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Introduction

This is the first of two papers whose main purpose is to prove a generalization of the Seifert-Van
Kampen theorem on the fundamental group of a union of spaces. This generalisation (Theorem C of
[8]) will give information in all dimensions and will include as special cases not only the above theorem
(without the usual assumptions of path-connectedness) but also

e the Brouwer degree theorem (7, S™ = 7Z);

e the relative Hurewicz theorem;

e Whitehead’s theorem that m,(X U {e3}, X) is a free crossed module, and
o carlier work [5] of the authors on the case of dimension 2.

The Seifert-Van Kampen theorem describes the fundamental group of a space X with base-point
as, under certain circumstances, the colimit of the fundamental groups of subspaces whose interiors
cover X. To generalise this to all dimensions we replace the space X by a filtered space

X, :X0C X1 CXoC--CX,C---CX.

We replace the fundamental group 71 (X, *) by the homotopy crossed complex X, which consists of
the family of groups C),(p) = mn(Xpn, Xn—1,p) for n > 2 and all p € Xy, together with the fundamental
groupoid C = m1(X1, Xo) over Cy = X, all with the standard boundary maps C),(p) — Cp—1(p) and
action of Cf.
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Our theorem describes this crossed complex mX, as, under certain circumstances the colimit of
the homotopy crossed complexes of certain filtered subspaces.

The path to this theorem is not direct. Its proof is based on techniques of subdivision, multiple
composition, cancellation and the homotopy addition lemma, and the direction of our work has been
largely determined by the need to develop these techniques. This explains, what may surprise many
readers, the cubical rather than simplicial approach. Subdivisions and multiple compositions are very
easily handled cubically; we have been unable to develop them simplicially. Thus, at least for the
present, the cubical approach is essential, in spite of the fact that simplicial versions of a number of
aspects of this work have been developed [1,12].

This first paper is primarily concerned with setting up the algebraic apparatus needed to imitate the
proof of the Seifert-Van Kampen theorem using n-dimensional cubes instead of paths. We introduce a
new algebraic category, that of w-groupoids which models closely the composition and cancellation of
cubes. To each w-groupoid G is associated in canonical fashion a crossed complex vG and we show, by
means of certain ‘folding operations’ on cubes, that this association defines an equivalence « from the
category G of w-groupoids to the category C of crossed complexes. The folding operations are designed
to facilitate the composition of the faces of a cube, and we use them also to obtain a purely algebraic
form (Lemma 7.1) of the homotopy addition lemma. The equivalence v : G — C is of interest to
algebraists as giving a rare example of two equationally defined categories of (many-sorted) algebras
which are nontrivially equivalent. The interest is increased by the fact that we know of three other
quite different, but equally natural, equational descriptions of categories equivalent to C and G (see
Section 7 below and [1,6,9]).

In the second paper [8] we define a new homotopy invariant pX., the homotopy w-groupoid of
the filtered space X.. We generalise the proof of the Seifert-Van Kampen theorem to obtain a union
theorem for X, (Theorem B of [8]). We then prove that yoX, is naturally isomorphic to 7X,. The
result for 7 X, follows immediately. (All these results were announced, with definitions but no proofs,
in [6,7].)

A reader who wishes to see quickly the main direction of these two papers should read first Sections
1, 2 and 3 of this paper for the definitions of the categories G and C and the functor v : G — C. He
should then turn to the second paper: Sections 1 and 2 for the construction of the w-groupoid oXj;
Section 4 for the statement of the union theorem (Theorem B); and Sections 5 and 7 for the applications
of this theorem to colimit theorems for relative homotopy groups. However, the proof of the union
theorem does require detailed knowledge of properties of ‘thin’ elements in ¢X, and in an arbitrary
w-groupoid, and the establishment of these properties requires most of the algebraic apparatus of this
first paper.

The reader may also note that the proofs of our main results make no use of such classical methods
of algebraic topology as simplicial approximation, covering spaces, fibrations or homology; indeed, we
do not know how to obtain our colimit theorem for 7w X, by these traditional methods. The two papers
should therefore be read as an attempt to remodel certain aspects of elementary homotopy theory
by using algebraic structures which mimic the geometry more closely than those most commonly
used. This approach is justified by the progress made in extending the Seifert-Van Kampen theorem
to higher dimensions and by the emergence of interesting structures that seem to warrant further
investigation in their own right.



1 Connections and compositions in cubical complexes

1.1 Let K be a cubical complex, that is, a family of sets {K,;n > 0} with the face and degeneracy
maps
o Ky — K1, g Kp1— K, (i=12,....n;a=0,1)

satisfying the usual cubical relations:

(1.1)(i) opo) = o o0 (i < ).

(1.1)(ii) Ei€j = €j41E; (i < J),
€510 (i <)

(1.1) (i) ey = 08, (i > )
id (i =)

1.2 We say that K is a cubical complex with connections if it has additional structure maps
Ky — Ky (i=1,2,...,n—1)

(called connections) satisfying the relations:

(1.2)(1) Ll =Tl (i <J)
T <
(1.2)(ii) O L (i <J)
5j1“i,1 (’L > ])
FjEj = Ejz = £j+1&5,
99T — Fj—lalq (l < j)
j= . .
' ;07 (1>j+1),

(1.2)(iii) N =0Y,,T; = id,
O;T; = 01T = €;0;.

The connections are to be thought of as extra ‘degeneracies’. (A degenerate cube of type €z has a
pair of opposite faces equal and all other faces degenerate. A cube of type I';x has a pair of adjacent
faces equal and all other faces of type I'jy or €y .) Cubical complexes with this, and other, structures
have also been considered by Evrard [15].

The prime example of a cubical complex with connections is the singular cubical complex KX
of a space X. Here K, is the set of singular n-cubes in X (i.e. continuous maps I" — X) and the
connection I'; : K,,_1 — K, is induced by the map «; : I™ — I"~! defined by

,Y’L'(tla t?? sy tn) - (t17t27 cee ,ti,l,maX(ti,ti+1),ti+2, s 7tn)

The complex K X has some further structure which we wish to exploit, namely the composition
of n-cubes, and their reversal, in the n different directions. Accordingly, we define a cubical complex
with connections and compositions to be a cubical complex K with connections in which each K, has
n partial compositions +; and n unary operations —; (j = 1,2,...,n) satisfying the following axioms.



1.3 If a,b € K,,, then a +; b is defined if and only if O?b = 8}a , and then

0% +;_1 92b (i < j)

, O(a+;b) = 9a
(1.3)(1) { Oa+;08b) (i >7),

¢ O (a+;b) = {
0} (a +;b) = 0l

If a € K,,, then —ja is defined and

ﬁ 7 (—ja) = A gy = )18 (1<)
) { 0} (~ja) = e {—jaf“a (i > )
(1.3)(iii) —jila+; b) = (—;b) +j (—ja), —j(—=ja) = a.

1.4 The interchange laws. If i # j then
(1.4)(i) (@4;b) +j (c+id) = (a+;c)+i (b+; d)
whenever both sides are defined. (The diagram
J
a ¢
iE

will be used to indicate that both sides of the above equation are defined and also to denote the unique
composite of the four elements.)

If ¢ # j then
(1.4)(ii) —i(a+;b) = (—ia) +; (—ib) and —; (—ja) = —j(—ia).
1.5
(2 (2 ) < ]
(15)0) ()= 0o Eb S
gia +j ;b (1> 7)
1.5) (i g (<)
(1.5)) { I
1.6
T; ;b <7
(1.6)(i) (at;b) = i@t (i<])
ia+; ;b (1> 7)
s
€j
Fila+;) Lﬁlb T b]
(This last equation is the transport law.)
(1.6)() (o) = § e <)
*jFiCL (Z > ])



It is easily verified that the singular cubical complex KX of a space X satisfies these axioms if +;, —
are defined by

a(tl,.. ] 1,2t t+1,...,tn) (tj

(a4;b)(t1,t2, ... ty) =
J " b(tl,..., j_1,2tj—17tj+17'~7tn) (tj

whenever 8j0b = 8}(1 ; and

(—ja)(tl,tg, .. ,tn) = a(tl, .. ,tj_l, 1-— tjytj—l-la - ,tn).

2 w-groupoids

An w-groupoid G = {Gy,} is a cubical complex with connections and compositions such that each +;
is a groupoid structure on G, with identity elements ¢;y(y € G,,—1) and inverse —;.

The example we have in mind is constructed as follows. We start with a filtered space
Xi: XpC X1 CXoCX3C--C X=X,

Let I} denote the n-cube with its skeletal filtration (using its standard cell-structure). Let R, X, be
the set of filtered maps I7 — X,, that is, maps I" — X sending the r-skeleton I’ of I" into X,
for r < n. Then RX, = {R,X.} is clearly, with the standard operations on cubes defined above, a
cubical complex with connections and compositions.

Two filtered maps I} — X, are filter-homotopic if, as maps I" — X, they are homotopic by a
map H : I" x I — X sending I' x I into X, for » < n. If 0, X, denotes the set of filter-homotopy
classes rel vertices of I" in R, X,, then X, = {0,X.} is clearly a cubical complex with connections.
In [8] we prove the nontrivial fact that the compositions on RX, induce compositions on ¢X, making
0X, an w-groupoid. This geometric example is one of the foundations of our work.

In defining w-groupoids some of the previous laws are redundant. Thus if one assumes that each
+; is a groupoid structure on G,, with identities €y (y € G,—1) and inverse —;, then one may omit
parts (ii) of all the laws (1.3), (1.4), (1.5), (1.6) since they follow from parts (i) and the groupoid laws.
One may also rewrite the transport law (1.6)(i) in the form

(2.1)(1) Ljla+;0) = (Tja +j4165b) +; Tjb = (Tja +; €410) +541 Ljb
and deduce that
(2.1)(ii) Lj(—ja) = (=Tja) —j1€ja = (—j+115a) —j gj1a.

Further, in any w-groupoid G , the interchange law (1.4)(i) and associativity imply that a rectangular
array of n-cubes z,, € G, (1 <p < P,1 < ¢ < Q) satisfying for some i # j the relations

i tpg = O)pr1,q (1 <Pl

1 1

<p <Q)
<p< P, <

Q)

<q
1 _ 90
6;‘ Lpg = 33' Tpg+1 ( <q



has a unique composite € G, obtained by applying the operations +;, +; in any well-formed fashion;
for example
= (@11 +i 21 +i - Fixp1) +j - 45 (@1 i X2 i i TPQ)-

Such a composite is written

[Zpq] i—) !

or simply [zp,] if no confusion will arise. The same is true for multi-dimensional arrays, and the
most general situation can be described as follows. Let (m) = (mi,mo,...,my) be a sequence of
positive integers. A composable array in G, of type (m) is a family of cubes x(,) € G, where
(p) = (p1,p2,---,Pn), 1 < pi < my, satisfying the relations
811.%(;0) = 810.%'(],); for all 7

where (p); = (p1,p2,-..,Pi—1,0i + 1, pit1,...,pn). We denote the unique composite in Gy, of such an
array by [z(,)]. The previous case is obtained by taking my = 1 for k # i, j. We shall also sometimes
write [x1,x2,...,2,|; for the linear composite x1 +; x2 +; - - - +; =, and an unlabelled — in such a
composite will always mean —;x.

An w-subgroupoid of G is a cubical subcomplex closed under all the connections and all the op-
erations +;, —;. Any set S of elements of G generates an w-subgroupoid, namely, the intersection of
all w-subgroupoids containing S. This w-subgroupoid can be built from S by repeated applications
of all the structure maps and operations. First, it can be verified that the elements of the form
g...el'...T0...0x (x € S) make up the subcomplex-with-connections K generated by S. (Here 0
stands for various 05, etc.) The w-subgroupoid generated by S then consists, as again can be verified,
of all composites of arrays of cubes of the form —; —; ... — v (y € K).

A morphism of w-groupoids is a morphism of cubical complexes preserving all the connections and
all the groupoid operations. We denote the resulting category of w-groupoids by G. This category is
complete and cocomplete, as follows from general theorems of Freyd [16], Bastiani-Ehresmann [2] and
Coates [11]. It is in fact tripleable over the category of cubical complexes. We will prove below that G
is equivalent to a category C of crossed complexes which Howie [17] has shown to be Cartesian-closed;
it follows that G is Cartesian-closed.

We also use finite-dimensional versions of the above definitions. An m-tuple groupoid is an m-
truncated cubical complex G = (G, Giu—1, - - -, Go) with connections, having n groupoid structures
in dimension n (n < m), and satisfying all the laws for an w-groupoid in so far as they make sense. We
denote by G,, the category of m-tuple groupoids. (The category G2 of double groupoids, the prototype
for G, was introduced in [10]).

3 Crossed complexes

The relative homotopy groups C,, = m,(X,, X,,—1, *) of a filtered space X, with base-point form (with
respect to the usual boundary maps) a sequence of groups

J

”*>Cn*6>0n71 O, C,



on which C7 = 71 (X1, *) acts. The formal properties of such sequences have been studied by Blakers
[3], Whitehead [21] and Huebschmann [18,19] under the names ‘group systems’, ‘homotopy systems’
and ‘crossed resolutions’, respectively. If the base-point is allowed to vary in a subspace X, one
obtains such a sequence over each point of X, and the fundamental groupoid (X1, X) acts on the
collection of sequences (in a manner which we axiomatise below) forming a ‘crossed complex’ 7X,.
This complex is closely related to the w-groupoid 0X, described in Section 2, and we shall show that
this relationship exists at the algebraic level by exhibiting between the categories of crossed complexes
and w-groupoids an equivalence in which 7 X, and pX, correspond.

A crossed complex C' (over a groupoid) is a sequence

"*>Cn*5>0n71 Cy

satisfying the following axioms;
3.1 ( is a groupoid with Cj as its set of vertices and §°, §! as its initial and final maps.

We write C1(p, q) for the set of arrows from p to g (p,q € Cy) and Cy(p) for the group C1(p,p).
3.2 For n > 2, C), is a family of groups {Cy(p) }pec, and for n > 3, the groups Cy,(p) are Abelian.

3.3 The groupoid C; operates on the right on each C), (n > 2) by an action denoted (z,a) — z°
Here, if x € C,,(p) and a € Ci(p,q) then z* € Cy(q). (Thus C (p) = Cr(q) if p and ¢ lie in the same
component of the groupoid C.)

We use additive notation for all groups C,,(p) and for the groupoid Cy, and we use the same symbol
0 for all their identity elements.

3.4 Forn > 2,6 : C, — Cp,_1 is a morphism of groupoids over Cy and preserves the action of C1,
where C acts on the groups Ci(p) by conjugation: z* = —a + = + a.

3.5 00=0:C, — Cy_9 for n >3 (and 895 = 615 : Cy — Cy, as follows from 3.4).

3.6 If c € (y, then dc operates trivially on C,, for n > 3 and operates on Cy as conjugation by ¢, that
is, 1% = —c +z + ¢ (x,c € C2(p)).

We observe that these laws make Ca(p) a crossed module over C(p), and this is the reason for
the name ‘crossed complex’. In the case when Cj is a single point we call C a crossed complex over a
group, or a reduced crossed complex.

A morphism of crossed complexes f : C — D is a family of morphisms of groupoids f, : C, —
D,, (n > 1) all inducing the same map of vertices fy : Cy — Dy, and compatible with the boundary
maps ¢ : C,, — Cp,_1, D, — D,,_1 and the actions of Cy, D1 on C,, D,. We denote by C the resulting
category of crossed complexes. Again we use a finite-dimensional version of these definitions. An
m-truncated crossed complex is a finite sequence

50

S
Ch—=C(y
51

C. _0 Cyr . Cy




satisfying all the axioms 3.1 - 3.6 in so far as they make sense. (Alternatively, it could be described as
a crossed complex with C,, = 0 for n > m.) Thus a 1-truncated crossed complex is simply a groupoid,
and a 2-truncated crossed complex is what we will term a crossed module over a groupoid; in the case
of one vertex, it is a crossed module in the usual sense. We denote by C,, the category of m-truncated
crossed modules.

In [10] it was shown that the category G5 of double groupoids with one vertex is equivalent to
the category C5 of crossed modules over groups. The construction given there extends easily to an
equivalence Gy ~ Cy between double groupoids and crossed modules over groupoids. We prove below
that it extends further to equivalences G, ~ C,, and G ~ C.

For any w-groupoid G, we construct the crossed complex C' = vG associated with G as follows.
Let Cy = Go,C1 = Gy and 6% = 0¢ : G1 — Gp(a = 0,1). For n > 2 and p € Cyp = Gy, let
Cn(p) = {z € Gy, : 0%z = (e1)"p for all (o, i) # (0,1)}, the set of n-cubes x all of whose faces
except Oz are concentrated at p. We observe that a concentrated r-cube (£)"p is an identity for all
compositions + of G since (¢)"p = ex(e)"~!p for 1 < k < r; accordingly, we will write 0 (sometimes
0p) for such a cube ()"p (p € Cp). With this convention, we have the rules 980 = 0,£;,0 = 0,I;0 = 0.

Lemma 3.7 Letn > 2 and p € Cy. Then each composition +; of G, for 2 < j < n, induces a group
structure on Cy(p). For n > 3 this group structure is independent of j and is Abelzan.

Proof The first part is easy to verify, while the last part is proved by applying the interchange law

to the composites
x Op:| {Op x k
Op Yy Yy Op J

for z,y € Cp(p) and 2 < j < k < O

We write z +y for z +; y if 2,y € C,(p) and 2 < j < n, and the zero element for this addition is
0p. If n =1 we also write + for the groupoid operatlon +1 on Cq = G4.

It is easily verified that the face map 0y : G,, — G,_1 restricts to a group homomorphism 4 :
Chn(p) — Cn_1(p), and that 62 = 0 (where C1(p) is defined to be C1(p,p)).

Lemma 3.8 Letn > 1 and x € Cy(p), a € C1(p,q). Then the element

r=[—""ta,x,e al,

lies in Cy(q), and the rule (x,a) — z% defines an action of the groupoid Cy on the family of groups
Cn(p), p € Cy. This action is preserved by the map § : Cp(p) — Cnh—1(p) for n = 2. Further, if
xz € Cp(p),y € Ca(p) and a = dy, then 2 =z forn >3 and 2 = —y +x +y for n = 2.

Proof. Note that, for 1 < i < n, 9%(2%) = [—£} 2a, 0z, ) %a],—1, while 9% (2?) = e"1d}a = 0,.
From this it follows that z® € C,,(¢) and 6(z%) = ((5:16)“. That 291 = (22)? follows from the equation
el N a+b) = [V a, el ).

Now, if a = dy and n > 2, the two ways of composing

n
ne{" 1a z el la
n—2

n€1 y 0p & “y| n-1

8



give % = [—n6?72y,m,6?72yn]n, which is the result we require when n = 2. For n > 3 we may also

compose
—n n-1 5711723;/ Op _nflerlliQy ‘; "
R ey ] n
in two ways to obtain, by what we have just proved, z% = . O

From the above results we obtain easily:

Proposition 3.9 G is a crossed complex, and v defines a functor from the category G of w -groupoids
to the category C of crossed complexes. Also v induces a functor from the category G, of m-tuple
groupoids to the category Cp, of m-truncated crossed complexes.

We shall show in Section 6 that the w-groupoid G can be reconstructed from its crossed complex
~G and hence that v : G — C is an equivalence of categories.

For later use in proving Lemma 4.9, we record the following lemma.

Lemma 3.10 The action of C1 on Cy defined in Lemma 3.8 is also given by

— Jj—1_n—j Jj—1_n—j
z® =[—e1 ey a,x,e] &, ’al

J

for x € Cy(p), a € Ci(p,q) and any j with 2 < j < n.

Proof. Let 2 < j < n, and write b; = 5{_15721_% = éenen—1...7...€1a € Gy,. Then b; is an identity

for all the compositions of G,, except +;. Also 8}(—jbj) = 3?(()]-) =0 and
}X_H(bj) = 6?(bj+1) = E&n—1E€n—2 .. j ..€14 = C,

say. Thus, if j > 2, we may form the composite

—j e —bj —le s
y=1| —j+bj1 o b |
—j+1FjC bj ch

Since bj;1 is an identity for +;, the composite of the last column is z—:j@}l’jc = 0p, and similarly the
composites of the first column and of the first and last rows are 0,. Hence, computing y by rows and
by columns, we have

[=bjr1 2, bl = [0, 2,055 (5 2 2).
It follows that, for j > 2, [-b;, z,b;]; = [~bn, 2, by]yn, which is the definition of z°. O

4 Folding operations

In this section we introduce an operation ® on cubes in an w-groupoid G (or in an m-tuple groupoid)
which has the effect of folding all faces of zeG), onto the face 9z so that they can be composed to
form the ‘sum of the faces of x’. This operation ® transforms x into an element of the associated
crossed complex vG.



First, in any m-tuple groupoid G, we define operations ®; : G,, — G,(1 < j < n < m) by the
formula

1 0 1
(4.1) Qjr = [~¢;0;r, —T1;0; 12,2, 10; 1 2] 41
It is easy to check that this composite is defined. Writing a, b, ¢, d for the relevant faces of z,

¢ \r)j-&-l
bl x |d ¥
J

a

the effect of ®; can be seen from the diagram

—sa _b d

J J c rj+1
Pjr = | —j+1gja| —jlb ez af Tyd !

—ja a

in which unlabelled faces are appropriate degenerate cubes.

The laws of Section 2 imply various laws for the operations ®; and their composites. To simplify
the notation we write 0§z for €07, the left (o = 0) or right (o = 1) identity for x with respect to
+;-

4.2
: ®; 10" (i< j)
AP — I ’
(42)(0) 0P { ;0% (i>j+1),
(4.2)(ii) 8;-)<I>jx = [0, —85-)“30,8?3:, 8]1-+1x]j.
(4.2)(iii) 01 ®; = 0j®; =nj0j =n;0j,,.
O 1PPjpr - Py = 0P+ Py
(4.2)(iv) = 031541 10
Proof. (i) If i < j then by (1.1), (1.2) and (1.3)
0f P x = [—Qqnjl-x, —affj8?+1x, oz, 8{"I’j8;+1$]j
= [-nj_100x, —T;1070%x, 0fx,T;_10,0{x];

= Q>j_16;"x.

The case © > j + 1 is similar.

(ii) This is proved by a routine argument of the same kind and we will omit all such routine proofs
from now on.

(iii) By (1.1), (1.2) and (1.3),
8]1-<I>jac = [—8]1-77}56, —8}1“]-8?“95,8}3:, 9;T;0;, 1)

_ 1 190 1 191

10



But 789, , and 7j0;, = are identities for +;, so
! L. ot 191
9j®jx = [0, 0;x]; = ;0.

The other cases are easily verified.

(iv) This follows from (iii).

4.3

(4.3)() {%. = ci®ymand B = iRy i<
Pje; = ;P and Pjnf = nid; ifi>7+1.

(4.3)(ii) Djej = nj185 = njej1 and Py = nj 0.

(4.3) i) Ojejp = njygj = njejer and &y =ity

(4.3)(iv) D10y Dy onj_y =Ny -1y

(4.3)(v) D10y Bj 15 = M-8

Proof. (i) and (ii) are routine; the parts involving ®;77 use 4.2 as well as (1.1), (1.2) and (1.3).

1
(I)j€j+1x = [_nj8j+1x7 _ijvgj-i-lx?ij]j""l
_ 1 = L
= [*nj5j+193]j+1 = [*nj+15jx]j+1
— l .
= Nj+1&52-

The other equations follow easily.

(iv) and (v) follow from (iii).

4.4

(100 or={ 1y G5

(4.4) (i) ;T = ejm) = ej1m)-

(4.4)(iii) Oz = [~Tjpanjz, —Ljz, Dz, Djnjyaalj
Proof. (i) and (iii) are routine. For (ii),

®;Tjx = [~ Ty, =107y Ty, Tja, T30 1 Uyl

[ 6j77]1~1‘, —ij,Fj:L‘,an;x]jH by (1.2)

= —€j+1n}x,5j+1n}x]j+1 by (1.1) and (1.2)

1. _ 1
5j+177jl’ = Ejnjl‘.

11



We now define the folding operation ® by
Pr =01Py---P,_q1x (.%' € Gn,n = 2)

On Gy and G we shall interpret ® as the identity map. For x € G,,, we call (0{)"x the base-point of
2 and denote it by Gx.

Proposition 4.5 If (o, j) # (0,1) then
Bb=el'B:Gn — G

Hence, for any x € G, ®x lies in the associated crossed complex vG.

Proof. If 2 < j < n then

QOB = By Dy 000Dy Dy by (4.2)(i)
= 1Py D) onj gm0y by (4.2)(iv)
=iy 10, by (4.3)(iv)
by by (1.1).

If j =1and n > 2, then a = 1 and the equation follows from (4.2)(iv) and (1.1). The case n = 1
is trivial. Thus, for x € G,, we have 97'®x = 0 for (a,j) # (0,1), where p = Bx. This shows that
Sz € Cp(p) , where C =4G. O

It is clear that if z € Cy,(p) , then (4.1) becomes ®;x = x. This implies ®= = x, so we have:
Corollary 4.6 ®x = z if and only if x is in vG. In particular ®%y = &y for all y in G. a

Proposition 4.7 Ifn > 2, then on G,,_1,
Pej =P and PT'; = €75.

Proof.

D1y Dy yej = BBy Dy B0 - Pyg by (4.3)(i)
= 1Py P17 48P P by (4.3)(ii)
= 0Py Bj_1656;0; P P by (1.1)
=My AE5EM 2O by (4.3)(v),(4.2)(iv)
=elp by (1.1).

Q1Py- - Py = P1Po - PP Py - P2 by (4.4)(1)
=01 Py Dj1j1 @) Py2 by (4.4)(ii)
=elp as above.

|

The rules for folding sums of cubes are easy to state (see Proposition 4.9) but their proof involves
more complicated rules for the partial folding ®;.
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4.8

T+ y) :CI)]‘JI-H(I)‘

(4.8)(i) E ’) _ o Jy} ifi#j,5+1.
(
(

(4.8) (i)
(4.8) (i)

i@+ y) = [Py, —€;0 11y, Pz, €507 1yl j41-
i@+ y) = -0y, ©m,mfy, ©iylj41-

S B B

Proof. (i) This is routine, using the interchange law (1.4) for the directions i and j + 1.
(ii) Let the relevant faces of x and y be given by

rj—H
al T |b cl Y |a!
J

Then
Oj(z +jy) = [—ejw, —Tjla+; o), (z 45 y), T (b +; d)]j41-
Using the transport law (1.6), this can be written as the composite
A | —Ee —Ija = T;0 ¢€5d Fjﬂ
—€j’w —F]‘C —€j+1c y €j+1d Fjd
where — stands for —;,1. Consider the composite
B— —&jw —EjC g5V Ejd —Ejd —&;0 —Fja T Fjb €jd \r)j+l
—gjw —Tje y Tjd —ejd —ejv —Ejnjl-a gjv EjT]JI»b gjd| j

By composing the columns first, we see that B is equal to the right hand side of (4.8)(ii). However,
the composites of the rows of B are the same as the composites of the rows of A, since 5j77j1-b = €j+177]1-b
is an identity of the horizontal composition as well as the vertical one. Hence A = B.

(iii) This is routine. U

For = € G, the edges of = terminating at the basepoint Bz = (9;)"x will have special importance
and we denote them by
Proposition 4.9 Letn > 2 and z,y,2 € G, with O}z = 8%y. Then, in C,

) Sy 4+ (Px)"Y  ifn=2andi=1,
(4.9)(1) Oz +iy) = u( ) .
(Px)"“¥Y + dy  otherwise;

(4.9)(ii) O(—i2) = —(Pz) "~
Proof. (i) First consider the case i = n > 2. We have, by 4.8,

Oz +ny) = P12 Ppa[—1h_ 1Y, P12, 1Y, Pro1Yln
= [~u, ®z,u, Py|,

13



where

U=0By-- D, _ont 1y

=Ny M1y by (4.3)(iv)
=" uny by (1.1)

Hence ®(z 4, y) = (Pz)“"Y + ®y in this case.
In the remaining cases we have 1 < i < n, so we may put
X =9,41Pit2- Py,
Y =0, 11Pi12-- Pp1y,

and then
P(x+iy) =D1Pe-- - P(X +,Y) by (4.8)(i)
=01 01 [Q;Y, —£;0},,Y, 9 X, €0}, Y]i by (4.8)(ii)
= [q)yv _Va q)x, V]i—i—l by (48)(1) )
where

V==& @160 1Pit1- o1y
= My g o1 OpY by (4.2)(iv), (4.3)(v)
= (e1)"(e2)" " ruay by (1.1).
Hence, by Lemma 3.10, ®(x +; y) = ®y + (Px)"¥ in this case. (Note that i +1 > 2, so addition in

direction ¢ + 1 is addition in C,. ) If n = 2 and ¢ = 1, this is the required formula. Otherwise, we
have n > 3, so C), is commutative and the formula can be rewritten in the required form.

(i) Put * = —;z,y = z in (i) and note that, by (4.7), ®((—;z) +; 2) = ®¢;0}z = B2 = 0 in C,,.

O
4.10
PP, =0:G, - Gp(l<j<n—1).
Proof. By definition, for z € G,
¢z = [—5]0;3:, —Fj8§)+11‘, x, Fjﬁ;ﬂx]jH
= [a,b,z, c]j+1,say.
By Proposition 4.7 and (4.9)(ii), ®a, b and Pc are all zero in C,, so Proposition 4.9 gives
QP ;x = (Px)", where
u=ujic=0{0j0j,9- 0;0j x
= £10{05 - 0Lz by (1.1) and (1.2).
Thus @,z = (®x)°1°* = du. ]

14



Definition 4.11 An element z € G(n > 1) is thin if it can be written as a composite x = [z(,)],
where each entry is either of the form ¢;y or of the form —; —; --- — I'y,y.

The collection of all thin elements of G is clearly closed under all the w-groupoid operations except
the face operations. It is useful to think of the thin elements as the most general kind of degenerate
cubes. They are important in the topological applications and we establish their main properties in
Section 7. For the present we prove only the following characterisation.

Proposition 4.12 Let x € Gy, (n > 1). Then z is thin if and only if Px = 0.

Proof. We have shown that ®c;y = 0,®I';y = 0 for all y € G,,—1 (see Proposition 4.7 ). It follows
from Proposition 4.9 that ®x = 0 whenever z is thin. To see the converse, we recall the definition

_ 9l .90 9l .
(I)]:E — I:_E]ajx7 _Fja]+1$7 .’E,F]8J+1x]]+1

which can be rewritten as
0 1 1
Tr = [Fj8j+156, €j8jx, ‘le‘, —Fj8j+1£6]j+1.

These two equations show that ®;z is thin if and only if = is thin. Hence ®z is thin and only if x is
thin. In particular, if &z =0 (i.e. ®x = 'Sz ) then ®x is thin, so x is also thin. O

5 Skeleton and coskeleton

If one ignores the elements of dimension higher than n in an w-groupoid one obtains an n-tuple
groupoid. The truncation functor tr" : G — G, thus defined has (as we shall show) both a left adjoint
sk™ : G, — G, the n-skeleton functor, and a right adjoint cosk™ : G, — G, the n-coskeleton functor.
(Here we follow the notation and terminology of Duskin [14].) The coskeleton is easily described in
terms of ‘shells’ as follows.

In any cubical complex K, an r-shell is a family x = (z') of r-cubes (i =1,2,--- , 7+ 1;a=0,1)
satisfying

85:6?:8?_1.7}? for 1<j<i<r+1 and a,3=0,1.

In particular the faces 05y of any (r + 1)-cube form an r-shell dy. We denote by 0K, the set of all
r-shells of K (cf. Duskins’s “simplicial kernel”).

Let K = (K., K1, -+ , Kp) be an n-truncated cubical complex. Then K’ = (0K, K,,, K,—1,- -+ , Kp)

is an (n + 1)-truncated cubical complex in which, for any x € 0K, 0{x is defined to be z§ and, for
any y € K, €y is defined to be the n-shell z, where (cf. (1.1), (iii))

g;-108y (i <j),
(5.1) zi'=¢ €;0F 1y (1> 7)),
y (i =J).

If K has connections, we can also define I';y = w, where (cf. (1.2)(iii))

D108y (i <j), w =wi, =y,
(5.2) we =
L;08y  (i>7+1); wj=wj,=ny.
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In this way K’ becomes an (n+1)-truncated cubical complex with connections. If K has compositions,
we can also define compositions in 0K, as follows. Let x,y € OK,, with y? = mjl Define x +;y =t
and —;x = s, where (cf. (1.3))

t) = a7, i +im1yy (1<),
o —
1

ti =y, a5y (@>),

(5.3)

s =}, —j—1af (1<),
s =

5]1 = x?, —;x (1> 7).

Then K’ becomes an (n + 1)-truncated cubical complex with connections and compositions. If K is
an n-tuple groupoid, then K’ is an (n + 1)-tuple groupoid. The verification of these facts is a tedious
but entirely routine computation.

The coskeleton can now be obtained by iteration of this construction.

Proposition 5.4 If G = (G, Gp_1,...,Go) is an n-tuple groupoid, then the w-groupoid G with

el Gm for m < n,
" am—"G, form>n

and operations defined as above, is the n-coskeleton of G. Its elements in dimension n+ 2 and higher
are all thin.

Proof. If H is any w-groupoid and 0, : Hp — Gy are defined for k = 0,1,2,--- ,n so as to form a
morphism of n-tuple groupoids from tr""H to G, then there is a unique extension to a morphism of
w-groupoids 0 : H — G defined inductively by

(e

Omy =2z, where =z =60,_10"y (m > n).

This shows that G = cosk™G.

To prove the last assertion, it is enough to show that, for any w-groupoid G, elements of 0?G,. are
always thin. Let z € O2G, ; then w = ®z € 02G, and all its (r + 1)-dimensional faces 92w except
0w are 0p, where p = Bz. This implies that all the r-dimensional faces of w are 0,. Hence Ow is an
r-shell all of whose faces are 0,. By definition, therefore d)w = 0,. Hence w itself is an (r + 1)-shell
all of whose faces are 0, and therefore w = 0,. By Proposition 4.12, z is thin. O

We can now apply the folding operations ®; and ® in the w-groupoid cosk™G, where G =
(GnGn-1,---,Gp). Given an n-shell y = (y*) € OG,,, we obtain n-shells ®;y and @y = &Py --- ®,,_1y.
By Proposition 4.5, all faces of ®y except )@y are 0p, where p = By = (O)"yi. If H is a given
w-groupoid, then adjointness gives a canonical morphism 0 : H — Cosk™H = cosk™(tr"H), with
Onr1x = Ox for x € H,1 1. Since 0 preserves the folding operations we have

(5.5) ®9x = 0Pz
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for any element x of dimension at least two in an w-groupoid. (Note that by 4.2 the faces of ®;x
depend only on the faces of x, and this gives a recipe for ®;0x. ) The same is true in any m-tuple
groupoid.

Proposition 5.6 Let G be an w-groupoid, and let C' = ~vG be its associated crossed complex. Let
x € 0Gy—1 and § € Cy(p), where p = fx and n > 2. Then a necessary and sufficient condition for
the existence of x € Gy, such that 8r = x and Pz = £ is that 6§ = IPx. Furthermore, if x exists, it
1S unique.

Proof. If 8z = x and ®x = £, then 8Pz = Pdxr = &x, by (5.5), so §&x = (®x); = NPz = 6¢.
Suppose, conversely, that we are given x and ¢ with 6§ = 9®x, i.e. d¢ = (®x){. Then, since all other
faces of £ and ®x are concentrated at p, we have 9§ = &x = ;95 --- $,,_1x, an equation in OG,_.
We have to show that there is a unique = € G,, such that 9z = x and ®x = £. By induction, it is
enough to show that if y € G,, and 9y = ®;z for some 1 < i< n —1 and z € OG,_1, then there is a
unique z € G, with 9z = z and ®;z = y. But this is clear since the equation

1 0 1
[—€i0;z, —Li0i12, 2, 10 2lip = y

becomes
1150 T2l 1., =
[—eiz;, — i%i4+15 %> zzi+1]1+1 =Y

under the stated conditions, and therefore has a unique solution for z in terms of y and z. It is easy
to check that this z has boundary z. O

Corollary 5.7 A thin element on an w-groupoid is determined by its faces. Given a shell x, there is
a thin element t with 8t = x if and only if ddx = 0.

Proof. Put £ =0 in Proposition 5.6 and use the fact that ¢ is thin if and only if ®¢ = 0 (Proposition
4.12). O

Corollary 5.8 Let G be an w-groupoid. Then the associated crossed complex vG generates G as
w-groupotd.

Proof. Let H be any w-subgroupoid of G containing C = vG. Then yH = C' by definition. We show
inductively that H, = G,. This is true for n = 0,1 since Cy = Gy, C1 = G1. Suppose x € Gp(n > 2).
Then ¢z € C, and, by induction hypothesis, dx € OH,_1. By Proposition 5.6, there is a unique
y € H, with 0y = 8z and &y = ®x. But x is the unique element of G,, with this property, so
H, =G,. O

We can now describe the n-skeleton construction. A shell x will be called a commuting shell if ‘the
sum of its faces is 0’, that is, if d®&x = 0.

Proposition 5.9 Given an n-tuple groupoid G = (G, Gn—1,--+ ,Go), the n-skeleton S of G is the
w-subgroupoid of G = cosk™G generated by G. For m < n,S,, = Gy, while for m > n, S,, consists
entirely of thin elements, namely, the commuting shells in 0S,,_1. For m > n+2, all shells in OS,,_1
are commuting shells.
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Proof. Let S, be defined by

g _ Gm if m < n,
" {x € 08,-1;0Px =0} if  m>n.

Then G C S C cosk™G. By Corollary 5.7 applied to the w-groupoid G = cosk™G, S,, contains only
thin elements for m > n. Clearly, S is closed under face maps, degeneracy maps and connections
(since ey and I'jy are always thin). Also, by induction on m, .S, is closed under +;, —;(1 < i < m);
for if x,y € Sy (m > n) and x+;y is defined, then x +; y has faces in S,,,—1 (by induction hypothesis)
and 0®(x +; y) = 0 because composites of thin elements in G are thin. Thus x +; y € Sy, and
similarly —;x € S,,. Hence S is an w-subgroupoid of G. Also, by Corollary 5.7, any w-subgroupoid of
G containing S,,_1(m > n) must contain S,,, so S is generated by G.

If H is any w-groupoid and ¢ : G — tr"H is a morphism of n-tuple groupoids, then 1 extends
uniquely to a morphism of w-groupoids ¢ : S — H by the inductive rule that, for any commuting
shell x € OSy,,—1(m > n), ¢y (x) is the unique thin element ¢ of H,, such that 02t = ¢,—12¢ for
1 <i<mand a=0,1. The element ¢ exists by Corollary 5.7 since the elements ,,_1z{* form a
commuting shell in H. This shows that S = sk™G. If m > n + 2, all shells in G,, = O™ "G}, are thin
by Proposition 5.4 and are therefore commuting shells by Corollary 5.7. a

Given an w-groupoid G, we define Sk"G = sk™(tr"G) and call this, by abuse of language, the
n-skeleton of G. There is a unique morphism o : Sk"G — G of w-groupoids (the adjunction) which is
the identity in dimensions 0,1,2,--- ,n.

Proposition 5.10 The adjunction o : SK™G — G is an injection and identifies SK™G with the w-
groupoid of G generated by G,,.

Proof. For m =0,1,2,--- ,n, o, : Gy, — Gy, is the identity map. Let S, = (Sk"G),,. Then, for
m > n, Sy, is the set of commuting shells in 0.5,,_1, by Proposition 5.9. Suppose that, for some m > n,
Om—1: Sm—1 — Gpm—1 is an injection. For any x € S,,, the elements 0,12 form a commuting shell
y in OG,,_1 and 0, is the unique thin element ¢ of G, with 8¢ = y. Thus 2& = o' |y® = o1 |09t
is uniquely determined by ¢ for all (i,«) and therefore o, is an injection. This shows, inductively,
that o is an injection. Now G,, generates tr"G as n-tuple groupoid (even as n-truncated complex) and
therefore generates SkG as w-groupoid, by Proposition 5.9. It follows that G, generates the image
of SK"G in G. O

6 The equivalence of w-groupoids and crossed complexes

We now show how to construct, from any crossed complex C, and w-groupoid G = AC with vG = C.
The basis of the construction is Proposition 5.6 which shows (inductively) that the elements of any
w-groupoid G are uniquely determined by vyG. Given an w-groupoid G with associated crossed com-
plex C = 7G, and given x € 0G,_1,£ € C), with §§ = dPx, we write (x,§) for the unique element
x € Gy such that 9 = x and &z = £. Our next proposition shows that the compositions in G are
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also determined by vG.

Proposition 6.1 If z = (x,&),y = (y,n) in Gn, and z} = y?, then

n (X+1y,n+EY) ifn=2andi=1,
T4y =
Y (x+;y,8"Y +1n)  otherwise,

and
—ir = (—ix, =),
Proof. This follows immediately from Proposition 4.9 and the rule 8(z +; y) = dx +; dy. O

Theorem 6.2 There is a functor \ from the category C of crossed complexes to the category G of
w-groupoids such that A : C — G and v : G — C are inverse equivalences.

Proof. Let C' be any crossed complex. We construct an w-groupoid G = AC and an isomorphism
of crossed complexes o : C' — yG by induction on dimension. We start with Gy = Cy,C1 = (1, so
that (G1,Go) is a groupoid. We write 7vG,, (in any cubical complex) for the set of n-cubes x with all
faces except 8?37 concentrated at a point. Then vGy = Cy,vG1 = C4, and we take o¢ : Cy — vGo
and o1 : C7 — ~Cj to be the identity maps. Suppose, inductively, that we have defined G, and
or : Cp — 7G, for 0 < r < n (where n > 2) so that (Gp,—1,Gn—1, -+ ,Gp) is an (n — 1)-tuple
groupoid and (op,—1,0p-2, -+ ,00) is an isomorphism of (n — 1)-truncated crossed complexes. Then
(0Gp-1,Gpn-1,-+ ,Gp) is an n-tuple groupoid and we define

G, ={(x,8);x € OGy,-1,& € Cp, 6Px = 0,,_10&}.

For y € G,—1, let g5y = (g;y,0), where €; is defined by (5.1). Then ¢;y € G, since ®Pe;y = 0 by
Proposition 4.7. The maps €; : G,—1 — Gy, together with the obvious face maps 05 : G,, — G, —1
defined by 0%(x,&) = z¢, give (Gpn,Gn—1,---,Go) the structure of an n-truncated cubical complex.
Similarly one can define connections I'; : G,—1 — Gy, by I'jy = (I';y,0), where I'; is defined by (5.2),
and the laws (1.2) are clearly satisfied, since they are satisfied by T';.

With Proposition 6.1 in mind, we now define operations +;, —; as follows. For (x,¢),(y,n) € G,
with 2} = 92, let

i =

(x+1y,n+&Y) ifn=2andi=1,

X, +; ) =
( g) (y 77) {($ +iy, €u1y + 77) otherwise,

and
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By Proposition 4.9, in the general case,

0P(x+;y) = 0((Px)"“Y 4 Py)
= (02106)" + 7161
= Un—15(§Uiy + 77)7

so Gy is closed under +;. The case n = 2,9 = 1 is similar. Also 0®(—;x) = J(—Px)7"* =
On—10(—&"*), and therefore —;x € G,,.

We claim that (G, Gp—1,. .., Go) is now an n-tuple groupoid. Firstly, it is clear that, for t € G,,—1,
g;t acts as an identity for +;, and that —; is an inverse operation for +;. The associative law is verified
as for semi-direct products of groups. Secondly, the laws (1.3), (1.5) and (1.6) are true for OG,,_;.
It remains, therefore, to prove the interchange law (1.4)(i) (from which (1.4)(ii) follows, using the
groupoid laws).

Let 1 <i<j<nandletz=(x8),y=(y,n),z = (z,(),t = (t,7) be elements of G,, such that

the composite shell '
J

==

z t|

is defined. Let g = 004 ---7-+-7--- Ot € G have boundary

c

2
bgd\l’—>

1

a

Then
(x4i2) +5 (y+it) = (w,w),  (z4;5y) +i (2 +;1) = (w,0),

say, and we have to show that w = w’ in C,. If n =2 then i = 1 and j = 2 and we find that
w=(C+E) " + (T +n")W = ([ + 1)+ (E +n)?

To show that these are equal, it is enough to show that £ + 7 = 7 + £F4. But this follows from
the crossed module laws since

0T =001 =0t =6Pg=—-—a—b+c+d

and therefore
T+ ngra 4= (€b+a)6‘r — €c+d‘

If n > 2, we find that
_ b a d /I c d a
w=(+*+n"+, w = +n)+ "+,

and since addition is now commutative, the equation w = w’ reduces to £41° = ¢4, that is, £9%9 = ¢,
But, by induction hypothesis, we have an isomorphism o9 : Cy — y(G2 preserving the crossed module
structure, and if § € Cy is the element with o9(6) = ®g, then £9%9 = ¢99 = ¢ by the crossed complex
laws. This completes the proof of the interchange law.
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We now have an n-tuple groupoid (G,,,Gp—1, - ,Go), and we must identify vG,. For any & €
Cn(p), let d¢ denote the shell x € OG),_1 with 29 = 0,,_16¢ and all other z& concentrated at p. Define

Clearly 0,¢ € vG,, and every element of yvG,, is of this form. The bijection o, : C,, — ~vG, is
compatible with the boundary maps since do,& = No,& = 0,_15¢. Tt preserves addition because, for

§,m € Cn(p),

(d€,€) + (dn,n) = (d€ +, dn, €97 + 7))
= (d(§+n),§+n).

Furthermore, if £ € Cy,(p) and a € C1(p,q) = G1(p, q), then

(Ung)a = _nf?_la +n Unf +n 5?_1a
= (—n€1E72a,0) 4 (€, €) +,, (€167 2a, 0)
= (y,£%),

in all cases. Since (0,£)* € Gy, it follows that y = d(£%), making o, an isomorphism of crossed
complexes up to dimension n.

This completes the inductive step in our construction, and we therefore obtain an w-groupoid
G = AC and an isomorphism o : C' — 4G of crossed complexes. This w-groupoid has the following
universal property: If G’ is any w-groupoid and ¢’ : C' — vG’ any morphism of crossed complexes
then there is a unique morphism 6 : G — G’ of w-groupoids making the diagram

C —Z=7G ¢ G =\C

Nk b

ryG’ |G G/

commute. We define 6 inductively, starting with 6y = o(,01 = o}. For n > 2, each 2/ € G, is
uniquely of the form (x',¢’) where X' € OG),_,,¢' € vG,, and §®x’ = 6¢'. We define 0, : G,, — G,
by (x,§) — (X', &), where (') = 0,,_12$ and ' = o0},§. This definition is forced, and it clearly gives
a morphism of w-groupoids. From this universal property, it follows that A is a functor from C to
G and is left adjoint to v : G — C. The adjunction o, : C' — 4AC is an isomorphism for all C, so
1c ~ v\. Also, the adjunction AyG’ — G’ is obtained by putting G = vG’, ¢’ = identity, in which case
6 is an isomorphism AMyG’ — G, as is clear from its definition. Hence Ay ~ 1g and we have inverse
equivalences A and v between C and G. O

7 Properties of thin elements

In any cubical complex K we define an n-box to be an n-shell with one missing face. More precisely
(since we do not postulate the existence of an extra face completing the shell) it is a collection of
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n-cubes x = (z¢), where 1 <7 <n+1,a=0,1 and («,i) # (v, k) for some fixed 7, k, satisfying the
incidence relations

olag =02 2] for  1<j<i<n+1,(ad)# (1.k), (8.5) £ (1. k).

An (n + 1)-cube z is a filler for the box x if 0%z = z§ for («,7) # (7, k). Similarly z is a filler for
the shell y if 0z = y§* for all a,i. We recall that K is a (cubical) Kan complex if every box has a
filler, and we now show that w-groupoids are not only Kan complexes, but are provided with a set of
canonical fillers, namely, the thin elements defined in Definition 4.11. First we prove:

Lemma 7.1 (the Homotopy Addition Lemma). Let G be an w-groupoid (or an m-tuple groupoid with
m >=n). Let x € OG,, and define ¥x € C,, = (7vG),, by

—z} — 29 + 20 + 2d = —Pa] — ®2Y + ) + Pal ifn=1,
Yx = ¢ —®zi — (®29)¥2* — Ozl + (®2)“* + Szl + (P2)) X ifn =2,
S () @) — (a) ) ifn>3

(where u; = 0103 ---7--- 9% 1). Then §®x = Ix in all cases. Hence, if t is a thin element of G, then
Yot =0.

Proof. The case n = 1 is trivial, so we assume n > 2. It is enough to show that ¥®;x = ¥x for
j=1,2,--- ,n; for this implies that ¥®x = ¥x, and since all faces of ®x except one are 0, we have

Yox = (P px) 1 P*
= ®odx (because u1 Px = 1 %)
= §Px (because 6Px € C,,).

To prove that ¥®;x = 3x, put y = ®;x (for fixed j). By 4.2, we have

o {@-w? (i < 4),

Y = L
‘ O (i >j+1);
1 1.1,
ZJ}X-H =Y =025
0 1 0 0.1
Y; = [—ij, _$j+1axjaxj+l]j‘

Hence, by 4.10 and Proposition 4.12,

Dyi* = @ai (i # J,j + 1),
(*) Dy = Py =0,
q’y? = @[—le., —$9+17$971’}+1]j‘

: o [_.1 _.0 0 .1 1. s ,
We write a; = | Tj, —Tjq, %5, mj+1]J and use Proposition 4.9 to compute ®aj;.

First suppose that we are not in the case n = 2,57 = 1. Then

P; = —(CIijl-)pj - (@:U?Jrl)qj + (CD:/U?)TJ' + @x}Jrl,
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where p; = uja;,q; = u; [le-,aj]j,rj = ujle-ﬂ. By (1.3), u; is a morphism of groupoids from (G+;)

o — gl 0 0 .0 el — el . .
to (G1,+) so pj = ujr; — ujxig +uxy + uizi in Gi, and g; = ujx; + pj. The four terms of p;
are the edges of the square s; = 010} - Ej/j-t\l -+~ O}x; hence pj = X0s; = 6Ps;. Also uj:cjl = Uj41X
and uj:chlle = Uu;X, SO

(**) Dy = Baj = —(Dxj)" ™ — (B2l )P 4 ()X 4 Baf .

If n > 3 then 6®s; acts trivially on C),, by Proposition 3.9 and 3.6, and addition is commutative.
Hence by (*),

Sy = Z {2y} — (Py)"¥}
= Z (=) { @] — (Pa) P} + (=) H (Dy) i ®ix,

i1
But w;®;x = w;x if i # j,i # j + 1; and uj<I> ix = 0; so substituting from (**) we find Xy = Xx.

If n =2 and j = 2 then sy = 9}x = z}, and §®sy = §®z} acts on Cy by a%®%2 = —dz] +a + dai.
Hence (**) becomes

dyd = — D] — Pad — (Bx3)"3” + dxf 4 (P2)">* + D2l
which, together with (*), gives

Sy = —®yz — (Py9)"2"* — yp + (Pyg) "8 ®>* + Dy + (Pyy) P>
=0 — ®y) — Dzt + 0+ 0+ (Pz)ux
= ¥X.

Finally, in the case n = 2,5 = 1, we have

(by(l) = (P[*x%v *1:(2)’ $(1]7 x%]l
= Dy + (Pa) — (Pay)® — (D)

by Proposition 4.9, where p1, q1,71 are as defined above. As in the previous cases, this gives
Oy = dxd + (P2)* — gl — (P2)¥* — D2l + Dl
and hence
Yy = —®x} + (P29)"* 4+ daj 4 (Ba))1> — dal — D(29)"* — dxi + Dl
Writing b = (®29)%* + &zl + (®29)“1X — dad and ¢ = —(Px9)">* — dal, it can be verified that

8b = —dc, and hence, by the crossed module laws, b+ ¢ = ¢+ b°° = ¢+ b~ % = ¢ + b. It follows easily
that Yy = ¥x, as required.
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If ¢ is thin, then L9t = §®8t = )Pt = 0 by (5.5) and Proposition 4.12. O

Note. The element ¥x in the case n = 2 is in the centre of Co(8x), because conjugation by ¥x = 0®z
is the same as action by d6®x = 0. Hence Xx can be rewritten, for example, by permuting its terms
cyclically.

Proposition 7.2 Let G be an w-groupoid. Then each box in G has a unique thin filler.

Proof. Let y be an n-box with missing (v, k)— face. The result is trivial if n = 0, so we assume
n > 1. By Corollary 5.7, it is enough to prove that there is a unique n-cube yg which closes the box
y to form an n-shell y with §®y = >y = 0.

If n > 2, the edges of the given box y form the complete 1-skeleton of an (n + 1)-cube; in
particular, y determines the n+ 1 edges w; = u;y terminating at Sy. We write F'(s$) for the word in
the indeterminates s{(¢ = 1,2,--- ,n+ 1;a = 0, 1) obtained from the formula for ¥x in Lemma 7.1
by substituting s{' for @z and the given edges w; = u;y for w;x. If n =1, then

F(s7) = —s1 — s — 51 + 5,

does not involve the w;.

If we put z = 9y for (a,i) # (v,k), then the z¢ form a box of (n — 1)-shells, and there is a
unique (n—1)-shell z] which closes this box to form an n-shell Z € 02G,,—1. Since § preserves addition
and the action of the edges w;, we find

(*) F(0®28) = 6F(92) = 657 = 6°3Z = 0.

Next, put (¢ = &y for (v, i) # (v, k) and let ¢ € C,, be the unique element determined by the
equation F'((*) = 0. Then
52 = dDyg = 0022 for (i) £ (1, k),

1

while
F(5¢) = 0.
From these equations and (*) we deduce that 6¢] = d®z] also. Hence, by Proposition 5.6, there is a

unique y; € Gy, such that 8y; = z] and Py, = (}/; this y; completes the box y to form a shell ¥ with
Yy = F(¢f') = 0, as required. O

Proposition 7.3 Lett be a thin element in an w-groupoid. If all faces except one of t are thin, then
the last face is also thin.

Proof. Let the faces of ¢ be t§(i = 1,2,--- ,n;a = 0,1). By Proposition 4.12, &t = 0 for («,i) #
(v, k) say, so X0t = +(Pt])" for some edge w of t. But ¢ is thin so, by the Homotopy Addition
Lemma, >0t = 0. Hence @tz =0 and tz is thin. O
Remark 1. The properties of Propositions 7.2 and 7.3 of thin elements, together with the fact that
degenerate cubes are thin, can be taken as axioms for ‘cubical T-complexes’ or ‘cubical complexes
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with thin elements’. (The definition was first given by Dakin [12] in the simplicial case.) Precisely, a
(cubical) T-complez is a cubical complex with a distinguished set of elements called ‘thin’, satisfying:
(i) all degenerate cubes are thin;

(ii) every box has a unique thin filler;

(iii) if a thin cube has all faces except one thin then the last face is also thin.

We have shown that every w-groupoid is a T-complex, and it is a remarkable fact (see [9]) that the
converse is also true: all the w-groupoid structure can be recovered from the set of thin elements using
these three assumptions. Thus the category of cubical T-complexes is equivalent (in fact isomorphic)
to the category of w-groupoids; it is therefore, by Theorem 6.2, equivalent to the category of crossed
complexes. Ashley has shown [1] that the category of simplicial T-complexes is also equivalent to the
category of crossed complexes. He has also shown that this result generalises the theorem of Dold and
Kan [13, 20] which gives an equivalence between the category of simplicial groups and the category
of chain complexes; the T-complex structure on a simplicial abelian group is obtained by defining the
thin elements to be sums of degenerate elements.

Remark 2. If G is any w-groupoid, we may define the fundamental groupoid 71G and the homotopy
groups mp(G,p)(p € Go,n > 2) as follows. For a,b € Gi(p,q), define a ~ b if there exists ¢ € Ga
such that ¢ = a, dic = b, ¢ = e1p, Oic = £1q. Then ~ is a congruence relation on G and we
define 711G = G1/ ~. For n > 2 and p € Gy, let Z,(G,p) = {x € Gp;08x = £} 'p for all (a,i)}.
Then the +;(i = 1,2,--- ,n) induce on Z,(G,p) the same Abelian group structure. Two elements
z,y of Z,(G,p) are homotopic, x ~ y, if there exists h € Gp4+1 such that 82+1h =, 8}L+1h =y and
0%h = ef'p for i # n + 1. This is a congruence relation on Z, (G, p) and we define m, (G, p) to be the
quotient group Z,(G,p)/ ~.

Now G is a Kan complex, by Proposition 7.2, so there is a standard procedure for defining mG
and 7, (G, p), without using the compositions +;. As sets they coincide with the definitions above,
but their groupoid and group structures are defined by a procedure using only the properties of Kan
fillers. It is not hard to see that the special properties of thin fillers in G ensure that the groupoid
and group structures obtained in this way coincide with those induced by the compositions +;.

It is also clear that if C' = G then the groupoid mG and the groups m,(G,p) coincide with
the fundamental groupoid w1 C and the homology groups H, (C,p), which are defined as follows. For
any crossed complex C, mC' is the quotient of the groupoid C; by the normal, totally disconnected
subgroupoid §(Cs); and H,(C,p), for n > 2, is the group Z,(C,p)/Bn(C,p), where

Zn(C,p) = Ker(d : Cp(p) — Cn-1(p)),
By (C,p) = Im(5 : Cpi1(p) — Cn(p))-

Remark 3. Tt is well known that the crossed complex wI™ has one generator for each cell of I, with
defining relations given by the Homotopy Addition Lemma. The corresponding statement for the w-
groupoid oI is that it is the free w-groupoid on a single generator in dimension n; this fact is proved
in [8].
Acknowledgements

We would like to make a number of acknowledgements. We must thank Chris Spencer, whose work
with one of us [10] in 1972 gave the crucial algebraic impetus to work in dimension 2. We must thank

25



Keith Dakin, whose invention of T-complexes [12] made it clear that an acceptable generalisation of
double groupoids to all dimensions did exist. We thank the Science Research Council for support.
Finally, we thank many friends whose sceptical interest has often been a stimulus and challenge. These
two papers may also, for one of us, be taken as the final elucidation of a paragraph near the end of the
Introduction to [4] which refers prematurely to an n-dimensional version of the Van Kampen theorem.

References

[1] N. Ashley, T-complexes and crossed complexes, Ph.D. thesis, University of Wales (1978).

[2] A. Bastiani and Ch. Ehresmann, Categories of sketched structures, Cahiers Topologie Géom.
Différentielle 13 (1972) 105-214.

[3] A. L. Blakers, Some relations between homology and homotopy groups, Ann. of Math. 49 (1948)
428-461.

[4] R. Brown, Groupoids and Van Kampen’s theorem, Proc. London Math. Soc. (3) 17 (1967)
385-401.

[5] R. Brown and P. J. Higgins, On the connection between the second relative homotopy groups of
some related spaces, Proc. London Math. Soc. (3) (1978) 193-212.

[6] R. Brown and P. J. Higgins, Sur les complexes croisés, w-groupoids et T-complexes, C.R. Acad.
Sci. Paris, Série A 285 (1977) 997-999.

[7] R. Brown and P. J. Higgins, Sur les complexes croisés d’homotopie associés a quelques escapes
filtrés, C.R. Acad. Sci. Paris, Série A, 286 (1978) 91-93.

[8] R. Brown and P. J. Higgins, Colimit theorems for relative homotopy groups, J. Pure Appl. Algebra
22 (1981) 11-41.

[9] R. Brown and P. J. Higgins, (a) The equivalence of w-groupoids and T-complexes (b) The equiv-
alence of co-groupoids and crossed complexes, Cahiers Top. Géom. Diff., 22 (1981) 349-386.

[10] R. Brown and C. B. Spencer, Double groupoids and crossed modules, Cahiers Topologie Géom.
Différentielle 17 (1976) 343-362.

[11] R. B. Coates, Semantics of generalised algebraic structures, Ph.D. thesis, University of London
(1974).

[12] M. K. Dakin, Kan complexes and multiple groupoid structures, Ph.D. thesis, University of Wales
(1977).

[13] A. Dold, Homology of symmetric products and other functors of complexes, Ann. of Math. 68
(1958) 54-80.

[14] J. Duskin, Simplicial methods and the interpretation of triple cohomology, Mem. Amer. Math.
Soc. No. 163 (1975).

26



[15] M. Evrard, Homotopie des complexes simpliciaux et cubiques, Preprint.
[16] P. Freyd, Aspects of topoi, Bull. Austral. Math. Soc. 7 (1972) 1-76.

[17] J. Howie, Pullback functors and crossed complexes, Cahiers Topologie Géom. Differentielle, 20
(1979) 281-295.

[18] J. Huebschmann, Verschrénkte n-fache Erweiterungen von Gruppen und Cohomologie, Diss.
Eidg. Techn. Hochschule, Zurich (1977).

[19] J. Huebschmann, Crossed n-fold extensions of groups and cohomology, Comment. Math. Helvetii
55 (1980) 302-314.

[20] D. M. Kan, Functors involving c.s.s. complexes, Trans. Amer. Math. Soc. 87 (1958) 330-346.

[21] J. H. C. Whitehead, Combinatorial homotopy II, Bull. Amer. Math. Soc. 55 (1949) 453-96.

27



