Motion, space, knots, and higher dimensional algebra
William J. Spencer Lecture
Kansas State University
Manhattan

Ronnie Brown

April 17, 2012

Space

Ronnie Brown

Connections

Rotations

Space

William J.
Spencer
Lecture
Kansas State
University
Manhattan
Ronnie Brown

Connections
Rotations

The mathematical notion of space is the way data and change of data is encoded;

Space

William J.
Spencer
Lecture
Kansas State
University
Manhattan
Ronnie Brown

Connections
Rotations

The mathematical notion of space is the way data and change of data is encoded; thus space encodes motion.

Dirac String Trick

Connections

Rotations

Dirac String Trick

Connections

Rotations

Dirac String Trick

William J.
Spencer
Lecture
Kansas State
University
Manhattan

We now show a strange feature of rotations in our 3-dimensional space.

Dirac String Trick

William J.
Spencer
Lecture
Kansas State
University
Manhattan
Ronnie Brown

Connections
Rotations

We now show a strange feature of rotations in our 3-dimensional space.

Explanation

Ronnie Brown

Connections
Rotations

Explanation

William J.
Spencer
Lecture
Kansas State
University
Manhattan

How can we explain this? To do this, we look at our modelling of the space of rotations, and in this, introduce our old friend, the Möbius Band.

Explanation

William J.
Spencer
Lecture
Kansas State
University
Manhattan

How can we explain this? To do this, we look at our modelling of the space of rotations, and in this, introduce our old friend, the Möbius Band.

For those who have not seen it before, it is a one sided band,

Explanation

William J.
Spencer
Lecture
Kansas State
University
Manhattan

How can we explain this? To do this, we look at our modelling of the space of rotations, and in this, introduce our old friend, the Möbius Band.

For those who have not seen it before, it is a one sided band, and has only one edge.

Explanation

William J.
Spencer
Lecture
Kansas State
University
Manhattan

How can we explain this? To do this, we look at our modelling of the space of rotations, and in this, introduce our old friend, the Möbius Band.

For those who have not seen it before, it is a one sided band, and has only one edge.
So in principle, you can sew a disc onto the Möbius Band!

Explanation

William J.
Spencer
Lecture
Kansas State
University Manhattan

How can we explain this? To do this, we look at our modelling of the space of rotations, and in this, introduce our old friend, the Möbius Band.

For those who have not seen it before, it is a one sided band, and has only one edge.
So in principle, you can sew a disc onto the Möbius Band!
But if you do try, you get yourself quite tangled!

Pivoted lines and the Möbius Band

William J.
Spencer
Lecture
Kansas State
University
Manhattan
Ronnie Brown

Connections
Rotations

Pivoted lines and the Möbius Band

This is a video which was made in 1992 for my Royal Institution Friday Evening Discourse "Out of Line".

Pivoted lines and the Möbius Band

This is a video which was made in 1992 for my Royal Institution Friday Evening Discourse "Out of Line". Moral?

Pivoted lines and the Möbius Band

William J.
Spencer
Lecture
Kansas State
University
Manhattan

This is a video which was made in 1992 for my Royal Institution Friday Evening Discourse "Out of Line". Moral?
There may be many representations of a given situation,

Pivoted lines and the Möbius Band

William J.
Spencer
Lecture
Kansas State
University
Manhattan

This is a video which was made in 1992 for my Royal Institution Friday Evening Discourse "Out of Line". Moral?
There may be many representations of a given situation, and one wants to find the simplest to make things clear.

Pivoted lines and the Möbius Band

This is a video which was made in 1992 for my Royal Institution Friday Evening Discourse "Out of Line". Moral?
There may be many representations of a given situation, and one wants to find the simplest to make things clear. The job of maths is to make difficult things easy.

How algebra can structure space

Connections
Rotations

How algebra can structure space

William J.
Spencer
Lecture
Kansas State
University
Manhattan
Ronnie Brown

Connections
Rotations
Moving in the
space around
a knot

How algebra can structure space

Relatlon at a crossing

How algebra can structure space

William J.

Spencer
Lecture
Kansas State
University
Manhattan
Ronnie Brown

Connections
Rotations

Moving in the space around a knot

Relatlon at a crossing

$x y x y x y^{-1} x^{-1} y^{-1} x^{-1} y^{-1}=1$

How algebra can structure space

William J.

Spencer
Lecture
Kansas State
University
Manhattan
Ronnie Brown

Connections
Rotations

Moving in the space around a knot

Relation at a crossing

$x y x y x y^{-1} x^{-1} y^{-1} x^{-1} y^{-1}=1$

Lecture
Kansas State
University

William J.
Spencer
Lecture
Kansas State
University
Manhattan
Ronnie Brown

Connections
Rotations

$x y x y x y^{-1} x^{-1} y^{-1} x^{-1} y^{-1}=1$

William J.
Spencer
Lecture
Kansas State
University Manhattan

Ronnie Brown

Connections
Rotations

$$
x y x y x y^{-1} x^{-1} y^{-1} x^{-1} y^{-1}=1
$$

$$
\begin{aligned}
& u=x y x^{-1} \\
& x=y w y^{-1} \\
& y=w z w^{-1} \\
& w=z u z^{-1} \\
& z=u x u^{-1}
\end{aligned}
$$

William J.
Spencer
Lecture
Kansas State
University Manhattan

Ronnie Brown

Connections
Rotations

$$
x y x y x y^{-1} x^{-1} y^{-1} x^{-1} y^{-1}=1
$$

$$
y=w z w^{-1}=
$$

$$
\begin{aligned}
& u=x y x^{-1} \\
& x=y w y^{-1} \\
& y=w z w^{-1} \\
& w=z u z^{-1} \\
& z=u x u^{-1}
\end{aligned}
$$

William J.

Spencer
Lecture
Kansas State
University Manhattan

Ronnie Brown

Connections
Rotations

$$
x y x y x y^{-1} x^{-1} y^{-1} x^{-1} y^{-1}=1
$$

$$
y=w z w^{-1}=z u z^{-1} \cdot z \cdot z^{-1} u^{-1} z^{-1}=
$$

$$
\begin{gathered}
u=x y x^{-1} \\
x=y w y^{-1} \\
y=w z w^{-1} \\
w=z u z^{-1} \\
z=u x u^{-1}
\end{gathered}
$$

William J.

Spencer
Lecture
Kansas State
University
Manhattan

Ronnie Brown

Connections
Rotations

$$
u=x y x^{-1}
$$

$$
x=y w y^{-1}
$$

$$
y=w z w^{-1}
$$

$$
w=z u z^{-1},
$$

$$
z=u x u^{-1}
$$

$$
y=w z w^{-1}=z u z^{-1} \cdot z \cdot z^{-1} u^{-1} z^{-1}=z u z u^{-1} z^{-1}=
$$

William J.

Spencer
Lecture
Kansas State
University
Manhattan

Ronnie Brown

Connections
Rotations

$$
u=x y x^{-1}
$$

$$
x=y w y^{-1}
$$

$$
y=w z w^{-1}
$$

$$
w=z u z^{-1}
$$

$$
z=u x u^{-1}
$$

$$
\begin{aligned}
& y=w z w^{-1}=z u z^{-1} \cdot z \cdot z^{-1} u^{-1} z^{-1}=z u z u^{-1} z^{-1}= \\
& u x u^{-1} \cdot u \cdot u x u^{-1} \cdot u^{-1} \cdot u x^{-1} u^{-1}=
\end{aligned}
$$

William J.
Spencer
Lecture
Kansas State
University Manhattan

Ronnie Brown

Connections
Rotations

$$
\begin{aligned}
& u=x y x^{-1} \\
& x=y w y^{-1} \\
& y=w z w^{-1} \\
& w=z u z^{-1} \\
& z=u x u^{-1}
\end{aligned}
$$

William J.

Spencer
Lecture
Kansas State
University
Manhattan
Ronnie Brown

Connections
Rotations

$$
\begin{gathered}
u=x y x^{-1} \\
x=y w y^{-1} \\
y=w z w^{-1}
\end{gathered}
$$

$$
w=z u z^{-1}
$$

$$
z=u x u^{-1}
$$

$$
\begin{aligned}
& y=w z w^{-1}=z u z^{-1} \cdot z \cdot z^{-1} u^{-1} z^{-1}=z u z u^{-1} z^{-1}= \\
& u x u^{-1} \cdot u \cdot u x u^{-1} \cdot u^{-1} \cdot u x^{-1} u^{-1}= \\
& =u x u x u^{-1} x^{-1} u^{-1}= \\
& x y x^{-1} \cdot x \cdot x y x^{-1} \cdot x \cdot x y^{-1} x^{-1} \cdot x^{-1} \cdot x y^{-1} x^{-1}=
\end{aligned}
$$

William J.

Spencer
Lecture
Kansas State
University
Manhattan

Ronnie Brown

Connections
Rotations

$$
\begin{gathered}
u=x y x^{-1} \\
x=y w y^{-1} \\
y=w z w^{-1}
\end{gathered}
$$

$$
w=z u z^{-1}
$$

$$
z=u x u^{-1}
$$

For the trefoil, you get the simpler relation

For the trefoil, you get the simpler relation
William J.
Spencer
Lecture
Kansas State
University
Manhattan

Ronnie Brown

$$
x y x y^{-1} x^{-1} y^{-1}=1
$$

Connections
Rotations

Local to global

Connections
Rotations

Local to global

The above emphasises an important class of problems in mathematics and science:

Connections
Rotations

Local to global

The above emphasises an important class of problems in mathematics and science:
Local to global

Local to global

The above emphasises an important class of problems in mathematics and science:
Local to global
For this we give another theme, relevant to my title, which is the notion of gluing.
Modern theme in mathematics:

Local to global

The above emphasises an important class of problems in mathematics and science:
Local to global
For this we give another theme, relevant to my title, which is the notion of gluing.
Modern theme in mathematics: structure, rather than numbers; and indeed it is often difficult to describe structure completely in terms of numbers.

Local to global

The above emphasises an important class of problems in mathematics and science:
Local to global
For this we give another theme, relevant to my title, which is the notion of gluing.
Modern theme in mathematics: structure, rather than numbers; and indeed it is often difficult to describe structure completely in terms of numbers. You may be able to measure or count this or that,

Local to global

The above emphasises an important class of problems in mathematics and science:
Local to global
For this we give another theme, relevant to my title, which is the notion of gluing.
Modern theme in mathematics: structure, rather than numbers; and indeed it is often difficult to describe structure completely in terms of numbers. You may be able to measure or count this or that, but that is unlikely to give a description of the structure.

Local to global

The above emphasises an important class of problems in mathematics and science:
Local to global
For this we give another theme, relevant to my title, which is the notion of gluing.
Modern theme in mathematics: structure, rather than numbers; and indeed it is often difficult to describe structure completely in terms of numbers. You may be able to measure or count this or that, but that is unlikely to give a description of the structure.
The area of mathematics which has grown up since the 1950s to talk about varieties of structure, and to compare them, is that of category theory.

Lecture
Kansas State
University

William J.
Spencer
Lecture
Kansas State
University
Manhattan

A category C has objects, arrows between objects, and a composition of arrows which is associative and has an identity 1_{x} for each object x. The composition $f g$ of arrows is defined if and only if the endpoint of f is the initial point of g.

A category C has objects, arrows between objects, and a composition of arrows which is associative and has an identity 1_{x} for each object x. The composition $f g$ of arrows is defined if and only if the endpoint of f is the initial point of g. Aim: Describe constructions common to many mathematical situations.

William J.
Spencer
Lecture
Kansas State
University
Manhattan

A category C has objects, arrows between objects, and a composition of arrows which is associative and has an identity 1_{x} for each object x. The composition $f g$ of arrows is defined if and only if the endpoint of f is the initial point of g.
Aim: Describe constructions common to many mathematical situations.
Developed from a useful notation for a function: moving from $y=f(x)$ to $f: X \rightarrow Y$. The composition of functions then suggests the first step in the notion of a category C, which consists of a class $\mathrm{Ob}(\mathrm{C})$ of 'objects' and a set of 'arrows', or 'morphisms' $f: x \rightarrow y$ for any two objects x, y, and a composition $f g: x \rightarrow z$ if also $g: y \rightarrow z$. The only rules are associativity and the existence of identities 1_{x} at each object x.

A colimit has 'input data', a 'cocone', and output from the 'best' cocone (when it exists).
Example: $X \cup Y$ has input data the two inclusions $X \cap Y \rightarrow X, X \cap Y \rightarrow Y$; the cocone is functions $f: X \rightarrow C, g: Y \rightarrow C$ which agree on $X \cap Y$. The output is a function $(f, g): X \cup Y \rightarrow C$.
'Input data' for a colimit: a diagram D, that is a collection of some objects in a category C and some arrows between them, such as:

'Functional controls': cocone with base D and vertex an object C.

such that each of the triangular faces of this cocone is commutative.

William J.

Spencer
Lecture
Kansas State
University
Manhattan
Ronnie Brown

Connections

Rotations

William J.

Spencer
Lecture
Kansas State University Manhattan

Connections
Rotations

William J.
Spencer
Lecture
Kansas State
University
Manhattan
Ronnie Brown

Connections
Rotations

Intuitions:

The object colim (D) is 'put together' from the constituent diagram D by means of the colimit cocone. From beyond (or above our diagrams) D, an object C 'sees' the diagram D 'mediated' through its colimit, i.e. if C tries to interact with the whole of D, it has to do so via colim (D). The colimit cocone is a kind of program: given any cocone on D with vertex C, the output will be a morphism

$$
\Phi: \operatorname{colim}(D) \rightarrow C
$$

constructed from the other data. How is this done?

William J.
Spencer
Lecture
Kansas State
University
Manhattan
Ronnie Brown

Connections
Rotations

Email analogy

You want to send an email Φ of a document D to a receiver C.

Email analogy

You want to send an email Φ of a document D to a receiver C. The document D made up of lots of parts. The email programme splits D up in some way into pieces,

Email analogy

You want to send an email Φ of a document D to a receiver C. The document D made up of lots of parts. The email programme
splits D up in some way into pieces, labels each piece at the beginning and end, and

Email analogy

You want to send an email Φ of a document D to a receiver C. The document D made up of lots of parts. The email programme splits D up in some way into pieces, labels each piece at the beginning and end, and sends these labelled pieces separately to C

Email analogy

You want to send an email Φ of a document D to a receiver C. The document D made up of lots of parts. The email programme splits D up in some way into pieces, labels each piece at the beginning and end, and sends these labelled pieces separately to C which combines them.

Email analogy

You want to send an email Φ of a document D to a receiver C. The document D made up of lots of parts. The email programme splits D up in some way into pieces, labels each piece at the beginning and end, and sends these labelled pieces separately to C which combines them.
Also you want that the final received email is independent of all the choices that have been made.

Email analogy

You want to send an email Φ of a document D to a receiver C. The document D made up of lots of parts. The email programme splits D up in some way into pieces, labels each piece at the beginning and end, and sends these labelled pieces separately to C which combines them.
Also you want that the final received email is independent of all the choices that have been made.

Neuroscience

Email analogy

You want to send an email Φ of a document D to a receiver C. The document D made up of lots of parts. The email programme splits D up in some way into pieces, labels each piece at the beginning and end, and sends these labelled pieces separately to C which combines them.
Also you want that the final received email is independent of all the choices that have been made.

Neuroscience

Does this give a model for the notion of structure in the brain

Email analogy

You want to send an email Φ of a document D to a receiver C. The document D made up of lots of parts. The email programme splits D up in some way into pieces, labels each piece at the beginning and end, and sends these labelled pieces separately to C which combines them.
Also you want that the final received email is independent of all the choices that have been made.

Neuroscience

Does this give a model for the notion of structure in the brain and the way a structure communicates?

William J.
Spencer
Lecture

Email analogy

You want to send an email Φ of a document D to a receiver C. The document D made up of lots of parts. The email programme splits D up in some way into pieces, labels each piece at the beginning and end, and sends these labelled pieces separately to C which combines them.
Also you want that the final received email is independent of all the choices that have been made.

Neuroscience

Does this give a model for the notion of structure in the brain and the way a structure communicates?
Compare: Ehresmann, A. and Vanbremeersch. Memory Evolutive Systems: Hierarchy, Emergence, Cognition, Studies in Multidisciplinarity, Volume 4. Elsevier, Amsterdam (2008).

Higher Dimensional Algebra

William J.
Spencer
Lecture
Kansas State
University
Manhattan
Ronnie Brown

Connections
Rotations

Higher Dimensional Algebra

William J.
Spencer
Lecture
Kansas State
University
Manhattan

The idea is that we may need to get away from 'linear' thinking in order to express intuitions clearly.

Higher Dimensional Algebra

William J.
Spencer
Lecture
Kansas State
University
Manhattan

The idea is that we may need to get away from 'linear' thinking in order to express intuitions clearly.
Thus the equation

$$
2 \times(5+3)=2 \times 5+2 \times 3
$$

Higher Dimensional Algebra

William J.
Spencer
Lecture
Kansas State
University
Manhattan

The idea is that we may need to get away from 'linear' thinking in order to express intuitions clearly.
Thus the equation

$$
2 \times(5+3)=2 \times 5+2 \times 3
$$

is more clearly shown by the figure

Higher Dimensional Algebra

Spencer
Lecture
Kansas State
University
Manhattan

The idea is that we may need to get away from 'linear' thinking in order to express intuitions clearly.
Thus the equation

$$
2 \times(5+3)=2 \times 5+2 \times 3
$$

is more clearly shown by the figure

|||||||

Higher Dimensional Algebra

William J.
Spencer
Lecture
Kansas State
University
Manhattan

The idea is that we may need to get away from 'linear' thinking in order to express intuitions clearly.
Thus the equation

$$
2 \times(5+3)=2 \times 5+2 \times 3
$$

is more clearly shown by the figure

But we seem to need a linear formula to express the general law

Higher Dimensional Algebra

William J.
Spencer
Lecture
Kansas State
University
Manhattan

The idea is that we may need to get away from 'linear' thinking in order to express intuitions clearly.
Thus the equation

$$
2 \times(5+3)=2 \times 5+2 \times 3
$$

is more clearly shown by the figure

But we seem to need a linear formula to express the general law

$$
a \times(b+c)=a \times b+a \times c
$$

Flatland

Ronnie Brown

Connections

Rotations

Flatland

William J.

Spencer
Lecture
Kansas State
University
Manhattan

Ronnie Brown

Connections
Rotations

Flatland

William J.

Spencer
Lecture
Kansas State
University
Manhattan

Connections
Rotations

Rev. A. Abbott

Flatland

William J.
Spencer
Lecture
Kansas State
University
Manhattan
Ronnie Brown

Connections
Rotations

By
Rev. A. Abbott

Published in 1884, available on the internet.

Flatland

William J.
Spencer
Lecture
Kansas State
University
Manhattan
Ronnie Brown

Connections

Rotations

By

Rev. A. Abbott

Published in 1884, available on the internet.

The linelanders had limited interaction capabilities!

We often translate geometry into algebra.

We often translate geometry into algebra. For example, a figure as follows:

We often translate geometry into algebra. For example, a figure as follows:

We often translate geometry into algebra. For example, a figure as follows:

is easily translated into

We often translate geometry into algebra. For example, a figure as follows:

is easily translated into
abcd

We often translate geometry into algebra. For example, a figure as follows:

is easily translated into

$$
a b c d
$$

and the language for expressing this is again that of category theory. It is useful to express this intuition as composition is an algebraic inverse to subdivision'.

We often translate geometry into algebra. For example, a figure as follows:

is easily translated into

$$
a b c d
$$

and the language for expressing this is again that of category theory. It is useful to express this intuition as composition is an algebraic inverse to subdivision'. The labelled subdivided line gives the composite word, abcd.

Lecture
Kansas State
University

Consider the figures:

William J.
Spencer
Lecture
Kansas State
University
Manhattan
Ronnie Brown

Connections
Rotations

Consider the figures:

William J.
Spencer
Lecture
Kansas State
University
Manhattan
Ronnie Brown

Connections
Rotations

Consider the figures:

William J.
Spencer
Lecture
Kansas State
University
Manhattan
Ronnie Brown

Connections
Rotations

Consider the figures:

William J.
Spencer
Lecture
Kansas State
University
Manhattan

Ronnie Brown

Connections
Rotations

From left to right gives subdivision.

Consider the figures:

William J.
Spencer
Lecture
Kansas State
University
Manhattan

Ronnie Brown

Connections

From left to right gives subdivision.
From right to left should give composition.

Consider the figures:

William J.
Spencer
Lecture
Kansas State
University
Manhattan

From left to right gives subdivision.
From right to left should give composition.
What we need for local-to-global problems is:

Consider the figures:

William J.
Spencer
Lecture
Kansas State
University
Manhattan

From left to right gives subdivision.
From right to left should give composition.
What we need for local-to-global problems is:
Algebraic inverses to subdivision

Consider the figures:

William J.
Spencer
Lecture
Kansas State
University
Manhattan

From left to right gives subdivision.
From right to left should give composition.
What we need for local-to-global problems is:
Algebraic inverses to subdivision also in dimension 2.

Consider the figures:

William J.
Spencer
Lecture
Kansas State
University
Manhattan

From left to right gives subdivision.
From right to left should give composition.
What we need for local-to-global problems is:
Algebraic inverses to subdivision also in dimension 2.
We know how to cut things up, but how to control algebraically putting them together again?

Double Categories

Connections
Rotations

Double Categories

Connections
Rotations

Double Categories

William J.
Spencer
Lecture
Kansas State
University
Manhattan
Ronnie Brown

Connections
Rotations

In dimension 1, we still need the 2-dimensional notion of commutative square:

Double Categories

William J.
Spencer
Lecture
Kansas State
University
Manhattan
Ronnie Brown

Connections
Rotations

In dimension 1, we still need the 2-dimensional notion of commutative square:

Double Categories

William J.
Spencer
Lecture
Kansas State
University
Manhattan
Ronnie Brown

Connections
Rotations

In dimension 1, we still need the 2-dimensional notion of commutative square:

Double Categories

William J.
Spencer
Lecture
Kansas State
University
Manhattan
Ronnie Brown

Connections
Rotations

In dimension 1, we still need the 2-dimensional notion of commutative square:

Easy result: any composition of commutative squares is commutative.

Double Categories

William J.
Spencer
Lecture
Kansas State
University
Manhattan

In dimension 1, we still need the 2-dimensional notion of commutative square:

Easy result: any composition of commutative squares is commutative.
In ordinary equations:

$$
a b=c d, e f=b g \text { implies } a e f=a b g=c d g .
$$

Double Categories

William J.
Spencer
Lecture
Kansas State
University
Manhattan

In dimension 1, we still need the 2-dimensional notion of commutative square:

Easy result: any composition of commutative squares is commutative.
In ordinary equations:

$$
a b=c d, e f=b g \text { implies } a e f=a b g=c d g .
$$

The commutative squares in a category form a double category!

Lecture
Kansas State
University

Lecture
Kansas State University Manhattan

Ronnie Brown

Connections
Rotations

What is a commutative cube?

Spencer
Lecture
Kansas State
University
Manhattan
Ronnie Brown

Connections
Rotations

What is a commutative cube?

Spencer
Lecture
Kansas State
University
Manhattan
Ronnie Brown

Connections
Rotations

What is a commutative cube?

We want the faces to commute!

We might say the top face is the composite of the other faces:

We might say the top face is the composite of the other faces: so fold them flat to give:

William J.
Spencer
Lecture
Kansas State
University
Manhattan

We might say the top face is the composite of the other faces: so fold them flat to give:

William J.
Spencer
Lecture
Kansas State
University
Manhattan

We might say the top face is the composite of the other faces: so fold them flat to give:

William J.
Spencer
Lecture
Kansas State
University
Manhattan

which makes no sense!

We might say the top face is the composite of the other faces: so fold them flat to give:

William J.
Spencer
Lecture
Kansas State
University
Manhattan

which makes no sense! Need fillers:

We might say the top face is the composite of the other faces: so fold them flat to give:

William J.
Spencer
Lecture
Kansas State
University
Manhattan

which makes no sense! Need fillers:

William J.
Spencer
Lecture
Kansas State
University
Manhattan
Ronnie Brown

Connections
Rotations

To resolve this, we need some special squares called thin: First the easy ones:

William J.
Spencer
Lecture
Kansas State
University
Manhattan

Ronnie Brown

Connections
Rotations

To resolve this, we need some special squares called thin: First the easy ones:

$$
\left(\begin{array}{lll}
1 & 1 & 1
\end{array}\right) \quad\left(\begin{array}{lll}
a & 1 & a \\
& 1 & 1
\end{array}\right) \quad\left(\begin{array}{lll}
1 & b & 1 \\
& b & 1
\end{array}\right)
$$

William J.
Spencer
Lecture
Kansas State
University
Manhattan

Ronnie Brown

Connections

To resolve this, we need some special squares called thin:
First the easy ones:

$$
\begin{array}{ccc}
\left(\begin{array}{ccc}
1 & 1 & 1 \\
\hline 1 & 1
\end{array}\right) & \left(\begin{array}{ccc}
a & 1 & a \\
& 1 & a
\end{array}\right) & \left(\begin{array}{ccc}
1 & b & 1 \\
& b & 1
\end{array}\right) \\
\square & \text { 二 or } \varepsilon_{2} a & \text { । o or } \varepsilon_{1} b
\end{array}
$$

William J.
Spencer
Lecture
Kansas State
University
Manhattan

Ronnie Brown

Connections
Rotations

To resolve this, we need some special squares called thin:
First the easy ones:

$$
\begin{array}{ccc}
\left(\begin{array}{lll}
1 & 1 & 1
\end{array}\right) & \left(\begin{array}{ccc}
a & 1 & a \\
& 1 &
\end{array}\right) & \left(\begin{array}{ccc}
1 & b & 1 \\
& b &)
\end{array}\right. \\
\square & \text { 二 or } \varepsilon_{2} a & \text { I | or } \varepsilon_{1} b \\
\text { laws } & {\left[\begin{array}{cc}
a & -
\end{array}\right]=a} & {\left[\begin{array}{c}
b \\
\mid \\
\mid
\end{array}\right]=b}
\end{array}
$$

William J.
Spencer
Lecture
Kansas State
University
Manhattan

To resolve this, we need some special squares called thin:
First the easy ones:

$$
\begin{array}{ccc}
\left(\begin{array}{ccc}
1 & 1 & 1
\end{array}\right) & \left(\begin{array}{lll}
a & 1 & a \\
& 1 & 1
\end{array}\right) & \left(\begin{array}{ccc}
1 & b & 1 \\
& b & 1
\end{array}\right) \\
\square & \text { 二 or } \varepsilon_{2} a & \text { I } \operatorname{or} \varepsilon_{1} b \\
& {\left[\begin{array}{cc}
a & Z
\end{array}\right]=a} & {\left[\begin{array}{c}
b \\
1
\end{array}\right]=b}
\end{array}
$$

Then we need some new ones:

William J.
Spencer
Lecture
Kansas State
University
Manhattan

To resolve this, we need some special squares called thin:
First the easy ones:

$$
\begin{array}{ccc}
\left(\begin{array}{ccc}
1 & 1 & 1
\end{array}\right) & \left(\begin{array}{lll}
a & 1 & a \\
& 1 & a
\end{array}\right) & \left(\begin{array}{ccc}
1 & b & 1 \\
& b &
\end{array}\right) \\
\square & \text { 二 or } \varepsilon_{2} a & \text { । } \operatorname{or} \varepsilon_{1} b \\
\text { laws } & {\left[\begin{array}{ll}
a & \bar{Z}
\end{array}\right]=a} & {\left[\begin{array}{c}
b \\
1
\end{array}\right]=b}
\end{array}
$$

Then we need some new ones:

$$
\left(\begin{array}{lll}
a & a & 1 \\
& 1 & 1
\end{array}\right)
$$

$$
\left(\begin{array}{lll}
1 & 1 & a
\end{array}\right)
$$

These are the connections

William J.
Spencer
Lecture
Kansas State
University
Manhattan

To resolve this, we need some special squares called thin:
First the easy ones:

$$
\begin{array}{ccc}
\left(\begin{array}{ccc}
1 & 1 & 1
\end{array}\right) & \left(\begin{array}{lll}
a & 1 & a \\
& 1 & 1
\end{array}\right) & \left(\begin{array}{lll}
1 & b & 1 \\
& b &
\end{array}\right) \\
\square & \text { 二 or } \varepsilon_{2} a & \mid \text { oor } \varepsilon_{1} b \\
\text { laws } & {\left[\begin{array}{ll}
a & Z
\end{array}\right]=a} & {\left[\begin{array}{c}
b \\
1
\end{array}\right]=b}
\end{array}
$$

Then we need some new ones:

$$
\left(\begin{array}{lll}
a & a & 1
\end{array}\right) \quad\left(\begin{array}{lll}
1 & 1 & a \\
& 1 & a
\end{array}\right)
$$

These are the connections
ل

Lecture
Kansas State
University
Manhattan
Ronnie Brown

Connections

Rotations

What are the laws on connections?

William J.
Spencer
Lecture
Kansas State
University
Manhattan
Ronnie Brown

Connections
William J.
Spencer
Lecture
Kansas State
University
Manhattan

Ronnie Brown

Connections

What are the laws on connections?

$$
[\ulcorner-\rfloor]=11 \quad\left[\begin{array}{l}
\ulcorner \\
\square
\end{array}\right]==
$$

William J.
Spencer
Lecture
Kansas State
University

Manhattan

Ronnie Brown

Connections Rotations

What are the laws on connections?

$$
\begin{aligned}
& {[\lrcorner]=11 \quad[\ulcorner]==} \\
& {\left[\begin{array}{ll}
\Gamma & \bar{Z} \\
1 & 1
\end{array} \bar{\Gamma}\right]=\Gamma \quad\left[\begin{array}{ll}
\perp & 1 \\
\hline- & 1 \\
- & -
\end{array}\right]=-} \\
& \text { (transport) }
\end{aligned}
$$

Ronnie Brown

Connections

What are the laws on connections？

$$
\begin{aligned}
& {[\ulcorner-\rfloor]=| | \quad\left[\begin{array}{l}
\Gamma \\
\perp
\end{array}\right]=\text { ニ }} \\
& \text { (cancellation) } \\
& {\left[\begin{array}{ll}
\Gamma & \bar{二} \\
1 & 1 \\
\Gamma
\end{array}\right]=\Gamma \quad\left[\begin{array}{cc}
\perp & 1 \\
\hline- & \perp
\end{array}\right]=-} \\
& \text { (transport) }
\end{aligned}
$$

These are equations on turning left or right，and so

What are the laws on connections？

$$
\begin{aligned}
& {[\ulcorner-\rfloor]=| | \quad\left[\begin{array}{l}
\Gamma \\
\perp
\end{array}\right]=\text { ニ }} \\
& \text { (cancellation) } \\
& {\left[\begin{array}{ll}
\Gamma & \bar{二} \\
1 & 1 \\
\Gamma
\end{array}\right]=\Gamma \quad\left[\begin{array}{cc}
\perp & 1 \\
\hline- & \perp
\end{array}\right]=-} \\
& \text { (transport) }
\end{aligned}
$$

These are equations on turning left or right，and so are a part of 2－dimensional algebra．

What are the laws on connections?

$$
\left.\begin{array}{lll}
{[\Gamma} & \downarrow
\end{array}\right]=\| \left\lvert\, \quad\left[\begin{array}{l}
\Gamma \\
-
\end{array}\right]==\quad\right. \text { (cancellation) } \quad \begin{array}{ll}
\Gamma & \text { (transport) }
\end{array}
$$

These are equations on turning left or right, and so are a part of 2-dimensional algebra.
The term transport law and the term connections came from laws on path connections in differential geometry.

William J．
Spencer
Lecture
Kansas State
University
Manhattan

What are the laws on connections？

$$
\begin{aligned}
& {\left[\left\ulcorner _\right]=| | \quad\left[\begin{array}{l}
\Gamma \\
\perp
\end{array}\right]=\right.\text { ニ }} \\
& \text { (cancellation) } \\
& {\left[\begin{array}{ll}
\Gamma & \bar{二} \\
1 & 1
\end{array}\right]=\Gamma \quad\left[\begin{array}{ll}
\perp & 1 \\
\vdots & 1 \\
\square & -
\end{array}\right]=\perp} \\
& \text { (transport) }
\end{aligned}
$$

These are equations on turning left or right，and so are a part of 2－dimensional algebra．
The term transport law and the term connections came from laws on path connections in differential geometry． It is a good exercise to prove that any composition of commutative cubes is commutative．

Rotations in a double groupoid with connections

To show some 2-dimensional rewriting, we consider the notion of rotations σ, τ of an element u in a double groupoid with connections:

$$
\sigma(u)=\left[\begin{array}{ccc}
| | & \Gamma & - \\
\llcorner & u & 7 \\
- & \perp & \mid
\end{array}\right] \text { and } \tau(u)=\left[\begin{array}{ccc}
\square & \urcorner & | | \\
\ulcorner & u & - \\
| | & \llcorner & -
\end{array}\right]
$$

For any $u, v, w \in G_{2}$,

$$
\begin{aligned}
& \sigma([u, v])=\left[\begin{array}{c}
\sigma u \\
\sigma v
\end{array}\right] \quad \text { and } \quad \sigma\left(\left[\begin{array}{c}
u \\
w
\end{array}\right]\right)=[\sigma w, \sigma u] \\
& \tau([u, v])=\left[\begin{array}{c}
\tau v \\
\tau u
\end{array}\right] \quad \text { and } \quad \tau\left(\left[\begin{array}{c}
u \\
w
\end{array}\right]\right)=[\tau u, \tau w]
\end{aligned}
$$

whenever the compositions are defined.
Further $\sigma^{2} \alpha=-1-{ }_{2} \alpha$, and $\tau \sigma=1$.

To prove the first of these one has to rewrite $\sigma(u+2 v)$ until one ends up with an array, shown on the next slide, which can be reduced in a different way to $\sigma u+2 \sigma v$. Can you identify $\sigma u, \sigma v$ in this array? This gives some of the flavour of this 2-dimensional algebra of double groupoids.

To prove the first of these one has to rewrite $\sigma(u+2 v)$ until one ends up with an array, shown on the next slide, which can be reduced in a different way to $\sigma u+2 \sigma v$. Can you identify $\sigma u, \sigma v$ in this array? This gives some of the flavour of this 2-dimensional algebra of double groupoids.
This has a homotopical interpretation.

William J.
Spencer
Lecture
Kansas State
University
Manhattan
Ronnie Brown

Connections
Rotations

In the lecture, the proof was given on the blackboard that $\tau \sigma(u)=u$, for which a middle step was the diagram

William J.
Spencer
Lecture
Kansas State
University
Manhattan
Ronnie Brown

Connections
Rotations

In the lecture, the proof was given on the blackboard that $\tau \sigma(u)=u$, for which a middle step was the diagram

$$
\left[\begin{array}{cc|ccc}
= & \neg & \square & \square & 11 \\
\square & 1 & \ulcorner & = & \lrcorner \\
\square & \llcorner & u & \urcorner & \square \\
\hline\ulcorner & = & \lrcorner & 11 & \square \\
11 & \square & \square & \llcorner & =
\end{array}\right] .
$$

Can you see the final steps?

Conclusion

William J.
Spencer
Lecture
Kansas State
University
Manhattan
Ronnie Brown

Connections

Conclusion

William J.
Spencer
Lecture
Kansas State
University
Manhattan

Ronnie Brown

Connections
Rotations

The progress of mathematics is measured not just in the solution of famous problems,

Conclusion

The progress of mathematics is measured not just in the solution of famous problems, but also in the opening up of new worlds,

Conclusion

The progress of mathematics is measured not just in the solution of famous problems, but also in the opening up of new worlds, and the development of new structures,

Conclusion

The progress of mathematics is measured not just in the solution of famous problems, but also in the opening up of new worlds, and the development of new structures, with methods for relating them.

Conclusion

The progress of mathematics is measured not just in the solution of famous problems, but also in the opening up of new worlds, and the development of new structures, with methods for relating them.
Mathematics develops languages for

Conclusion

The progress of mathematics is measured not just in the solution of famous problems, but also in the opening up of new worlds, and the development of new structures, with methods for relating them.
Mathematics develops languages for description,

Conclusion

The progress of mathematics is measured not just in the solution of famous problems, but also in the opening up of new worlds, and the development of new structures, with methods for relating them.
Mathematics develops languages for description, deduction,

Conclusion

The progress of mathematics is measured not just in the solution of famous problems, but also in the opening up of new worlds, and the development of new structures, with methods for relating them.
Mathematics develops languages for description, deduction, verification,

Conclusion

The progress of mathematics is measured not just in the solution of famous problems, but also in the opening up of new worlds, and the development of new structures, with methods for relating them.
Mathematics develops languages for description, deduction, verification, calculation.

Conclusion

The progress of mathematics is measured not just in the solution of famous problems, but also in the opening up of new worlds, and the development of new structures, with methods for relating them.
Mathematics develops languages for description, deduction, verification, calculation.
Some of these languages may be highly significant for the science and technology of the future.

