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Abstract

We explain how the Freudenthal Suspension Theorem, the Blakers-Massey Theorem,
and excision for triad homotopy groups, are all related to higher order Seifert-van Kampen
Theorems.

1 The Freudenthal Suspension Theorem and the Blakers-Massey
Theorem

I would like to explain why I see the Freudenthal Suspension Theorem (FST) as related to a
Higher Seifert-van Kampen Theorem (HSvKT).

It was Blakers and Massey, [BM51, BM52, BM53], who explained the relation of the FST to
the homotopy theory of triads X = (X;A,B) where X is a pointed space with subspaces A,B
containing the base point. They gave an exact sequence

· · · → πn+1(X;A,B)→ πn(A,A ∩B)
ε−→ πn(X,B)→ πn(X;A,B)→ · · · (1)

Thus in the case X = A ∪ B the groups πn(X;A,B) (n > 3) and based set (n = 2) give the
obstructions to excision for relative homotopy groups.

A case in point is the triad SX = (SX;C+X,C−X) called the suspension triad. Then the
above exact sequence is easily transformed into

· · · → πn+1(SX)→ πn(X)
σ−→ πn+1(SX)→ πn(SX)→ · · · (2)

including the suspension morphism σ. So we want to know conditions for the triad groups to
be trivial, and to determine at least the first non trivial group, often called the critical group.

The main theorem of Blakers-Massey is:

Theorem 1.1 Suppose the triad X = (X;A,B) is such that:

(i) the interiors of A,B cover X;
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(ii) A,B and C = A ∩B are connected;

(iii) C is simply connected; and

(iv) (A,C) is (m− 1)-connected and (B,C) is (n− 1)-connected, m,n > 3.

Then X = (X;A,B) is (m+n−2)-connected; further, if C is simply connected then the morphism
given by the generalised Whitehead product

πm(A,C)⊗ πn(B,C)→ πm+n−1(X;A,B) (3)

is an isomorphism.

Notice that since the tensor product is zero if one of its factors is zero, this result also gives
criteria for the excision morphism ε to be injective or surjective in a certain range of dimensions.
This excision isomorphism in a range of dimensions is also called the excision theorem of Blakers
and Massey, though it would be better called a connectivity Theorem, and has been given quite
separate proofs, for example in [Hat01, Theorem 4.23] and [tD08, [Theorem 6.4.1], assuming
only m,n > 2 and without the assumption (iii). In algebraic topology, it is preferable to have
algebraic results rather than just connectivity results.

The natural question is what happens to the algebraic isomorphism (3) if the conditions
that m,n > 3 and C simply connected are weakened. For example in the case m = n = 2
we have additional structure that the morphisms π2(A,C) → π1(C), π2(B,C) → π1(C) are
crossed modules, and so the required relative homotopy groups are in general nonabelian. If
m > 2, n > 2 then πm(A,C), πn(B,C) are still π1(C)-modules.

The extension to the non simply connected case was given by Brown and Loday in [BL84,
BL87]; one simply replaces the usual tensor product by the nonabelian tensor product of groups1

which act on each other and on themselves by conjugation. This result is a special case of Seifert-
van Kampen Theorem for n-cubes of spaces. Notice that the assumption (i) of the theorem is
reminiscent of such a type of theorem. The useful fact is that one gets such a theorem for a
certain kind of structured space which allows for the development of algebraic structures which
have structures in a range of dimensions.

Thus one of the intuitions is that the Blakers-Massey Theorem, and hence also the FST, is
of the Seifert-van Kampen type, since we are assuming that X is the union of the interiors of
A,B. In effect the triviality conclusion is because a tensor product of objects is trivial if one of
the objects is trivial.

One of the intuitions behind the Brown-Loday approach derives from the well known fact
that

changes in homotopy in low dimensions usually
affect high dimensional homotopy information.

1The writer compiled a bibliography on this nonabelian tensor product, and which currently has 131 items,
with many authors. The url is http://pages.bangor.ac.uk/~mas010/nonabtens.html.
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A standard example is to take Sn ∨ [0, 1] and then identify 0, 1 to give Sn ∨ S1; there is a
considerable change in πn.

Now the groupoid SvKT, [Bro67], surprised me since it completely determined π1(X,x) as a
vertex group of a groupoid π1(X,A), where A was a set of base points, chosen according to the
geometry of the situation, and even whenX was the union of many non-connected subspaces with
non-connected intersection. To determine the group required simply combinatorial information
and work2. This method worked, it seemed, because groupoids had structure in dimensions 0
as well as 1, and so could code relevant information. This groupoid π1(X,A) had a nice colimit
presentation, not involving choices, except that of A, while there was not necessarily a “nice”
presentation of π1(X,x). Could this be a model for higher homotopy results?

So it seemed desirable to have homotopical invariants which had structure in a range of
dimensions, in order properly to model the gluing of spaces. Some traditional invariants, such
as homotopy groups, might then be extracted from the bigger structure, possibly with difficulty.

In the case in point, we need to assign to a triad an algebraic structure covering the dimen-
sions concerned. This was provided by Loday and Guin-Waléry, [GWL81], see also [Lod82], in
dimension 3 with the notion of crossed square. The crossed square in question is given by

π3(X;A,B) → π2(B,C)
↓ ↓

π2(A,C) → π1(C)

with the additional structure of:

(i) the operation of π1(C) on all the groups in the square,and

(ii) a map
h : π2(A,C)× π2(B,C)→ π3(X;A,B)

given by a generalised Whitehead product,

(i) and (ii) all satisfying suitable axioms. This structure assigned to (X;A,B) we write Π3(X;A,B).
So Π3 is regarded as a functor

(triads)→ (crossed squares).

What sort of colimits might this preserve? What are available?
It turns out that a triad is for these purposes more conveniently regarded as a square of

spaces

C → B
↓ ↓
A → X

2The most general version of this theorem is in [BR84], with a cover by open sets such that A meets each 1-,
2-, 3-fold intersections of the sets of the cover.
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where C is any pointed subspace of A ∩B, and which we abbreviate to

C B
A X .

.
Here is a nice point: if X is the union of the interiors of A and B, with C = A ∩B, we can

regard the following square as a pushout of squares of spaces:

C C
C C

→ C B
C B

↓ ↓
C C
A A

→ C B
A X

Is this analogous to taking in one’s own washing?
In any case, we are getting nearer to a SvKT situation. The next question is: what axioms

is it reasonable to impose on crossed squares? Any change in the axioms to a nonequivalent
system would necessarily give a change of colimits, so it is important to get this right.

A crossed square is a commutative diagram of morphisms of groups

L
λ−→ M

λ′ ↓ ↓ µ
N

ν−→ P

(4)

together with left actions of P on L,M,N and a function h : M ×N → L satisfying a number
of axioms. These are that the morphisms in the square preserve the action of P , which acts
on itself by conjugation; M,N act on each other and on L via P ; λ, λ′, µ, ν and µλ are crossed
modules; and h satisfies axioms reminiscent of commutator rules, summarised by saying it is a
biderivation. The further axioms are: λ, λ′ are P -equivariant; and

h(mm′, n) = h(mm′,m n)h(m,n), h(m,nn′) = h(m,n)h(nm,n n′),

λh(m,n) = m(nm−1), λ′h(m,n) = (mn)n−1,

h(λl, n) = l(nl)−1, h(m,λ′l) = (ml)l−1,

h(pm,p n) = ph(m,n),

for all l ∈ L,m,m′ ∈M,n, n′ ∈ N, p ∈ P .
Morphisms of crossed squares are defined in the obvious way, giving a category XSq of

crossed squares.
This rather elaborate set of axioms raises a number of questions. One of them is: how do

we know this is the “right” set of axioms, and what should be the criterion for that? Another is
that if we do wish to use colimits of such gadgets, how, since there are a lot of axioms to verify,
do we verify that some construction gives a colimit?

4



The solutions to these problems were in essence given by Loday and Guin-Waléry, [GWL81],
as follows. A crossed square should be thought of as a crossed module of crossed modules. But
what does this mean?

Well, crossed modules are equivalent to group objects in the category of groupoids, [BS76],
where the crossed module µ : M → P is changed to the groupoid with source and target maps
s, t : M o P → P , where s : (m, p) 7→ p, t : (m, p) 7→ (µm)p, and o here denotes semidirect
product. We thus require that the induced morphism

(LoN)→ (M o P )

also should be a crossed module. For this we want that we should have a group object in the
category of double groupoids of the form

(LoN) o (M o P ).

Thus the axioms for a crossed square should be such that the category of crossed squares
is equivalent to the category of cat2-groups, i.e. of group objects in the category of double
groupoids. This is the result of Guin-Waléry and Loday.

Now for the Blakers-Massey Theorem for the triad group, we find ourselves considering a
pushout of crossed squares of the form

1 1
1 P

→ 1 N
1 P

↓ ↓
1 1
M P

→ L N
M P

This pushout in this category ensures that L is determined by M,N,P and their crossed module
properties, and that L has to be a “home” for an h-map in a universal way. Because of the
biderivation properties of h, we write L as M ⊗N . It is quite a nice point that in this case the
other properties of h : M ×N →M ⊗N follow from the biderivation properties: for the proof,
one writes h(m,n) as m⊗ n and then expands mm′ ⊗ nn′ in two ways. See [BL87].

The functor which sends a pair of crossed modules (M → P,N → P ) to the crossed square

M ⊗N → N
↓ ↓
M → P

is left adjoint to the forgetful functor from crossed squares to such pairs of crossed modules.
Crossed squares are one of a number of algebraic models of homotopy 3-types. See for

example the paper [AU06]. Baues in [Bau91] uses extensively the notion of quadratic module.
Graham Ellis in his paper [Ell93] makes a comparison between crossed squares and quadratic
modules which for our purposes we have slightly rewritten as follows:
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(i) Crossed squares have an obvious extension to higher dimensions in which crossed n-cubes,
as defined in [ES87], are the appropriate generalisation of crossed squares. The algebra
involved is complicated, but complications are not unexpected in homotopy theory.

(ii) Crossed squares have a geometric interpretation in terms of relative and triadic homotopy
groups; no such interpretation is available for quadratic modules.

(iii) Baues’s theory is related to that of crossed squares via a quotient functor

q3 : (free crossed squares)→ (free quadratic modules),

but it is not clear if this functor has a left adjoint, so we do not know if colimits of quadratic
modules are relevant to homotopy theory considerations. In fact, the paper [AU06, Section
7] gives a functor

(crossed squares)→ (quadratic modules),

but again it is not clear if this functor has a left adjoint and so preserves colimits.

(iv) Non-free groups of operators can be handled.

2 Excision and crossed modules

A triad X = (X;A,B) is called excisive of X is the union of the interiors of A,B. Note that this
is a typical situation for a Seifert-van Kampen type theorem.

We now have to discuss induced crossed squares. For this, we need also to refer to induced
crossed modules. For a general discussion of this notion in the context of fibrations and cofibra-
tions of categories, and cocartesian morphisms see [BHS11, Appendix B].

Suppose given a crossed module µ : M → P and a morphism of groups f : P → Q. We
would like to get another crossed module λ : f∗(M)→ Q with an appropriate universal property.
This is most easily expressed by saying that the following diagram

(1→ P )
f //

��

(1→ Q)

��
(M → P ) // (f∗(M)→ Q)

should be a pushout of crossed modules.
We now explain how this notion arises homotopically.

Theorem 2.1 Let (X;A,B) be an excisive triad and let C = A ∩B. Suppose the based spaces
C,A,B are path connected and the pair (B,C) is 1-connected. Let λ : π1(C) → π1(B) be the
morphism induced by inclusion. Then the pair (X,A) is 1-connected and the natural morphism

λ∗(π2(B,C))→ π2(X,A)

is an isomorphism.
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One applies a SvKT theorem to a pushout of pairs of spaces

(C,C)

��

// (B,B)

��
(B,C) // (X,A).

For more details, see see [BHS11]. The result was originally proved in [BH78].
It is convenient to extend the above result to adjunction spaces, especially to see its relation

to Whitehead’s theorem on free crossed modules. So we suppose (B,C) is a cofibred pair of
based spaces, f : C → A is a map and X = A ∪f B. So the following square

(C,C)

��

f // (A,A)

��
(B,C) // (X,A)

and under the connectivity assumptions we have a pushout of crossed modules

(1→ π1(C))
f∗ //

��

(1→ π1(A))

��
(π2(B,C)→ π1(C)) // (π2(A ∪f B,A)→ π1(A)).

In the special case when C is a wedge of circles and B is the cone on C we obtain Whitehead’s
theorem on free crossed modules, [Whi49]; see [Bro80] for an exposition of Whitehead’s proof3.

3That proof uses transversalty and knot theory. The referee of this paper wrote: “The theorem is not new, the
proof is not new, but the paper should be published since the original papers are notoriously difficult to read.”
In fact, every step of this exposition is in the original papers, but spread over three papers, so essentially the
exposition is a repackaging of the proof for modern readers. See also [Hue12]
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3 Excision and crossed squares

How can we extend Theorem 2.1 to crossed squares and triads? First we apply the SvKT for
crossed squares and the methods of [BL87a] to obtain the following theorem.

Theorem 3.1 We consider excisive triads A = (A;A+.A−),B = (B;B+, B−) and a map f :
A → B, with X = (X;A+, A−) another triad, not excisive, but we assume that (X,A) is a
cofibred pair of based spaces. Then we form Y = B ∪f X and we are attempting to describe
π3(Y ;B+, B−) in terms of the other information available. Under the appropriate connectivity
assumptions, we already know the crossed squares Π(A),Π(B) in terms of nonabelian tensor
products.

If A,B are connected excisive triads and X is a connected triad, then (B ∪f X;B+, B−) is
connected and the following square is a pushout of crossed squares:

Π(A : A+, A−)
f∗ //

��

Π(B : B+, B−)

��
Π(X : A+, A=) // Π(B ∪f X;B+, B−).

Note that under the assumptions of the theorem, this gives complete information on the
3-type of the space Y = B ∪f X.

A detailed description of the induced crossed square Π(Y ;B+, B−) in terms of the other
information now follows from Theorem B.3.2 of [BHS11], which derives from [BL84].

The relation of this result to those of Ellis in [Ell93] where he uses free crossed squares is
that he is dealing with the particular situation (A : A+, A−) = (S2 : E2

+, E
2
−), where E2

+, E
2
− are

the two hemispheres of S2; then there is a homeomorphism η : (A : A+, A−) → (A : A−, A+),
and this data is used to give other descriptions of the induced crossed square.

The following theorem shows how to get specific homotopy information from a crossed square.
A crossed square G has a classifying space BG: for more details see [Lod82], [Bro92] and

also [AU06].

Theorem 3.2 Let G be the crossed square (4). Then the homotopy groups of BG may be
computed as the homology groups of the non-Abelian chain complex

L
(λ−1,λ′)−−−−−→M oN

µ∗ν−−→ P (5)

where µ ∗ ν : (m,n) 7→ (µm)(νn). This implies that

πiBG ∼=


P/(µM)(νN) if i = 1,

(M ×P N)/{(λl, λ′l) : l ∈ L} if i = 2,

(Kerλ) ∩ (Kerλ′) if i = 3,

0 if i > 4.

(6)
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The first Postnikov invariant of BG is the cohomology class determined by the crossed module

(M oN)/Im(λ−1, λ′)
µ∗ν−−→ P.

Further, under the above isomorphisms, the composition η∗ : π2BG→ π3BG with the Hopf map
η : S3 → S2 is induced by the function M ×P N → L, (m,n) 7→ h(m,n), and the Whitehead
product π2 × π2 → π3 on BG is induced by the function ((m,n), (m′, n′)) 7→ h(m′, n)h(m,n′).
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