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In homotopy theory, identifications in low dimensions have
influence on high dimensional homotopical invariants.

The aim is to model this by using universal properties of algebraic
objects with
strict interacting operations in a range of dimensions 0, . . . , n.
Roots in work 1941-1950 of Henry Whitehead.
Origin: 1965 with groupoids, and then with
Chris Spencer (1971-76), Philip Higgins (1974-2005),
crossed modules, crossed complexes, cubical higher groupoids,
Jean-Louis Loday (1981-1987)
catn-groups, crossed squares,
and many others, e.g. Graham Ellis, Richard Steiner, Andy Tonks.
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Just as homotopy groups are defined only for
spaces with one base point,
these functors with more general values are defined only on
spaces with more general structural data.
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We consider functors(
Topological

Data

) H //
(

Algebraic
Data

)
B

oo

such that

1) H is homotopically defined.

2) HB is equivalent to 1.

3) The Topological Data has a notion of connected.

4) For all Algebraic Data A, BA is connected.

5) “Nice” colimits of connected Topological Data are :
(a) connected, and
(b) preserved by H.

The aim is precise algebraic colimit calculations of some homotopy
types.
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Broad and Narrow Algebraic Models

The modellizing is more complicated, since the Algebraic Data,
and so the functors H,B, diversify in dimensions > 1, with various
geometric models:

disk globe simplex cube
We have
Broad Algebraic Data for intuition, conjectures, proving theorems.
Narrow Algebraic Data for calculation, relation with classical
invariants.
The algebraic equivalence between these, of Dold-Kan type, is then
a key for results. The more complicated the proof the more useful
it can be, once done.
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I need to give an example of this distinction!

Consider crossed modules, and the functor Π2 sending a based pair
(X ,A, a) to the crossed module

π2(X ,A, a)→ π1(A, a).

Conjecturing that this functor satisfies a van Kampen type
theorem could be, and was, regarded as ridiculous.
Note that in second relative homotopy group, all compositions are
on a line, as in

in order to obtain a group.
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Enter double groupoids

However there is another construction which is more symmetric,
shown as a picture in dimension 2 as

1

2

��
//

a

X

A

A
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A

a A a

With this model, one can see how to jack up the usual proof to
dimension 2!
So crossed modules form a narrow model, and double groupoids
with connections form a broad model.
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Method
Two pushouts:

C //

��

A

��
B // G

Algebraic Data

BC //

��

BA

��
BB // X

Topological Data

By Properties 2), 4) and 5)

HX ∼= G. Bingo!

Paradigmatic Example:

{0, 1}

��

// {0}

��
I // Z

Groupoids

{0, 1}

��

// {0}

��
([0, 1], {0, 1}) // (S1, {0})

So
π1(S1, 0) ∼= Z
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Dimension 1 Example:

• TopData = Pairs (X ,C ) of a space X with a set C ∩ X of
base points.

• (X ,C ) is connected if C meets each path component of X .

• Alg Data = Groupoids

• H(X ,C ) = π1(X ,C ), fundamental groupoid on X ∩ C .

• B(G ) = (BG ,Ob(G )).

Groupoid Seifert-van Kampen Theorem (RB, 1967):
If X = U ∪ V ,W = U ∩ V , U,V are open, C meets each path
component of U,V ,W , then
(Con) (X ,C ) is connected, and
(Iso)

π1(W ,C ) → π1(V ,C )
↓ ↓

π1(U,C ) → π1(X ,C )

is a pushout of groupoids.
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and so any π1(X , c)! A new anomaly!

Try doing that with covering
spaces! Revised, extended, retitled

2006 edition of book published
in 1968, 1988.

One (French) take-up of π1(X ,C ) in other topology texts..
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Example, a key method in groupoids (Philip Higgins,1964):
G = groupoid with object set C ;
f : C → D is a function.

Form a pushout

C
f //

��

D

��
G // f∗(G )

Let X = BG :

C
f //

��

D

��
π1(X ,C ) // π1(D ∪f X ,D)

The use of this “change of base” groupoid construction includes
free groups, free products.
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Alexander Grothendieck(1983, letter to RB)

. .... both the choice
of a base point, and the 0-connectedness assumption, however
innocuous they may seem at first sight, seem to me of a very
essential nature. To make an analogy, it would be just impossible
to work at ease with algebraic varieties, say, if sticking from the
outset (as had been customary for a long time) to varieties which
are supposed to be connected. Fixing one point, in this respect
(which wouldn’t have occurred in the context of algebraic
geometry) looks still worse, as far as limiting elbow-freedom goes!
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Move one step higher: Let f : G → H be a morphism of groups.
We want to compute the 2-type of the mapping cone of
Bf : BG → BH.

Move to crossed modules.

(1→ G )
f //

��

(1→ H)

��

Pushout
Induced crossed module

(1 : G → G ) // (µ : f∗(G )→ H)

Another change of base!

(BG ,BG )
f //

��

(BH,BH)

��
Homotopy pushout

(B(G → G ),BG ) // (X ,Y )

Now B(1 : G → G ) is clearly contractible. So X ' C (Bf ). Also
Y = BH. So we have computed:

(π2(BH ∪Bf C (BG ),BH)→ H) ∼= (f∗(G )→ H)



Move one step higher: Let f : G → H be a morphism of groups.
We want to compute the 2-type of the mapping cone of
Bf : BG → BH. Move to crossed modules.

(1→ G )
f //

��

(1→ H)

��

Pushout
Induced crossed module

(1 : G → G ) // (µ : f∗(G )→ H)

Another change of base!

(BG ,BG )
f //

��

(BH,BH)

��
Homotopy pushout

(B(G → G ),BG ) // (X ,Y )

Now B(1 : G → G ) is clearly contractible. So X ' C (Bf ). Also
Y = BH. So we have computed:

(π2(BH ∪Bf C (BG ),BH)→ H) ∼= (f∗(G )→ H)



Move one step higher: Let f : G → H be a morphism of groups.
We want to compute the 2-type of the mapping cone of
Bf : BG → BH. Move to crossed modules.

(1→ G )
f //

��

(1→ H)

��

Pushout
Induced crossed module

(1 : G → G ) // (µ : f∗(G )→ H)

Another change of base!

(BG ,BG )
f //

��

(BH,BH)

��
Homotopy pushout

(B(G → G ),BG ) // (X ,Y )

Now B(1 : G → G ) is clearly contractible. So X ' C (Bf ). Also
Y = BH. So we have computed:

(π2(BH ∪Bf C (BG ),BH)→ H) ∼= (f∗(G )→ H)



Move one step higher: Let f : G → H be a morphism of groups.
We want to compute the 2-type of the mapping cone of
Bf : BG → BH. Move to crossed modules.

(1→ G )
f //

��

(1→ H)

��

Pushout
Induced crossed module

(1 : G → G ) // (µ : f∗(G )→ H)

Another change of base!

(BG ,BG )
f //

��

(BH,BH)

��
Homotopy pushout

(B(G → G ),BG ) // (X ,Y )

Now B(1 : G → G ) is clearly contractible. So X ' C (Bf ). Also
Y = BH. So we have computed:

(π2(BH ∪Bf C (BG ),BH)→ H) ∼= (f∗(G )→ H)



Move one step higher: Let f : G → H be a morphism of groups.
We want to compute the 2-type of the mapping cone of
Bf : BG → BH. Move to crossed modules.

(1→ G )
f //

��

(1→ H)

��

Pushout
Induced crossed module

(1 : G → G ) // (µ : f∗(G )→ H)

Another change of base!

(BG ,BG )
f //

��

(BH,BH)

��
Homotopy pushout

(B(G → G ),BG ) // (X ,Y )

Now B(1 : G → G ) is clearly contractible. So X ' C (Bf ). Also
Y = BH. So we have computed:

(π2(BH ∪Bf C (BG ),BH)→ H) ∼= (f∗(G )→ H)



Related methods give a description of

π2(X ∪g CA,X , x)→ π1(X , x)

as induced from the crossed module
1 : π1(A, a)→ π1(A, a) by π1(g) : π1(A.a)→ π1(X , x);
1941-49 theorem of J.H.C. Whitehead on free crossed modules is
the case A is a wedge of circles.
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Now we would like to compute the 3-type of the mapping cone of
a morphism of crossed modules. So we have to move to crossed
squares!

No time to say exactly what these are but they certainly
involve

L
λ //

λ′
��

M

µ
��

N
ν // P

This is essentially a
crossed module of crossed
modules.
Generalise a kernel of a
morphism of crossed modules.

So there are actions of P on
M,N, L and of M,N on each
other, and on L, via P.
There is also a map
h : M × N → L which is a
biderivation, i.e. rules
analogous to those for a
commutator.
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Standard topological example: triad of based spaces (X : Y ,Z )
with W = Y ∩ Z :

π3(X ;Y ,Z ) //

��

π2(Z ,W )

��
π2(Y ,W ) // π1(W )

h : π2(Y ,W )× π2(Z ,W )→ π3(X ;Y ,Z ) is here the
Generalized Whitehead Product.
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Suppose given a pushout of crossed squares:(
1 1
1 P

)
→

(
1 N
1 P

)
↓ ↓(

1 1
M P

)
→

(
L N
M P

)

Then we write L = M ⊗ N.In particular if M,N are normal
subgroups of P, we get the commutator map
[ ; ] : M × N → P factors through a morphism of groups
κ : M ⊗ N → P. (Loday/RB, 1984)
Current bibliography on this nonabelian tensor product has 131
items.
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Now suppose given a morphism (M → P)→ (R → Q) of crossed
modules.
The 3-type of the mapping cone of B(M → P)→ B(R → Q) is
given by the pushout crossed square in(

1 1
M P

)
(f ,g)−−−→

(
1 1
R Q

)
↓ ↓(

M P
M P

)
→

(
L g∗(P)
R Q

)
because

B

(
M P
M P

)
is contractible.

Then L is of the form

[(R ⊗ g∗(P)) ◦ g∗(M)]/ ∼

where the relations ∼ can be written down in detail.
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Conclusion

These methods allow explicit
nonabelian colimit calculations
in higher homotopy theory,
spreading over a range of
dimensions,
and in so doing, generate new
algebraic constructions.
Some aspects are dealt with in
the book:
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