher dimensions?
Category FTop of filtered spaces:

$$
X_{*}: X_{0} \subseteq X_{1} \subseteq \cdots \subseteq X_{n} \subseteq \cdots \subseteq X_{\infty}=X
$$

Example: n-cube I_{*}^{n} $\left(R X_{*}\right)_{n}=\mathrm{FTop}\left(I_{*}^{n}, X_{*}\right)$
$R X_{*}=$ cubical set with connections and compositions
$p: R X_{*} \rightarrow \rho X_{*}=\left(R X_{*}\right) / \equiv$
where \equiv is thin homotopy, i.e. homotopy through filtered maps rel vertices of I^{n}
Amazing facts:

1) The natural structure on $R X_{*}$ of cubical set with compositions and connections is inherited by ρX_{*}, the chief problem being the compositions, making ρX_{*} a strict ω-groupoid.
2) $p: R X_{*} \rightarrow \rho X_{*}=\left(R X_{*}\right)$ is a Kan fibration of cubical sets.

Higher dimensions?
Category FTop of filtered spaces:

$$
X_{*}: X_{0} \subseteq X_{1} \subseteq \cdots \subseteq X_{n} \subseteq \cdots \subseteq X_{\infty}=X
$$

Ronnie Brown
van Kampen Theorem

Higher dimensions?

A homotopy double
groupoid
Commutative cubes

Some

Still higher
dimensions:
filtered spaces
Tri-ads
Pushouts and cubical tricks
Prospects?

Example: n-cube I_{*}^{n} $\left(R X_{*}\right)_{n}=\mathrm{FTop}\left(I_{*}^{n}, X_{*}\right)$
$R X_{*}=$ cubical set with connections and compositions
$p: R X_{*} \rightarrow \rho X_{*}=\left(R X_{*}\right) / \equiv$
where \equiv is thin homotopy, i.e. homotopy through filtered maps rel vertices of I^{n}
Amazing facts:

1) The natural structure on $R X_{*}$ of cubical set with compositions and connections is inherited by ρX_{*}, the chief problem being the compositions, making ρX_{*} a strict ω-groupoid.
2) $p: R X_{*} \rightarrow \rho X_{*}=\left(R X_{*}\right)$ is a Kan fibration of cubical sets.

The last fact gives the strong link between the lax structures on $R X_{*}$ and

Higher dimensions?
Category FTop of filtered spaces:

$$
X_{*}: X_{0} \subseteq X_{1} \subseteq \cdots \subseteq X_{n} \subseteq \cdots \subseteq X_{\infty}=X
$$

Ronnie Brown
van Kampen Theorem

Higher dimensions?

A homotopy double
groupoid
Commutative cubes

Some

Still higher
dimensions:
filtered spaces
Tri-ads
Pushouts and cubical tricks

Prospects?

Example: n-cube I_{*}^{n} $\left(R X_{*}\right)_{n}=\mathrm{FTop}\left(I_{*}^{n}, X_{*}\right)$
$R X_{*}=$ cubical set with connections and compositions
$p: R X_{*} \rightarrow \rho X_{*}=\left(R X_{*}\right) / \equiv$
where \equiv is thin homotopy, i.e. homotopy through filtered maps rel vertices of I^{n}
Amazing facts:

1) The natural structure on $R X_{*}$ of cubical set with compositions and connections is inherited by ρX_{*}, the chief problem being the compositions, making ρX_{*} a strict ω-groupoid.
2) $p: R X_{*} \rightarrow \rho X_{*}=\left(R X_{*}\right)$ is a Kan fibration of cubical sets.

The last fact gives the strong link between the lax structures on $R X_{*}$ and the strict structures on ρX_{*}.
Ronnie Brown
van Kampen
Theorem
Higher
dimensions?
A homotopydouble
groupoid
Commutative
cubes
Some
calculations of
2-types
Still higher
dimensions:
filtered spaces
Tri-ads
Pushouts and
cubical tricks
Prospects?
3) We also need the notion of ΠX_{*}, the fundamental crossed complex of a filtered space, defined using the well known properties of the fundamental groupoid

$$
\left(\Pi X_{*}\right)_{1}=\pi_{1}\left(X_{1}, X_{0}\right)
$$

van Kampen Theorem

Higher
dimensions?
A homotopy
the relative homotopy groups

$$
\left(\Pi X_{*}\right)_{n}(x)=\pi_{n}\left(X_{n}, X_{n-1}, x\right)
$$

for $n \geqslant 2, x \in X_{0}$, and the associated boundary maps and operations of $\left.\Pi X_{*}\right)_{1}$.
3) We also need the notion of ΠX_{*}, the fundamental crossed complex of a filtered space, defined using the well known properties of the fundamental groupoid

$$
\left(\Pi X_{*}\right)_{1}=\pi_{1}\left(X_{1}, X_{0}\right)
$$

van Kampen Theorem

Higher
dimensions?
A homotopy
the relative homotopy groups

$$
\left(\Pi X_{*}\right)_{n}(x)=\pi_{n}\left(X_{n}, X_{n-1}, x\right)
$$

for $n \geqslant 2, x \in X_{0}$, and the associated boundary maps and operations of $\left.\Pi X_{*}\right)_{1}$.
4) Strict cubical ω-groupoids with connections are equivalent to crossed complexes and ρX_{*} is in this equivalent to ΠX_{*}.
3) We also need the notion of ΠX_{*}, the fundamental crossed complex of a filtered space, defined using the well known properties of the fundamental groupoid

$$
\left(\Pi X_{*}\right)_{1}=\pi_{1}\left(X_{1}, X_{0}\right)
$$

van Kampen Theorem

Higher dimensions?

A homotopy double
groupoid
Commutative cubes

Some

Still higher
dimensions:
filtered spaces
Tri-ads
Pushouts and cubical tricks
Prospects?
the relative homotopy groups

$$
\left(\Pi X_{*}\right)_{n}(x)=\pi_{n}\left(X_{n}, X_{n-1}, x\right)
$$

for $n \geqslant 2, x \in X_{0}$, and the associated boundary maps and operations of $\left.\Pi X_{*}\right)_{1}$.
4) Strict cubical ω-groupoids with connections are equivalent to crossed complexes and ρX_{*} is in this equivalent to ΠX_{*}.
5) This gives a different foundation for algebraic topology whose full consequences have yet to be worked out. See 'Nonabelian algebraic topology: filtered spaces, crossed complexes, cubical homotopy groupoids' R. Brown, P.J. Higgins, R. Sivera, EMS Tracts in Mathematics 15, xxxiii+640 pages, (autumn 2010).
Ronnie Brown
van Kampen
Theorem
Higher
dimensions?
A homotopydouble
groupoid
Commutative
cubes
Some
calculations of
2-types
Still higher
dimensions:
filtered spaces
Tri-ads
Pushouts and
cubical tricks
Prospects?

We need both ρ and Π to develop theory and applications.

Ronnie Brown
van Kampen
Theorem
Higher
dimensions?A homotopy
double
groupoid
Commutative
cubes
Some
calculations of
2-types
Still higher
dimensions:
filtered spaces
Tri-ads
Pushouts and
cubical tricks
Prospects?

We need both ρ and Π to develop theory and applications. Sample application of the HHvKT for ρ and so for Π :

Ronnie Brown
van Kampen
Theorem
Higher
dimensions?
A homotopy
double
groupoid
Commutative
cubes
Some
calculations of
2-types
Still higher
dimensions:
filtered spaces
Tri-ads
Pushouts and
cubical tricks
Prospects?

We need both ρ and Π to develop theory and applications.
Sample application of the HHvKT for ρ and so for Π :
As a special case of calculating the excision map

$$
\pi_{n}(X, A, x) \rightarrow \pi_{n}(X \cup Y, Y, x)
$$

Some

when $A=X \cap Y$ we get:

Tri-ads
Pushouts and cubical tricks

Prospects?

We need both ρ and Π to develop theory and applications.
Sample application of the HHvKT for ρ and so for Π :
As a special case of calculating the excision map

$$
\pi_{n}(X, A, x) \rightarrow \pi_{n}(X \cup Y, Y, x)
$$

when $A=X \cap Y$ we get:
If (X, A) is pointed and $(n-1)$-connected, then the natural map

$$
\pi_{n}(X, A, x) \rightarrow \pi_{n}(X \cup C A, C A, x) \cong \pi_{n}(X \cup C A, x)
$$

is, algebraically, factoring by the action of $\pi_{1}(A, x)$.

We need both ρ and Π to develop theory and applications.
Sample application of the HHvKT for ρ and so for Π :
As a special case of calculating the excision map

$$
\pi_{n}(X, A, x) \rightarrow \pi_{n}(X \cup Y, Y, x)
$$

when $A=X \cap Y$ we get:
If (X, A) is pointed and $(n-1)$-connected, then the natural map

$$
\pi_{n}(X, A, x) \rightarrow \pi_{n}(X \cup C A, C A, x) \cong \pi_{n}(X \cup C A, x)
$$

is, algebraically, factoring by the action of $\pi_{1}(A, x)$.
i.e. Relative Hurewicz Theorem is a consequence of a HHvKT!

We need both ρ and Π to develop theory and applications.
Sample application of the HHvKT for ρ and so for Π :
As a special case of calculating the excision map

$$
\pi_{n}(X, A, x) \rightarrow \pi_{n}(X \cup Y, Y, x)
$$

when $A=X \cap Y$ we get:
If (X, A) is pointed and $(n-1)$-connected, then the natural map

$$
\pi_{n}(X, A, x) \rightarrow \pi_{n}(X \cup C A, C A, x) \cong \pi_{n}(X \cup C A, x)
$$

is, algebraically, factoring by the action of $\pi_{1}(A, x)$.
i.e. Relative Hurewicz Theorem is a consequence of a HHvKT!

The proof does not use homology or simplicial approximation.

We need both ρ and Π to develop theory and applications.
Sample application of the HHvKT for ρ and so for Π :
As a special case of calculating the excision map

$$
\pi_{n}(X, A, x) \rightarrow \pi_{n}(X \cup Y, Y, x)
$$

when $A=X \cap Y$ we get:
If (X, A) is pointed and $(n-1)$-connected, then the natural map

$$
\pi_{n}(X, A, x) \rightarrow \pi_{n}(X \cup C A, C A, x) \cong \pi_{n}(X \cup C A, x)
$$

is, algebraically, factoring by the action of $\pi_{1}(A, x)$.
i.e. Relative Hurewicz Theorem is a consequence of a HHvKT!

The proof does not use homology or simplicial approximation.
Can also handle the many-pointed case.

We need both ρ and Π to develop theory and applications. Sample application of the HHvKT for ρ and so for Π :
As a special case of calculating the excision map

$$
\pi_{n}(X, A, x) \rightarrow \pi_{n}(X \cup Y, Y, x)
$$

when $A=X \cap Y$ we get:
If (X, A) is pointed and $(n-1)$-connected, then the natural map

$$
\pi_{n}(X, A, x) \rightarrow \pi_{n}(X \cup C A, C A, x) \cong \pi_{n}(X \cup C A, x)
$$

is, algebraically, factoring by the action of $\pi_{1}(A, x)$.
i.e. Relative Hurewicz Theorem is a consequence of a HHvKT!

The proof does not use homology or simplicial approximation.
Can also handle the many-pointed case.
Other applications, e.g. homotopy classification of maps, make strong use of monoidal closed structures.

We need both ρ and Π to develop theory and applications. Sample application of the HHvKT for ρ and so for Π :
As a special case of calculating the excision map

$$
\pi_{n}(X, A, x) \rightarrow \pi_{n}(X \cup Y, Y, x)
$$

when $A=X \cap Y$ we get:
If (X, A) is pointed and $(n-1)$-connected, then the natural map

$$
\pi_{n}(X, A, x) \rightarrow \pi_{n}(X \cup C A, C A, x) \cong \pi_{n}(X \cup C A, x)
$$

is, algebraically, factoring by the action of $\pi_{1}(A, x)$.
i.e. Relative Hurewicz Theorem is a consequence of a HHvKT!

The proof does not use homology or simplicial approximation.
Can also handle the many-pointed case.
Other applications, e.g. homotopy classification of maps, make strong use of monoidal closed structures.
Philosophy: spaces often come with structure, or are replaced by spaces with structure, so it is reasonable to base algebraic topology on spaces with structure rather than just bare spaces,

Tri-ads :

Some

calculations of 2-types

Still higher dimensions:
filtered spaces
Tri-ads
Pushouts and cubical tricks

Tri-ads : $A, B \subseteq X$; set of base points $C \subseteq A \cap B$.

Ronnie Brown

van Kampen
Theorem
Higher
dimensions?
A homotopy
double
groupoid
Commutative
cubes
Some
calculations of 2-types

Still higher
dimensions:
filtered spaces
Tri-ads
Pushouts and
cubical tricks
Prospects?

Tri-ads : $A, B \subseteq X$; set of base points $C \subseteq A \cap B$. Consider the set $\Phi_{2}(X ; A, B ; C)$ of maps $I^{2} \rightarrow X$

Ronnie Brown
van Kampen
Theorem
Higher
dimensions?
A homotopy
double
groupoid
Commutative
cubes
Some
calculations of 2-types
Still higher dimensions: filtered spaces
\section*{Tri-ads}

Tri-ads : $A, B \subseteq X$; set of base points $C \subseteq A \cap B$. Consider the set $\Phi_{2}(X ; A, B ; C)$ of maps $I^{2} \rightarrow X$

Ronnie Brown
van Kampen
Theorem
Higher
dimensions?
A homotopy
double
groupoid
Commutative
cubes
Some
calculations of
2-types
Still higher
dimensions:
filtered spaces
Tri-ads
Pushouts and
cubical tricks
Prospects?

Tri-ads : $A, B \subseteq X$; set of base points $C \subseteq A \cap B$. Consider the set $\Phi_{2}(X ; A, B ; C)$ of maps $I^{2} \rightarrow X$

This forms a lax double category with the obvious compositions.

Commutative cubes

Some

calculations of 2-types

Still higher dimensions: filtered spaces

Tri-ads

Pushouts and cubical tricks

Prospects?

A homotopy
double
groupoid

Tri-ads : $A, B \subseteq X$; set of base points $C \subseteq A \cap B$. Consider the set $\Phi_{2}(X ; A, B ; C)$ of maps $I^{2} \rightarrow X$

This forms a lax double category with the obvious compositions.
Not generally inherited by homotopy classes rel vertices.

Tri-ads : $A, B \subseteq X$; set of base points $C \subseteq A \cap B$. Consider the set $\Phi_{2}(X ; A, B ; C)$ of maps $I^{2} \rightarrow X$

This forms a lax double category with the obvious compositions.
Not generally inherited by homotopy classes rel vertices. Amazing fact: these compositions are inherited by the fundamental group

Tri-ads : $A, B \subseteq X$; set of base points $C \subseteq A \cap B$. Consider the set $\Phi_{2}(X ; A, B ; C)$ of maps $I^{2} \rightarrow X$

This forms a lax double category with the obvious compositions.
Not generally inherited by homotopy classes rel vertices. Amazing fact: these compositions are inherited by the fundamental group

$$
\pi_{1}\left(\Phi_{2}(X ; A, B ; x), \bar{x}\right)
$$

Tri-ads : $A, B \subseteq X$; set of base points $C \subseteq A \cap B$. Consider the set $\Phi_{2}(X ; A, B ; C)$ of maps $I^{2} \rightarrow X$

This forms a lax double category with the obvious compositions.
Not generally inherited by homotopy classes rel vertices. Amazing fact: these compositions are inherited by the fundamental group

$$
\pi_{1}\left(\Phi_{2}(X ; A, B ; x), \bar{x}\right)
$$

making it a
strict double groupoid internal to groups, i.e. a cat ${ }^{2}$-group.

Ronnie Brown

This generalises to $(n+1)$-ads, or even n-cubes of spaces, and so to cat ${ }^{n}$-groups.
van Kampen
Theorem
Higher
dimensions?
A homotopy
double
groupoid
Commutative
cubes
Some
calculations of 2-types

Still higher dimensions: filtered spaces

Tri-ads

Pushouts and cubical tricks

Prospects?
Ronnie Brown
van Kampen
Theorem
Higher
dimensions?
A homotopy
double
groupoid
Commutative
cubes
Some
calculations of
2-types
Still higher
dimensions:
filtered spaces
Tri-ads
Pushouts and
cubical tricks
Prospects?

This generalises to $(n+1)$-ads, or even n-cubes of spaces, and so to cat ${ }^{n}$-groups.
There is a HHvKT for the fundamental cat ${ }^{n}$-group of an n-cube of spaces (Brown-Loday, 1987) allowing some new calculations
van Kampen Theorem
Higher
dimensions?
A homotopy double
groupoid
Commutative cubes

Some

calculations of 2-types
Still higher dimensions: filtered spaces

Tri-ads

Pushouts and cubical tricks
Prospects?

This generalises to $(n+1)$-ads, or even n-cubes of spaces, and so to cat ${ }^{n}$-groups.
There is a HHvKT for the fundamental cat ${ }^{n}$-group of an n-cube of spaces (Brown-Loday, 1987) allowing some new calculations and opening up new areas
Ronnie Brown
van Kampen
Theorem
Higher
dimensions?
A homotopy
double
groupoid
Commutative
cubes
Some
calculations of
2-types
Still higher dimensions: filtered spaces

Tri-ads

This generalises to $(n+1)$-ads, or even n-cubes of spaces, and so to cat ${ }^{n}$-groups.
There is a HHvKT for the fundamental cat ${ }^{n}$-group of an n-cube of spaces (Brown-Loday, 1987) allowing some new calculations and opening up new areas e.g. Higher Hopf formulae for homology.

Still higher

This generalises to $(n+1)$-ads, or even n-cubes of spaces, and so to cat ${ }^{n}$-groups.
There is a HHvKT for the fundamental cat ${ }^{n}$-group of an n-cube of spaces (Brown-Loday, 1987) allowing some new calculations and opening up new areas e.g. Higher Hopf formulae for homology. Recent paper by Ellis-Mikhailov.

Still higher

This generalises to $(n+1)$-ads, or even n-cubes of spaces, and so to cat ${ }^{n}$-groups.
There is a HHvKT for the fundamental cat ${ }^{n}$-group of an n-cube of spaces (Brown-Loday, 1987) allowing some new calculations and opening up new areas e.g. Higher Hopf formulae for homology. Recent paper by Ellis-Mikhailov.
Strict n-fold groupoids model weak homotopy n-types,

Still higher

This generalises to ($n+1$)-ads, or even n-cubes of spaces, and so to cat ${ }^{n}$-groups.
There is a HHvKT for the fundamental cat ${ }^{n}$-group of an n-cube of spaces (Brown-Loday, 1987) allowing some new calculations and opening up new areas e.g. Higher Hopf formulae for homology. Recent paper by Ellis-Mikhailov.
Strict n-fold groupoids model weak homotopy n-types, so there is still a lot to be said for studying the relations between strict and non strict structures.

Pushouts and Cubical Tricks

Ronnie Brown
van Kampen
TheoremHigherdimensions?
A homotopy
double
groupoid
Commutative
cubes
Some
calculations of
2-types
Still higher
dimensions:
filtered spaces
Tri-ads
Pushouts and
cubical tricks
Prospects?

Pushouts and Cubical Tricks

Suppose we have a homotopical functor Π of pairs which preserves certain pushouts of pairs of spaces- HHvKT.

Ronnie Brown
van Kampen
Theorem
Higher
dimensions?
A homotopy
double
groupoid
Commutative
cubes
Some
calculations of
2-types
Still higher
dimensions:
filtered spaces
Tri-ads
Pushouts and
cubical tricks
Prospects?

Pushouts and Cubical Tricks

Suppose we have a homotopical functor Π of pairs which preserves certain pushouts of pairs of spaces- HHvKT.
cubes
Some
calculations of
2-types
Still higher
dimensions:
filtered spaces
Tri-ads
Pushouts and
cubical tricks
a pushout square

Pushouts and Cubical Tricks

Suppose we have a homotopical functor Π of pairs which preserves certain pushouts of pairs of spaces- HHvKT.
cubes
Some
calculations of
2-types

Still higher dimensions: filtered spaces

Tri-ads

Pushouts and cubical tricks

Pushouts and Cubical Tricks

Suppose we have a homotopical functor Π of pairs which preserves certain pushouts of pairs of spaces- HHvKT.
van Kampen
Theorem
Higher dimensions?

A homotopy double groupoid

Commutative cubes

Some

calculations of
2-types
Still higher dimensions: filtered spaces

Tri-ads

Pushouts and cubical tricks

Prospects?

If $X=A \cup B, C=A \cap B$, we get
a pushout square

which can be turned into a pushout square of pairs

Pushouts and Cubical Tricks

Suppose we have a homotopical functor Π of pairs which preserves certain pushouts of pairs of spaces- HHvKT. If $X=A \cup B, C=A \cap B$, we get a pushout square

which can be turned into a pushout square of pairs

Pushouts and Cubical Tricks

Suppose we have a homotopical functor Π of pairs which preserves certain pushouts of pairs of spaces- HHvKT. If $X=A \cup B, C=A \cap B$, we get a pushout square

where ε is the excision map.
which can be turned into a pushout square of pairs

Pushouts and Cubical Tricks

Suppose we have a homotopical functor Π of pairs which preserves certain pushouts of pairs of spaces- HHvKT. If $X=A \cup B, C=A \cap B$, we get a pushout square

where ε is the excision map.
which can be turned into a pushout square of pairs excision theorem for Π.

Pushouts and Cubical Tricks

Suppose we have a homotopical functor Π of pairs which preserves certain pushouts of pairs of spaces- HHvKT. If $X=A \cup B, C=A \cap B$, we get
a pushout square

where ε is the excision map.
which can be turned into a pushout square of pairs

Applying Π gives an excision theorem for Π.

This is how we got a strong generalisation of Whitehead's theorem

Pushouts and Cubical Tricks

Suppose we have a homotopical functor Π of pairs which preserves certain pushouts of pairs of spaces- HHvKT. If $X=A \cup B, C=A \cap B$, we get
a pushout square

where ε is the excision map.
which can be turned into a pushout square of pairs

Applying Π gives an excision theorem for Π.

This is how we got a strong generalisation of Whitehead's theorem involving induced crossed modules

Pushouts and Cubical Tricks

Suppose we have a homotopical functor Π of pairs which preserves certain pushouts of pairs of spaces- HHvKT. If $X=A \cup B, C=A \cap B$, we get
a pushout square

$$
(C, C) \longrightarrow(A, A)
$$

where ε is the excision map.
Applying Π gives an excision theorem for Π.
which can be turned into a pushout square of pairs

This is how we got a strong generalisation of Whitehead's theorem involving induced crossed modules and so bifibrations of categories.

Pushouts and Cubical Tricks

Suppose we have a homotopical functor Π of pairs which preserves certain pushouts of pairs of spaces- HHvKT. If $X=A \cup B, C=A \cap B$, we get
a pushout square

$$
(C, C) \longrightarrow(A, A)
$$

where ε is the excision map.
Applying Π gives an excision theorem for Π.
which can be turned into a pushout square of pairs

This is how we got a strong generalisation of Whitehead's theorem involving induced crossed modules and so bifibrations of categories. Three papers by Brown-Wensley include some group computation to do the sums:

Pushouts and Cubical Tricks

Suppose we have a homotopical functor Π of pairs which preserves certain pushouts of pairs of spaces- HHvKT. If $X=A \cup B, C=A \cap B$, we get
a pushout square

$$
(C, C) \longrightarrow(A, A)
$$

where ε is the excision map.
Applying Π gives an excision theorem for Π.
which can be turned into a pushout square of pairs

This is how we got a strong generalisation of Whitehead's theorem involving induced crossed modules and so bifibrations of categories. Three papers by Brown-Wensley include some group computation to do the sums: we obtain specific groups and numbers.

Suppose now we have a homotopical functor Π of squares of spaces which preserves certain pushouts of squares of spacesHHvKT.
Consider again the first pushout square:
Ronnie Brownvan KampenTheorem
Higher
dimensions?
A homotopy
double
groupoid
Commutative
cubes
Some
calculations of
2-types
Still higher
dimensions:
filtered spaces
Tri-ads
Pushouts and
cubical tricks
Prospects?

Suppose now we have a homotopical functor Π of squares of spaces which preserves certain pushouts of squares of spacesHHvKT.
Consider again the first pushout square:
Ronnie Brown
van Kampen
Theorem
Higher
dimensions?
A homotopy
double
groupoid
Commutative
cubes
Some
calculations of
2-types
Still higher
dimensions:
filtered spaces
Tri-ads
Pushouts and
cubical tricks
Prospects?

Suppose now we have a homotopical functor Π of squares of spaces which preserves certain pushouts of squares of spacesHHvKT.
Consider again the first pushout square:
Ronnie Brown
van Kampen
Theorem
Higher
dimensions?
A homotopy
double
groupoid
Commutative
cubes
Some
calculations of
2-types
Still higher
dimensions:
filtered spaces
Tri-ads
Pushouts and
cubical tricks
Prospects?

this gives rise to a new square

Suppose now we have a homotopical functor Π of squares of spaces which preserves certain pushouts of squares of spacesHHvKT.
Consider again the first pushout square:

this gives rise to a new square

Suppose now we have a homotopical functor Π of squares of spaces which preserves certain pushouts of squares of spacesHHvKT.
Consider again the first pushout square:
this gives rise to a new square

which is a pushout of squares of spaces.

Suppose now we have a homotopical functor Π of squares of spaces which preserves certain pushouts of squares of spacesHHvKT.
Consider again the first pushout square:

this gives rise to a new square

By applying Π to this pushout,

which is a pushout of squares of spaces.

Still higher dimensions: filtered spaces

Suppose now we have a homotopical functor Π of squares of spaces which preserves certain pushouts of squares of spacesHHvKT.
Consider again the first pushout square:
this gives rise to a new square

Suppose now we have a homotopical functor Π of squares of spaces which preserves certain pushouts of squares of spacesHHvKT.
Consider again the first pushout square:
van Kampen Theorem

Higher dimensions?

A homotopy double
groupoid
Commutative cubes

Some

Still higher dimensions:

this gives rise to a new square
which is a
pushout of squares of spaces.
By applying Π to this pushout, we got the nonabelian tensor product of groups which act on each other.
Computes certain nonabelian triad homotopy groups $\pi_{3}(X ; A, B ; x)$

Suppose now we have a homotopical functor Π of squares of spaces which preserves certain pushouts of squares of spacesHHvKT.
Consider again the first pushout square:

Ronnie Brown
van Kampen Theorem

Higher
dimensions?
A homotopy double groupoid

Commutative cubes

Some

calculations of 2-types

Still higher dimensions: filtered spaces

Tri-ads
Pushouts and cubical tricks

Prospects?

If $X=X_{1} \cup X_{2} \cup X_{3}$ we get a pushout 3-cube $X_{* * *}$ of spaces.

```
Ronnie Brown
van Kampen
Theorem
Higher
dimensions?
A homotopy
double
groupoid
Commutative
cubes
Some
calculations of
2-types
Still higher
dimensions:
filtered spaces
Tri-ads
Pushouts and
cubical tricks
Prospects?
```

If $X=X_{1} \cup X_{2} \cup X_{3}$ we get a pushout 3-cube $X_{* * *}$ of spaces. Like to know what is excision in this situation.

Ronnie Brown

van Kampen Theorem

Higher
dimensions?
A homotopy double
groupoid
Commutative cubes

Some

calculations of 2-types

Still higher dimensions: filtered spaces

Tri-ads
Pushouts and cubical tricks

Prospects?

If $X=X_{1} \cup X_{2} \cup X_{3}$ we get a pushout 3-cube $X_{* * *}$ of spaces. Like to know what is excision in this situation. But $X_{* * *}$ can be regarded as a map $x: X_{-* *} \rightarrow X_{+* *}$ of squares, and so

```
Ronnie Brown
van Kampen
Theorem
Higher
dimensions?
A homotopy
double
groupoid
Commutative
cubes
Some
calculations of
2-types
Still higher
dimensions:
filtered spaces
Tri-ads
Pushouts and
cubical tricks
Prospects?
```

If $X=X_{1} \cup X_{2} \cup X_{3}$ we get a pushout 3-cube $X_{* * *}$ of spaces. Like to know what is excision in this situation. But $X_{* * *}$ can be regarded as a map $x: X_{-* *} \rightarrow X_{+* *}$ of squares, and so
as a map of squares of squares, and so
van Kampen Theorem

Higher
dimensions?
A homotopy
double
groupoid
Commutative cubes

Some

calculations of 2-types

Still higher dimensions: filtered spaces

Tri-ads
Pushouts and cubical tricks

If $X=X_{1} \cup X_{2} \cup X_{3}$ we get a pushout 3-cube $X_{* * *}$ of spaces. Like to know what is excision in this situation. But $X_{* * *}$ can be regarded as a map $x: X_{-* *} \rightarrow X_{+* *}$ of squares, and so
as a map of squares of squares, and so
as a 3 -cube of squares of spaces
van Kampen Theorem

Higher
dimensions?
A homotopy
double
groupoid
Commutative cubes

Some
calculations of 2-types

Still higher dimensions: filtered spaces

Tri-ads
Pushouts and cubical tricks

If $X=X_{1} \cup X_{2} \cup X_{3}$ we get a pushout 3-cube $X_{* * *}$ of spaces. Like to know what is excision in this situation. But $X_{* * *}$ can be regarded as a map $x: X_{-* *} \rightarrow X_{+* *}$ of squares, and so
as a map of squares of squares, and so
as a 3-cube of squares of spaces
which is a 3-pushout of squares of spaces!
Ronnie Brown
van Kampen
Theorem
Higher
dimensions?
A homotopydouble
groupoid
Commutative
cubes
Somecalculations of2-types
Still higher
dimensions
filtered spaces
Tri-ads
Pushouts and
cubical tricks
Prospects?

This is how we got a totally new triadic Hurewicz Theorem, essentially conjectured by Loday, and proved as a consequence of our van Kampen theorem for n-cubes of spaces.

Theorem
Suppose for the pointed triad $(X ; A, B)$ that $A, B, A \cap B$ are connected, $(A, A \cap B),(B, A \cap B)$ are 1-connected, and $(X ; A, B)$ is 2-connected. Then $X \cup C A \cup C B$ is 2-connected and the Hurewicz map

$$
\pi_{3}(X ; A, B) \rightarrow H_{3}(X ; A, B)
$$

factors the action of $\pi_{1}(A \cap B)$ and the generalised Whitehead product.
Ronnie Brown
van Kampen
Theorem
Higher
dimensions?
A homotopydouble
groupoid
Commutative
cubes
Somecalculations of2-types
Still higher
dimensions
filtered spaces
Tri-ads
Pushouts and
cubical tricks
Prospects?

Ronnie Brown

van Kampen
Theorem
Higher
dimensions?
A homotopy
double
groupoid
Commutative cubes

Some

calculations of 2-types

Still higher dimensions: filtered spaces

Tri-ads
Pushouts and cubical tricks

Prospects?

All these tricks extend easily to n-cubes of spaces, and the consequences have been largely unexplored, or merely scratched the surface.

Ronnie Brown

van Kampen Theorem

Higher dimensions?

A homotopy double
groupoid
Commutative cubes

Some

calculations of 2-types

Still higher dimensions: filtered spaces

Tri-ads
Pushouts and cubical tricks

All these tricks extend easily to n-cubes of spaces, and the consequences have been largely unexplored, or merely scratched the surface.
Example: prove the n-ad connectivity theorem and
Ronnie Brown
van Kampen
Theorem
Higher
dimensions?
A homotopy
double
groupoid
Commutative
cubes
Some
calculations of
2-types
Still higher
dimensions:
filtered spaces
Tri-ads
Pushouts and
cubical tricks
Prospects?

All these tricks extend easily to n-cubes of spaces, and the consequences have been largely unexplored, or merely scratched the surface.
Example: prove the n-ad connectivity theorem and determine in principle the critical group.

All these tricks extend easily to n-cubes of spaces, and the consequences have been largely unexplored, or merely scratched the surface.
Example: prove the n-ad connectivity theorem and determine in principle the critical group.
Conclusion: There are some advantages in using strict higher homotopical groupoids;

Still higher

A homotopy

Still higher dimensions:

Higher dimensional category theory contrasted with

Ronnie Brown
van Kampen
Theorem
Higherdimensions?A homotopy
double
groupoid
Commutative
cubes
Some
calculations of
2-types
Still higher
dimensions:
filtered spaces
Tri-ads
Pushouts and
cubical tricks
Prospects?

Higher dimensional category theory contrasted with higher dimensional group theory.

Ronnie Brown
van Kampen
Theorem
Higher
dimensions?
A homotopy
double
groupoid
Commutative
cubes
Some
calculations of
2-types
Still higher
dimensions:
filtered spaces
Tri-ads
Pushouts and
cubical tricks
Prospects?

Higher dimensional category theory contrasted with higher dimensional group theory.
 Nonabelian methods in homotopy theory.

Ronnie Brown
van Kampen
Theorem
Higher
dimensions?
A homotopy
double
groupoid
Commutative
cubes
Some
calculations of
2-types
Still higher
dimensions:
filtered spaces
Tri-ads
Pushouts and
cubical tricks
Prospects?

Higher dimensional category theory contrasted with higher dimensional group theory.
Nonabelian methods in homotopy theory. Alexander Grothendieck: Extract from Letter 02.05.1983
van Kampen
Theorem
Higher
dimensions?
A homotopy
double
groupoid
Commutative cubes

Some

Still higher dimensions: filtered spaces

Tri-ads
Pushouts and cubical tricks

Still higher

Higher dimensional category theory contrasted with higher dimensional group theory.
Nonabelian methods in homotopy theory.
Alexander Grothendieck: Extract from Letter 02.05.1983 Don't be amazed at my supposed efficiency in digging out the right kind of notions- I have just been following, rather let myself be pulled along, by that very strong thread (roughly: understand noncommutative cohomology of topoi!) which I kept trying to sell for about ten or twenty years now, without anyone ready to "buy" it, namely, to do the work. So finally I got mad and decided to work out at least an outline by myself. Yours very cordially,
Alexander
van Kampen Theorem

Higher dimensions?

A homotopy double
groupoid
Commutative cubes

Some

Still higher
dimensions: filtered spaces

Tri-ads
Pushouts and cubical tricks

Higher dimensional category theory contrasted with higher dimensional group theory.
Nonabelian methods in homotopy theory.
Alexander Grothendieck: Extract from Letter 02.05.1983
Don't be amazed at my supposed efficiency in digging out the right kind of notions- I have just been following, rather let myself be pulled along, by that very strong thread (roughly: understand noncommutative cohomology of topoi!) which I kept trying to sell for about ten or twenty years now, without anyone ready to "buy" it, namely, to do the work. So finally I got mad and decided to work out at least an outline by myself. Yours very cordially,
Alexander
Prospects: Colimit theorems in applications of higher groupoids to algebraic topology,
van Kampen Theorem

Higher dimensions?

Still higher

Higher dimensional category theory contrasted with higher dimensional group theory.
Nonabelian methods in homotopy theory.
Alexander Grothendieck: Extract from Letter 02.05.1983
Don't be amazed at my supposed efficiency in digging out the right kind of notions- I have just been following, rather let myself be pulled along, by that very strong thread (roughly: understand noncommutative cohomology of topoi!) which I kept trying to sell for about ten or twenty years now, without anyone ready to "buy" it, namely, to do the work. So finally I got mad and decided to work out at least an outline by myself. Yours very cordially,
Alexander
Prospects: Colimit theorems in applications of higher groupoids to algebraic topology,differential geometry, stacks,

Still higher

Higher dimensional category theory contrasted with higher dimensional group theory.
Nonabelian methods in homotopy theory.
Alexander Grothendieck: Extract from Letter 02.05.1983
Don't be amazed at my supposed efficiency in digging out the right kind of notions- I have just been following, rather let myself be pulled along, by that very strong thread (roughly: understand noncommutative cohomology of topoi!) which I kept trying to sell for about ten or twenty years now, without anyone ready to "buy" it, namely, to do the work. So finally I got mad and decided to work out at least an outline by myself. Yours very cordially,
Alexander
Prospects: Colimit theorems in applications of higher groupoids to algebraic topology,differential geometry, stacks, algebraic geometry,

Still higher

Higher dimensional category theory contrasted with higher dimensional group theory.
Nonabelian methods in homotopy theory.
Alexander Grothendieck: Extract from Letter 02.05.1983
Don't be amazed at my supposed efficiency in digging out the right kind of notions- I have just been following, rather let myself be pulled along, by that very strong thread (roughly: understand noncommutative cohomology of topoi!) which I kept trying to sell for about ten or twenty years now, without anyone ready to "buy" it, namely, to do the work. So finally I got mad and decided to work out at least an outline by myself. Yours very cordially,
Alexander
Prospects: Colimit theorems in applications of higher groupoids to algebraic topology, differential geometry, stacks, algebraic geometry, algebraic number theory.

Still higher

Higher dimensional category theory contrasted with higher dimensional group theory.
Nonabelian methods in homotopy theory.
Alexander Grothendieck: Extract from Letter 02.05.1983
Don't be amazed at my supposed efficiency in digging out the right kind of notions- I have just been following, rather let myself be pulled along, by that very strong thread (roughly: understand noncommutative cohomology of topoi!) which I kept trying to sell for about ten or twenty years now, without anyone ready to "buy" it, namely, to do the work. So finally I got mad and decided to work out at least an outline by myself. Yours very cordially,
Alexander
Prospects: Colimit theorems in applications of higher groupoids to algebraic topology,differential geometry, stacks, algebraic geometry, algebraic number theory.!!!???

