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This will be largely about work with Philip Higgins 1974-2001.
‘Nonabelian algebraic topology: filtered spaces, crossed
complexes, cubical homotopy groupoids’, R. Brown, P.J.Higgins
and R. Sivera (to appear 2010) (downloadable as pdf: xx+496)
Other large input in this area from C.B. Spencer (1971-73),
Chris Wensley (1993-now) and research students Razak Salleh,
Keith Dakin, Nick Ashley, David Jones, J.-L Loday, Graham
Ellis, Ghaffar Mosa, Fahd Al-Agl, . . .
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F.W. Lawvere: The notion of space is associated with
representing motion.
How can algebra structure space?
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Local and global issue.
Use rewriting of relations.
Classify the ways of pulling the
loop off the knot!
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Now to groupoids in algebraic topology! Consider forming a
pushout of spaces:

{0, 1}

��

// {0}

[0, 1]

{0, 1}

��

// {0}

��
[0, 1] // S1

Let I be the indiscrete (transition) groupoid on {0, 1}.

0id 99

ι
++ 1

ι−1

kk idee

{0, 1}

��

// {0}

I

{0, 1}

��

// {0}

��
I // Z

pushout of groupoids
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Advantages of π1(X ,C ) where C is a set of base points:

• C can be chosen according to the geometry of the
situation;

• X may be the union of two open sets whose intersection
has 150 path components;

• colimits (pushouts) rather than exact sequences;

• a nonabelian invariant, π1(X , x), is computed precisely
from the larger structure, even though the given
information is in two dimensions, 0 and 1;

• groupoids have structure in the two dimensions, 0 and 1,

• and they model weak homotopy 1-types;

• there are also appropriate accounts of:
covering morphisms of groupoids
and of orbit groupoids.
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Some work on groupoids:

Brandt (1926): composition of quaternary quadratic forms,
developing work of Gauss on the binary case
P.A. Smith (1951): Annals of Math.
Mackey: ergodic theory,
C. Ehresmann: bundles, foliations, differentiable groupoids, . . .,
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What is Higher Dimensional Algebra?

The idea is that we may need to get away from ‘linear’ thinking
in order to express intuitions clearly.
Thus the equation

2× (5 + 3) = 2× 5 + 2× 3

is more clearly shown by the figure

| | | | | | | |

| | | | | | | |

But we seem to need a linear formula to express the general law

a× (b + c) = a× b + a× c .
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Note also the figures

From left to right gives subdivision.
What we need for local-to-global problems is:
Algebraic inverses to subdivision.
i.e., we know how to cut things up, but how to control
algebraically putting them together again?
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Higher homotopy theory?

groups ⊆ groupoids⊆ higher groupoids ?

Consider second relative homotopy groups π2(X ,A, x):

1

2

��
//

A

Xx
�O
�O
�O
�O
�O

x
�O
�O
�O
�O
�O

x
/o/o/o/o

Definition involves choices, and is unsymmetrical w.r.t.
directions.
Large compositions are 1-dimensional:

�O
�O
�O

�O
�O
�O

�O
�O
�O

�O
�O
�O

�O
�O
�O

�O
�O
�O

�O
�O
�O

�O
�O
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�O
�O

�O
�O
�O

/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o/o
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homotopy classes rel vertices
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Horizontal composition in ρ2(X ,A,C ), where dashed lines
show constant paths.
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To show +2 well defined,

let φ : α ≡ α′ and ψ : β ≡ β′, and
let α′ +2 h′ +2 β

′ be defined. We get a picture
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Thus ρ(X ,A,C ) has in dimension 2 compositions in directions
1,2 satisfying the interchange law and is a double groupoid,
containing as a substructure π2(X ,A, x), x ∈ C and π1(A,C ).
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This structure of double groupoid enables multiple
compositions.

Remarkable fact: given such a double composition in
ρ2(X ,A,C ) then representatives can be chosen which actually
fit together!
Aesthetic implies power!!
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Aesthetic implies power!!
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In dimension 1, we still need the 2-dimensional notion of
commutative square:

��c

a//

b��

d
//

ab = cd a = cdb−1

Easy result: any composition of commutative squares is
commutative.
In ordinary equations:

ab = cd , ef = bg implies aef = abg = cdg .

The commutative squares in a category form a double category!
Compare Stokes’ theorem! Local Stokes implies global Stokes.
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What is a commutative cube?

• //
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•
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•

??~~~~~~~ //

��

•

??~~~~~~~

��

• //•

• //

??~~~~~~~ •

??~~~~~~~

We want the faces to commute!
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The problem is a cube has 6 faces divided into odd and even
ones, which fit together as

∂−2

u

a ∂+
3

g

e h

∂+
1

z

b

f

h

w

even faces

∂−1

u

c g

∂−3

c

a ∂+
2

v

d h

b w

odd faces

So the possible compositions do not make sense,
and the edges do not agree.
Need canonical ways of filling in the corners.
In 2-dimensional algebra, you need to be able to turn left or
right.
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To resolve this, we need some special squares called thin:
First the easy ones:

(
1 1

1
1

) (
a 1

1
a

) (
1 b

b
1

)
or ε2a or ε1b

laws
[
a

]
= a

[
b
]

= b

Then we need some new ones:(
a a

1
1

) (
1 1

a
a
)

These are the connections



Some
intuitions of

Higher
Dimensional

Algebra,
and potential
applications
Askloster

Ronnie Brown

Algebra
structuring
space

Groupoids in
topology

Higher
dimensional
algebra

Higher
homotopy
theory

Commutative
cubes

Connections

Rotations

Algebraic
topology of
filtered spaces

Potential
applications

To resolve this, we need some special squares called thin:
First the easy ones:(

1 1

1
1

) (
a 1

1
a

) (
1 b

b
1

)

or ε2a or ε1b

laws
[
a

]
= a

[
b
]

= b

Then we need some new ones:(
a a

1
1

) (
1 1

a
a
)

These are the connections



Some
intuitions of

Higher
Dimensional

Algebra,
and potential
applications
Askloster

Ronnie Brown

Algebra
structuring
space

Groupoids in
topology

Higher
dimensional
algebra

Higher
homotopy
theory

Commutative
cubes

Connections

Rotations

Algebraic
topology of
filtered spaces

Potential
applications

To resolve this, we need some special squares called thin:
First the easy ones:(

1 1

1
1

) (
a 1

1
a

) (
1 b

b
1

)
or ε2a or ε1b

laws
[
a

]
= a

[
b
]

= b

Then we need some new ones:(
a a

1
1

) (
1 1

a
a
)

These are the connections



Some
intuitions of

Higher
Dimensional

Algebra,
and potential
applications
Askloster

Ronnie Brown

Algebra
structuring
space

Groupoids in
topology

Higher
dimensional
algebra

Higher
homotopy
theory

Commutative
cubes

Connections

Rotations

Algebraic
topology of
filtered spaces

Potential
applications

To resolve this, we need some special squares called thin:
First the easy ones:(

1 1

1
1

) (
a 1

1
a

) (
1 b

b
1

)
or ε2a or ε1b

laws
[
a

]
= a

[
b
]

= b

Then we need some new ones:(
a a

1
1

) (
1 1

a
a
)

These are the connections



Some
intuitions of

Higher
Dimensional

Algebra,
and potential
applications
Askloster

Ronnie Brown

Algebra
structuring
space

Groupoids in
topology

Higher
dimensional
algebra

Higher
homotopy
theory

Commutative
cubes

Connections

Rotations

Algebraic
topology of
filtered spaces

Potential
applications

To resolve this, we need some special squares called thin:
First the easy ones:(

1 1

1
1

) (
a 1

1
a

) (
1 b

b
1

)
or ε2a or ε1b

laws
[
a

]
= a

[
b
]

= b

Then we need some new ones:

(
a a

1
1

) (
1 1

a
a
)

These are the connections



Some
intuitions of

Higher
Dimensional

Algebra,
and potential
applications
Askloster

Ronnie Brown

Algebra
structuring
space

Groupoids in
topology

Higher
dimensional
algebra

Higher
homotopy
theory

Commutative
cubes

Connections

Rotations

Algebraic
topology of
filtered spaces

Potential
applications

To resolve this, we need some special squares called thin:
First the easy ones:(

1 1

1
1

) (
a 1

1
a

) (
1 b

b
1

)
or ε2a or ε1b

laws
[
a

]
= a

[
b
]

= b

Then we need some new ones:(
a a

1
1

) (
1 1

a
a
)

These are the connections



Some
intuitions of

Higher
Dimensional

Algebra,
and potential
applications
Askloster

Ronnie Brown

Algebra
structuring
space

Groupoids in
topology

Higher
dimensional
algebra

Higher
homotopy
theory

Commutative
cubes

Connections

Rotations

Algebraic
topology of
filtered spaces

Potential
applications

To resolve this, we need some special squares called thin:
First the easy ones:(

1 1

1
1

) (
a 1

1
a

) (
1 b

b
1

)
or ε2a or ε1b

laws
[
a

]
= a

[
b
]

= b

Then we need some new ones:(
a a

1
1

) (
1 1

a
a
)

These are the connections



Some
intuitions of

Higher
Dimensional

Algebra,
and potential
applications
Askloster

Ronnie Brown

Algebra
structuring
space

Groupoids in
topology

Higher
dimensional
algebra

Higher
homotopy
theory

Commutative
cubes

Connections

Rotations

Algebraic
topology of
filtered spaces

Potential
applications

What are the laws on connections?

[ ] =

[ ]
= (cancellation)

[ ]
=

[ ]
= (transport)

These are equations on turning left or right, and so
are a part of 2-dimensional algebra.
The term transport law and the term connections came from
laws on path connections in differential geometry.
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are a part of 2-dimensional algebra.
The term transport law and the term connections came from
laws on path connections in differential geometry.
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Now you can use the thin elements to fill in the corners, and in
fact you also need to expand out.

1

a ∂−2

u

a ∂+
3e

g

h

1

1 ∂+
1

z

b

f

f 1

b w 1

=

1

1 ∂−1

u

c g

g

1

∂−3

c

a ∂+
2

v

d

1

h h

b w 1

Thus 2-dimensional algebra needs some new basic
constructions.
It is a good exercise to prove that the commutative cubes as
defined here form a triple category!
You can see there might be problems in doing this in dimension
n . Fortunately, these have been solved with the general notion
of thin element.
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Now add to the cubical singular complex of a space
connections defined using the monoid structures

max,min : [0, 1]× [0, 1] → [0, 1]

and get this structure on ρ(X ,A,C ).
This enough to prove analogously to the 1-dimensional case a
2-dimensional van Kampen theorem for the functor ρ
and so for the crossed module

π2(X ,A,C ) → π1(A,C ) ⇒ C

This 2d-vKT is difficult to prove directly. Published in 1978 in
the teeth of opposition! A 1993 book on 2-dim homotopy
theory and combinatorial group theory relates some
consequences, but not the theorem!
Note that the crossed module above has structure in
dimensions 0,1,2,
and models weak homotopy 2-types.
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Rotations: clockwise and counterclockwise

σ(u) =

 u

 τ(u) =

 u


Now we prove τσ(u) = u using 2-dimensional rewriting:
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Further work shows σ2u = −1 −2 u, so σ4u = u. This algebra
applied to ρ(X ,A,C ) shows the existence of specific
homotopies.
All this justifies the claim
higher dimensional nonabelian methods for local-to-global
problems
and for the notion of
higher homotopy groupoids
46 years after Čech introduced higher homotopy groups.
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Higher dimensions?

Work of RB and Philip Higgins 1979-1991
gave the following diagram of an intricate situation:

filtered spaces
C∗ = ∇ ◦ Π

��

Π

����
��

��
��

��
��

��
�

ρ

  A
AA

AA
AA

AA
AA

A
filtered

cubical sets
| |
oo

operator
chain

complexes Θ
//

crossed
complexes

∇oo

B

??���������������
λ //

cubical
ω-groupoids

with
connections

U∗

OO

γ
oo

No use of singular homology theory or simplicial approximation!
Π and ρ are homotopically defined.
Best since Poincaré???
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Here

• γ and λ are adjoint equivalences of monoidal closed
categories;

• γρ ' Π, and both preserve certain colimits (HHvKT), and
certain tensor products;

• Π ◦ B ' 1;

• ∇ is left adjoint to Θ, and preserves ⊗;

• if B = U ◦ B : (crossed complexes) → (spaces) then there
is a homotopy classification theorem

[X ,BC ] ∼= [ΠX∗,C ]

for CW X and crossed complex C .
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Cubical versus simplicial and globular?

Recent preprint of G. Maltsiniotis:
Cubical sets with connections form a strict test category, in
sense of Grothendieck: i.e. as good as simplicial from a
homotopy category viewpoint.
Notion of multiple composition is clear cubically but unclear
simplicially or globularly.
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Potential applications?

• n-fold groupoids in groups model weak pointed homotopy
(n + 1)-types, and there is a HHvKT for these, using
n-cubes of spaces.

• That situation generates lots of algebra, including a
nonabelian tensor product of groups which act on each
other (bibliography of 100 items, including Lie algebras,
...).

• Use of these ideas, particularly colimit ideas, in general
applications of homological/homotopical algebra?

• Higher dimensional algebra is concerned with partial
algebraic structures the domains of whose operations are
defined by geometric conditions.

• Many object Lie algebras? (I have a preprint on this!)
Poincaré-Birkhoff-Witt for these?

• Free crossed resolutions for algebras?
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other (bibliography of 100 items, including Lie algebras,
...).

• Use of these ideas, particularly colimit ideas, in general
applications of homological/homotopical algebra?

• Higher dimensional algebra is concerned with partial
algebraic structures the domains of whose operations are
defined by geometric conditions.

• Many object Lie algebras? (I have a preprint on this!)
Poincaré-Birkhoff-Witt for these?

• Free crossed resolutions for algebras?
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Poincaré-Birkhoff-Witt for these?

• Free crossed resolutions for algebras?



Some
intuitions of

Higher
Dimensional

Algebra,
and potential
applications
Askloster

Ronnie Brown

Algebra
structuring
space

Groupoids in
topology

Higher
dimensional
algebra

Higher
homotopy
theory

Commutative
cubes

Connections

Rotations

Algebraic
topology of
filtered spaces

Potential
applications

Potential applications?

• n-fold groupoids in groups model weak pointed homotopy
(n + 1)-types, and there is a HHvKT for these, using
n-cubes of spaces.

• That situation generates lots of algebra, including a
nonabelian tensor product of groups which act on each
other (bibliography of 100 items, including Lie algebras,
...).

• Use of these ideas, particularly colimit ideas, in general
applications of homological/homotopical algebra?

• Higher dimensional algebra is concerned with partial
algebraic structures the domains of whose operations are
defined by geometric conditions.

• Many object Lie algebras? (I have a preprint on this!)
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Multiple groupoids are ‘more noncommutative’ than groupoids.
How can they interact with noncommutative geometry and
with physics?
Curious point: a groupoid has many objects. Its convolution
algebra has only one.
Link with analysis and geometry may need algebras with many
objects. Higher dimensional versions of these have been
investigated by Ghaffar Mosa in his 1987 Bangor thesis (now
scanned to internet).
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Some Context for Higher Dimensional Group Theory
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Ronnie Brown, April, 2004.
This is a modified version of a diagram made in 1993, and recently done in xypic by Aaron Lauda, to whom much

thanks. Comments welcome!
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