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Introduction

The title of this paper is chosen to imitate that of the
paper of van Kampen [15] which gave a basic computational rule for
the fundamental group ﬂl(Y,c) of a based space (an eariier and more
special result is due to Seifert [18]). Our object is to give some
computétional rules for the second relative homotopy group wz(X,Y,C)
of a based pair.

Until now the known results on WZ(X,Y,C) have been as
follows:
1. There is an operation of ﬂl(Y,C) on wz(x,Y,c) which, with the
boundary map 9§ : HZ(X,Y,;) - nl(Y,g), gives wz(X,Y,c) the structure
of crossed module( that is we have the two rules B(ab) = b_}a(a)b,
-1 da

a a,a = a

1 1 for all a,a

1€ nz(X,Y,C) and b € ﬂl(Y,;)).

2. The following sequence is exact:
5 _ .
> (1,0) > 1,0 > T, (K,Y,0) Fom (1,0 o (X,0) > ..

3. The relative Hurewicz Theorem,If X,Y are path-connected and

ﬂl(X,Y) = 0, then ﬂz(X,Y,g) with the operations of wl(Y,;) factored

out, is isomorphic to HZ(X,Y).

4. Homotopy excision, If X = Y u Z where Y,Z are open, Y,Z,Y n Z

3

are path-connected and nl(Y, YnZ2), ﬂl(Z,Y n Z) are 0, then
ﬂz(Z,Y nzZ,z) > wz(X,Y,;) is surjective, and is bijective if further

HZ(Y’Y nZz,z) =0.

5. If X is obtained from the path-connected space Y by adjoining
2-cells, then ﬂz(X,Y,C) is a free crossed module over Wl(Y,C)- (This is
in §16 of [24]; a simpler proof for the case when Y is the l-skeleton

of a CW-complex X is given in [9 1.)



Whitehead's result 5) is)as far as we know, the only
deep result on ﬂz(X,Y,c) in the literature which uses crucially
the crossed module structure. Applications of 5) are given in
[8,10,16,17,24]. We use the crossed module structure to prove a result

which contains both 4) and 5) as very special cases.,

Our general method is a 2-dimensional version of the groupoid
van Kampen Theorem given in [ 3 ] and in [ 4 ] Ch. 8. The possibility
of such a result was suggested in the Introduction of [ 3 ], but the
realisation of this possibility required two innovations. First, it
was necessary to find the right definition of 2-dimensional groupoids -
this was solved by Brown-Spencer in [ 6 ] with the "special double
groupoids with special connection". We shall call these objects

simply double groupoids. The close relation of double groupoids to

crossed modules was shown in [ 6 J.

The second innovation was finding the right functor from spaces

to double groupoids. This is solved here with the introduction of

p(X,Y,2), the homotopy double groupoid of a triple. The main features
of p(X,Y,Z) ares(i) it has good subdivision properties, (ii) it admits
a version of the homotopy addition lemma’(iii) it admits cancellation,
that is, its various compositions are all groupoids. All these are
crucial for our proof of the Union Theorem of §6, which constitutes
‘the geometric core of this work. A final feature of p(X,Y,2) is that
when Z = {¢}, a singleton, then p(X,Y,Z) contains the crossed module
3 ¢ ﬂz(X,Y,;) > nl(Y,;) ; this enables us to deduce results on relative
homo topy groups from results on p(X,Y,Z).

The structure of the paper is as follow;. In §1 we recapitulate
from [ 6 ] the basic properties of double groupoids; we also introduce

the useful notion of degenerate square in a double groupoid. §2 gives



the basic properties of the homotopy double groupoid p(X,Y,Z).
In 83 we quote a special case of the Union Theorem of §6, and‘;se
it to prove an adjunction space theorem for p(X,Y,Z). This implies,
using the relationship of double groupoids to crossed modules proved
in [ 6 ], that in many cases where X,Y are adjunction spaces the
crossed module 3 :ﬂz(X,Y,;) > nl(Y,g) can be described as a pushout
of crossed modules.

§4 takes up the algebraic side of the story with a description

of pushouts of crossed modules in terms of more basic constructions;

in particular the universal crossed module (A*;B*;a*) induced

from a crossed mo@ule (A,B,9) by a morphism £ : B -~ h* of groups
plays a key role. §5 gives applications of the algebra to topology.
For example, we see that both the homotopy excision. theorem in dimension
2 and Whitehead's result on free crossed modules are special cases of _
results on universal crossed modules.

§6 states and proves the Union Theorem for p(X,Y,Z) when X is covered

by the interiors of sets of a family‘{XA}A satisfying certain

€ A
connectivity assumptions. This theorem contains also a form of the
groupoid van Kampen theorem which is more general than that given in [3 ].
The proof of the Union Theorem is, however, nearer to Crowell's proof
in [ 11 ] than to the proof in [ 3 J.

It should be noted that p(X,Y,Z) contains structure in dimensions
0,1 and 2; this seems to be essential for obtaining the results in terms
of colimits rather than, as might bé expected for invariants in algebraic
topology, obtaining results in the weaker form of exact sequences or spectral
sequences.

Higher dimensional Seifert-van Kampen theorems have also been considered

in [ 1,2 1, but the results there have little overlap with ours.
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1. Preliminaries on double groupoids

By '"double groupoid" we shall .akways mean "special double
groupoid with special connection" as defined in §3 of [6 ]. We

recall that if G = (GZ’Gi’GO) is a double groupoid, then G2 is the

set of''squares", G1 the set of "edges", and Gy the set of "vertices"
or "points". The pair (Gl,GO) is a groupoid, written multiplicatively, .

with objects Go)arrows Gl’ initial and final maps 60,61 2 G1 > GO

and identity map e : G, > G,. If a,b ¢ G, and 6,2 = §obs then the

0 1

composite of a and b is written ab.

1

The pair (G2, Gl) has two groupoid structures, both with
objects G1 and arrows G2. The"horizontal" groupoid, written édditively,

N " ]
1 ¢ G2 - Gl and also "degenerate

has initial and final maps 30,3

squares OP for p € Gl’ which act as zero elements. The "vertical"

groupoid, written with operatioms o and _1, has initial and final
" " "

maps €,,€; : G2 > G1 and "degenerate" squares 1P for p € G1

acting as identity elements. The conventions adopted for drawing

squares and their boundaries in G are

With respect to all the above boundaries and degeneracies, G is the

part in dimensions < 2 of a (semi=) cubical complex,

The “connection" T ;G1-+G introduces extra degenerate squares I'(p)

. . 2
with boundaries given by the diagram

P

p| T() | e

when x = Glp.



=G
The laws which relate the three groupoid structures
are as follows:
1) Bi(a o b) =(Bi a)(aib) i =0,1)
and ei(a + b) = (si a)(eib) (i=o0,1)
whenever the left-hand sides ére defined.

(ii) The interchange law, which asserts that if a,b,c,d € G2

with ala = Bob, 31 12 = €¢ and elb = eod

then (a +b) o (c +d) =(aec) + (bod),

c = Bod, €

(iii) The transport law, which asserts that if p,q € G1

and §,p = 8,4, thenT(pq) = (T (@) + 1) ° r(q) = (r(p) » Oq) +T(q) :

P 9
i.e. T(pq) = p| T() lq’ e
' 0 T
q Yy (@ e
e e

The laws (i) and (ii) are easily seen to imply that 0Pq = Op ° 0q

and 1Pq = 1p + 1q whenever pq is defined in G Also for any a € G

1° 2
=1 -1 -1 -1 _
we may deduce that (-a) =~(a "), ai(a ) = (Bia) . si(-a) = —ei(a).

Since G is a cubical complex there is for each x € G. a unique doubly

0
degenerate square o = Oe =1 , and the transport law implies that
X X
F(ex) = - We shall often abbreviate e, and G& to e and '‘© when no

confusion can arise,

It is convenient to use matrix notation for compositions of squares.

Thus' if a,b satisfy 9.a = Bob, we write [a) b] for a + b, and if

1

€@ = g4C, we write [ z] for a o c. More generally we define a

subdivision of a square a in G, to be a rectangular array (ai.)

2 J

l<i<m 1<jz<n of squares in G, satisfying

-



3 =9, a.. (1<i_<_m,2_<_jf_n)

124,51 ‘0 %ij =

=g _a .. (2

and € 359 57 % 7 ij

IA
H.
A

< m, 1_:_j < n)
such that

(a11 +a, + .. +a1n) o (a21 +f"'+32n) o (aml+ ...+amn) = a.
We call a the composite of the array (aij) and write a = [aiﬁ]ﬁ
The interchange law then implies that if in Fhe array (aij) we
partition the rows and columns into blocks Bkl and compute the
composite bkz of each block, then a = [bklj'

If G = (GZ’GI’GO) and H = (HZ’Hl’HO) are double groupoids, then

a morphism f from G to H is a triple of functions fi ;Gi-+Hi (1=0,1,2)
preserving all the structure, including the connection. So we have a

category Eﬁrof double groupoids. =

We now recall one of the main results of [6 1, namely the
relationship between double groupoids and crossed modules.

A crossed module (A,B,3) consists of groups A,B; an operation of

s . b
B on the right of the group A, written (a,b)¥> a ,acA, beB; and a

EORTTL ; -1
morphism 8 : A+ B of groups. These must satisfy the rules (1) B(ab) =b “3(a)b,

(ii) a-lala = ala(a) , for a,a; ¢ A,beB. A morphism (f,g) : (A,B,3) > (A',B',3")

of crossed modules consists of morphisms f:A—~A', g1 B+ B' of groups such that

gd = 3'f and f(ab) = f(a)g(b) for ae A, beB, So we have a category )2 of
>
crossed modules.

Let G be a double groupoid, and let X € GO' We define groups

A,B by

a=¢e}

" {ae G, : 93.a=03,a=¢
1 X

- 2 0 1

B .{pecl : 60p=51p=51p=x}

and a morphism € : A - B by e(a) = eo(a). It is proved in Proposition 1
of [ 6] that there is also an action of B on A giving (A?B,s) the structure
of crossed module. This crossed module we write -y(G,x). If G0 has

only one element x, then we write (G) for v(G,x%).
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1
Now let DG’ be the category of double groupoids with a
><

single vertex, and of morphisms of double groupoids. We quote

from Theorem A of [ 6]

Theorem A, The rule G b y(G) defines an equivalence of categories
]

Y : DG° -~ C.
> ><

The main use we shall make of this result is:
Corollary, The functor y : 291 +:£ preserves colimits, and in particular
preserveS coproducts and pushouts.

There are two further results on double groupoids which we
need to supplement those of [6‘].

It is a familiar fact that a map f from the arrows of
one groupoid to the arrows of another, which preserves composition
whenever it is defined, extends uniquely to a morphism of groupoids,
its value at an object x being 50:E(ex). The corresponding statement

for double groupoids is as follows:

Proposition 1, Let G,H be double groupoids and let f2 H G2 -> H2

be a function satisfying

a

It
Q
o

(i) £,(a + b)

(ii) f2(a ° b)

fz(a).+ fz(b) whenever.a1

fz(a) o fz(b) whenever €2 =€

and (iii) for each p € G, there is a q € H, such that

1 1

£, ()= I (q).

Then there exist unique functions f1 : G1 > H1 and fo s G0 - H0
such that (fZ’fl’fO) is a morphism G - H of double groupoids.
Proof , (GZ’Gl) and (HZ’HI) are groupoids with respect to addition,

so by (i) there is a unique function fl+ : G1 > H1 such that (fz,fi)
is a morphism of additive groupoids. In particular, fz(—a) =-f2(a),

ffkaia) = aifz(a) (i = 0,1) and fz(Op) = Oq,where q' = f;(p).

Siﬁilarly, by (ii), there is a uniqge function fi 4 G1 > H1

such that (fz,f;) is a morphism of the other groupoid structure. In
particular £,(a 1) = £, £](c;a) = e, £,(a) (i =0,1) and

= LU °
fz(lp) 1q" where q fl(p).



Given p € G,, let q be an element of H, satisfying

1’ 1
fZ(P(p))=P(q) as in (iii). Then g = BOF(q) = BOfZ(T(P))

= f;(aor(P)) = f;(P) = q', and similarly q = q". Hence gq is

unique and there is a unique function f1 = f; = f; s G1 -> H1 such

that (fz’fl) preserves both groupoid structures and the connection.

For if p,p' € G, and

Also this fl preserves multiplication in G 1

1
pp' is defined, then writing q = fl(p), q' = fl(p'); we have

' = =

= = o - = !
Bsz(OP o Op,) 30(0q Oq,) 80 0 , =qq'. It follows that

aq

: G, - H. making (fl’fO) a morphism

there is a unique function fO : Gy o

of groupoids, and the triple (fz,f

1,fo) is now a morphism of double groupoids.

We now define a degenerate square in G to be any square d

having a subdivision (dij) in which each dij is of the form

OP, 1P,F(p), -T(p), P(p)_l or,_---I‘(p)_1 for some p = p.. in G The

ij 1°

degenerate squares, together with their edges and vertices, form a

sub-double-groupoid D of G, with D1 = G1 and DO = GO’

is said to have commuting boundary if (SoaL(Ela) = (an).(aia); and it is

A square a € G
¢

2

clear that these squares also, together with their edges and vertices,

form a sub-double-groupoid C of G with C1 = G1 and C0 = Go.

and I'(p) all have commuting boundary, D is a sub-double-groupoid of C.

Since 0_, 1
P P

Proposition 2, Let G be a double groupoid and let p,q,r,s € G1 satisfy
Pq = rs. Then there is a unique degenerate element A € G2 such that
80 A= p, BlA = s, eOA =r, elA =q.

Proof, For any p,q,r,s in G, satisfying pq = rs, define

1

r
A=A s) =T +1 -T(s).
(p % ) (p) " (s)
Then A is degenerate and, since pq = rs, its edges are as given in the

Proposition. We now prove that A satisfies the following laws:



(1) A e =1, Alp_p) =0, A e =TIk®);
(i) 8 8) +AGs [ W) = Ak V)
(iii)  Alp : 8) o A(t 3 v) = Alpt © sv);

-1
(iv)  -ACp [ s) = A(s " P); A

q 1 kS
q
- -1 9 - '

@ g9 =ae T 8T,

The proofs of (i) and (ii) are trivial. To prove equation (iii) we
observe that since q = tu v-l, and r = pq s"1 = pt.u.(sv)_l, both
sides of equation (iii) have the common subdivision

T (p) 1 1 -1v ~T(s)

t u

0, r¢e) 1, -I 0, .

Finally (iv) follows from (i) and (ii), and (v) follows from (i) and
(iii). |
From equations (ii) — (v ) it follows that any square a in G2
having a subdivision a = [a;j] in which aijvis of the form
A, —A,Afl or -Afi is itself of the form A(p z s) where p,q,r,s are the edges
of a. From this and (i) we deduce that all degenerate squares are

of the form AGY~: s) and are therefore uniquely determined by their

edges.
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2. ihe homotopy double groupoid of a triple of spaces

By a triple (X,Y,Z) of spaces is meant a space X together with a
subspacé-Y of X and suBspace’Z'éfTYf" ’

Let (X,Y,2) .be .a.triple such that'the ‘map ni(z,c) +‘n1(Y,c)
induced by the inclusion Z - Y is trivial for each zeZ. We shall

construct a double groupoid p = p(X,Y,Z2) whose elements are certain

relative homotopy classes of squares, paths and points in X,Y and Z.

The zero-dimensional part of p is p0==wo(Z). The one-dimensional
part p, is the set of homotopy classes of paths o : (I,I) » (Y,Z2) with
respect to homotopies h: (I,i) x T+ (Y,Z) of pairs. Similarly Py

is the set of homotopy classes of squares

o (1%,1%,1%) + (x,Y,2)

with respect to homotopies

2

b (12,1%,1%) x I+ (X,Y,2)

of triples, where iz and 12 are respectively the boundary and the set of
vertices of the unit square 12. The three equivalence relations will
be denoted by ~ and the classes of C,c;a in po,pl,p2 will be denoted by
Z,El ¢ . We also write R0==Z and let Rl’Ré be the sets of paths and
‘squares defined above, so that pi==Ri/~ (i=0,1,2). Then

Rﬁ=(RO,R1,R2) is a cubical complex, and we adopt notations for the boundaries

and degeneracies conforming with those of §l.

Thus the unit square is denoted

(0,0) (0,1)

AA#Y

"(130) (131)

and boundaries of paths and squares are



..11._

8 g €0
o 0 0
5 o
00 ﬁlo
g aoa o ala
8
1° €0

The degenerate path eC for z e RO=Z is the constant path at ' and
the degenerate squares OU and 10 for oce Rl are given by

0,(x,¥) =0(x),1_(x,y) = o(y). There is also a degeneracy I': R ~ R,

1
defined by
o(x) if 0sy<x<1
[ : (x%y) = o(y) if 0<sx<y<1l ,

We shall depict these degenerate squares as

e ! » (] g

| ]

Od'= o o 10= e l | e r(o) =o| | e

e - o] e

the internal lines being lines of comstancy.

It is clear that each of these boundary and degeneracy maps is
compatible with the equivalences ~ and therefore p(X,Y,Z) inherits the
structure of a cubical complex with a "connection" T 1Py T Py

. . _ _ _ _ s
satisfying SOI‘(s) eOI' (s) s and BlI‘(s) elI'(s) e, whe‘re z =0,s.

The three groupoid operations on p are defined in terms of the usual
composition of paths and horizontal and vertical compositions of squares,
A key idea of this paper is that a subdivided square is the composite of

the squares of its subdivision: the precise definition is as follows. For

positive integers m,n, let ¢ﬁ o’ 12 + [0,m] x [0,n] be the map

(x,y) » (mx,ny). An mxn-subdivision of a square a: 12 + X is a

2 "
i i =a' ! ou + X defined
factorisation a =0a °¢m,nl its parts are the squares alJ I

by %3 (x,y) = a'(x+i-1,y+j-1). We then say that a is the composite of
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the squares I and write a = [uij]. Similar definitions apply to

subdivisions of paths and of cubes.

Multiplication in Py is defined as follows. Let s,t €pq satisfy

éls = 6Ot. Let o,t ER.1 be paths representing s,t. Then 610~'601 so
we may choose a path A in Z such that the composite path ¢ = [o,A,T]
exists. We define st = ¥ and show that it is independent of the choices

made. Suppose that o',t',z' are alternative choices. Then o~o', and

T~1', so there exist homotopies h:0~0c' and k: T~ 1' so that we have a

diagram
o A T )
h . k
o' At 7

in Y with vertical edges in Z. Since A,A' are paths in Z and since by
hypothesis ﬂl(Z,g) - ﬂl(Y,;) is trivial for all ze€Z, we may choose a
square H in Y to fill the middle square of the diagram. The composite square
(h,H,k] now gives in Y a homotopy [o,A,7] ~ [o',A"',T'], and so st is well-
defined. It is easy to see by similar arguments that this multiplication
is associative and has the elements e, as identities. Also the element
0 has as inverse the element o* where o*(x) = o(l-x) ; so (pl,po) is a
groupoid.

We next define addition, that is the horizontal composition, on Py-

Let a,b € Py with 3.a = 30b, and choose 0,B € R2 representing them.

1

Then ala‘~ BOB, so there is in Y a square H with boundaries as in the

diagram

o
a H B

~i
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where o,T are paths in Z. We define

Y = [ap H, B]

and set a+b= ; p
Notice that oY = ‘Eeod,o,eos], and o is a path in Z.
Thus of = g% - eos and similarly E4Y = €0 . EIB.

To see that this addition is well-defined, let y' = [a', H', B']
be alternative choices. Then there exist homotopies
h:a~a', k: B~ B" where h,k : (12, I% Ez) x I -+ (X,Y,Z).

This gives a diagram

NENE

in X in which the front and back composite faces are y and y', the

faces joining front to back are in Y and the edges joining front to

back are in Z. Thus the hole in the middle hasAfour faces in Y and

all its edges in Z. Since ﬂl(Z, z) > nl(Y;C) is trivial, we

'nmy fill the bottom of this hole with a square in Y. Then by retracting
the wnit cube onto five faces, we may fill the hole with a cube K in Y.
The composite cube [h,K,h'] now gives a homotopy from y to y' mapping
(iz, iz, iz) x I + (X,Y,Z), Thus y ~ y' as required. Again it is easy
to see that this addition makes'(pz,pl) a groupoid with boundary

maps 80,81 and identity elements OS for s € Py A similar procedure

s . : . . 1
gives a vertical groupoid structure with operations s, , boundary

maps ed,el and identity 1S.

Also we have the rules €,(a + b) =€.a . €.b, 3.(a ¢ ¢) = 3.a . d.c.
- i i i i i i

for i = 0,1.
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We next verify the interchange law. Let a,b,c,d be elements of
Py satisfying the conditions in our statement of the interchange law
‘in §1. Let a,B,Y, 6 in R2 be squares representing them. Then
Bla o BOB,BIY"* 806, el ~ ey and 518“'606. So there exist squares -

f,g,h,k"in "Y ~such that the diagram

X
o f B
y' | s ‘y:t N
y| nlas’
5!

exists in X, has all edges in Y, all vertices in Z and further has the
marked edges x,y,z,t,x',y',z"',t' in Z.
By our basic hypothesis we can fill the centre hole with a square

H in Y. Now the square

8 = o £ B
g H k
Y h )

represents a class 6 in P, which can be computed in two ways. Let

o, = [a,£,81,0, = [g,H,k] and 6, = [y,h;6]. Then 61 = a+b,63=c+d

3
(by definition) and 8, is a square in Y with two edges y',t' in Z.
Hence again by definition 51 063 = 5, that is 8 = (a+b)o (c+d). A

similar argument shows that 8 = (acc)+(bed).
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Finally we must verify that the transport law holds in p. Let
s,tepy with Gls = éot. We may choose o,T in R1 representing s,t such

that §,0 = §0'r (for example, if A is a path in Z from §,0to 8,1, we

may replace 1 by [A,7]). Then the composite square
T - r (o) 1.
0T T'(t)

exists and represents the element (I'(s) + lt) o T(t) = (I'(s) o Ot) +T(t).

But y has the form

o
—1] | .

and so represents I'(st).

This completes the proof that p = (pz,pl,ao) is a double groupoid.

We need two further observations about composites of squares.
Suppose a,B are squares in R2 such that al o= 30 B =0 say. Then
the square y =[a, fl is defined and is cleariy equivalent in R2 to
[o, OG,B], which represents o + B. Hence [a, Bl also reppesents
o + B. Similar remarks apply to a composite square [ % 1. More
generally, if we have a subdivision a = [uij] of a square o in R2

and if each aij is in R, , then o is an element of Py which is also

the uniquely defined composite [&ij]'

On the other hand, suppose a,be P, satisfy_ala =9,b.  Then we
can always chose a',B' representing a,b respectively such that
[a',8'] is defined and represents a+b. This is clear since we can

choose a,H,B such that o = a,§=b and [u)H) Bl is defined and represents

a + b, and then set o' = [a, H, B' = B; the following diagram illustrates

ANNE

o

that [o,H] ~ a.
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Proposition 3. Let (X,Y,Z) be a triple with 'nl(Z,z;) > 'nl (Y,z) trivial for

all gt eZ, and let p = p(X,Y,Z).
(1) If *o is a path in Z, then o is an identity e, in Py
(i1) If o is a square in Z, then a = OZ in Py for some z.

(1ii) If o is a square in Y with vertices in Z, then o is a

v degenerate element of Pye

Proof , (i) Clearly o ~ eg where ¢ = 600.
(ii) Again a is homotopic in Z to the constant square
at ¢, where ¢ = Goaoa, say.

(iii)Let o have edges as follows

g
A a T
"
Let o' = [A,u,7*]. Then there is in Y a homotopy H:o~oc' rel

end points. Further there is a square A whose class in Py is

degenerate and which is pictured as follows, where the

i il

A H ™

internal lines denote lines of constancy. So we can form five faces

of a cube, the faces folded flat

M
*| *
A A T
e H e
e e
A o T
e e

being as above. All these faces are in Y and so by retraction can be



filled in by a cube in Y. This cube gives an equivalence from

a to a square whose class in Py is degenerate.

Our next proposition , which is of the same general type, needs
some standard notation for the faces of a cube. We adopt one which
is ad hoc but suits our purpose. Each face of h :13 + X is determined

3

by a face n': 12 + I” of the unit cube and is denoted by nh=hen'. The six

faces wé choose are

a{ ¢ (x,y) » (x,y,i) (1=0,1)
Bi 2 (x,y) 0 (x,1,Y) (i =0,1)
Y:i'. : (x,y)» (A,y,x) (1= 091).

With this choice, five faces of h fit together to form a plane diagram

Groh)
—Boh aoh Slh
Y,h
where - and -1 denote reflections of squares in vertical and

horizontal lines.

Proposition 4.- (The Homotopy Addition Lemma) Let X,Y,Z,p be as in Proposition

3. Let h be a cube in X with edges inY and vertices in Z, and let the
elements of p, represented by its faces be {

a;, = aih . bi = Bih » € T y.h i =0,1.

i
Then in p - _ i
2 e col pi
8 = ~bo a, b1
- y
i r < r i

where each T stands for a square T(p) for an appropriate edge p.
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Proof , The following diagrams define maps of 12 to I3 which agree

on 12, where the first diagram defines a map onto all

-1
L = 1
" = s I i1
%=1 "B o B 9, = © oy 0
= 4 =
T vy __J 1I~_ 1 ._J

faces of I3 except o, and the latter diagram defines a map onto a .
Since 13 is convex, these two maps are homotopic rel iz. Therefore
h¢o 5 h¢1, define the same element of Poe But EE; is clearly the
composite matrix given above, while FEI =a,.

A map f:(X,Y,2) » (X',Y',Z") of triples of spaces clearly defines
amap p(f): p(X,Y,2) > p(X',Y',Z') of cubical complexes, and also a

morphism of double groupoids if both double groupoids are defined.

Proposition 5, If f:(X,Y,Z) - (X',Y',Z') is a map of triples of spaces

such that each of fX : X=X', £ :Y>Y', f :Z->Z' is a homotopy equivalence,

Y Z

then' f induces an isomorphism p(f):p(X,Y,2) >p (X',Y',2").
Proof , This is an immediate conéequence of (10.11) of [j2l. (An
2 L] 2 ..2

alternative proof can be given using the fibrations X -*XI -+XI s

12 12 iZ 12
the subspaces Y , Z of X~ , X and the xoglueing theorem of [§]

as applied to pull-backs over subspaces).

Remark , The conditions of Proposition 5 do not imply that
£:(X,Y,2) > (X',Y',Z') is a homotopy equivalence of triples except under
further cofibration conditions on the two triples (cf.Ch7 of [#]) - these

conditions would be inconvenientsin.thepapplications.
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From the homotopy double groupoid p(X,Y,Z) we obtain, according to the
procedure of §1, a crossed module y(p(X,Y,Z),E) for each Ee'noz. Wé also
have, for each £ €Z, a crossed module (FZ(X:Ykﬁ), "1(Ys§)53) which we shall

always denote by u(X,Y,z), or by u(X,Y) if the basepoint is clear.

Proposition 6. For any [ € Z, the crossed module y(p(X,Y,Z),E) is naturally

isomorphie to u(X,Y,z).

Proof. Let .(A,B,e) be the crossed module of p(X,Y,Z) at Z. It is clear
that B is naturally isomorphic to ﬂl(é,C). (Note that we are assuming
that nl(z,c)-+n1(Y,g) is trivial for all c'eZ, whence nl(Y,;) is canonically
isomorphic to ﬂl(Y,C') if z and z' are in the same path component of Z),
Now the elements of nz(X,Y,C) are homotopy classes of maps

(12,{0} x 1,32) + (X,Y,z), where 52 = ({1} x I) v (I x i). Clearly each
such map determines an element of p(X,Y,Z), and in this way we obtain a
function 6 : ﬂz(X,Y,C) > p2(X,Y,Z) which is a morphism fromAthe group
structure on NZ(X,Y,C) to the horizontal groupoid‘structure on p(X,Y,Z2).
The rest of the proof consists of proving that 6 is an isomorphism onto
the group A and that 6 commutes with all the operatioms. We.omit the

details.
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3, The adjunction space theorem

The following theorem is a special case of our main theorem

(the Union Theorem) whose statement and proof are postponed until §6.

Theorem B © Let X be a space which is the union of the interiors of
two subspaces Xl’XZ of X, and let XO = Xin X2. Let Y be a subspace

-of X, let Z be a subspace of Y, and define
Y, =Y nX,2Z =2ZnX,v=0,1,2
Suppose that

(1) the induced morphisms nl(Zv, cv) -> nl(YV,;V) are trivial for

all ¢« ZQ and for v = 0,1,2, - ;

(ii) the induced maps ﬂo(Zv) - no(Xv) and no(zv) > nO(Yv)Vare
surjective for v = 0,1,2;

(iii) the induced morphisms of groupoids pl(Yv’Zv) - pl(Xv, Zv)
are surjective for v = 0,1,2,

Then the induced diagram

-

51 A

o (X,,Y i/ ) % P (X,Y,Z)
i 1°71°71
; A
1
is a pushout in the category of double groupoids.

Corollary. Let X,Y,Xv, Yv be as in Theorem B and let [ € Yo. Assume
that all the X , Y are path-connected and that w, (Y ,t) - m, (X,52)
is surjective for v = 0,1,2, Then the induced diagram

&y ¥5,0) ——= u(X,,Y,,%)

N
H (Xl sY]_’C) _— U (X:Ys )

is a pushout in the category of crossed modules.
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Proof. Take Z = {z} in Theorem B and apply Theorem A and Proposition 6
to pass from pushouts of double groupoids to pushouts of crossed
modules.

The main purpose of this section is to prove Theorem C, which
is a double groupoid pushout theorem for adjunction spaces. Thus
Theorem B and Theorem C are the 2-dimensional analogues of the results

‘

on the fundamental groupoid given in [#] 6.7.2 and 8.4.2.

For Theorem C (The Adjunction Space Theorem) we suppose
given an "adjunction space triple", by which is meant a commutative
- square of maps of triples
X ,Y,2) —F s (X,Y,,2.)
0’70’70 2°72°72
i i 1)
\'4
(X,Y;,2)) —F > (X,Y,2)
in which (XO,YO,ZO) are closed subspaces of Xl’Yl’zl respectively,
i is the inclusion of triples, and if fX’fY’fZ are the restrictions
of f mapping X, > X, Y, > Yy, 2y > Z, respectively, then the

above diagram represents X,Y,Z as the adjunction spaces X = X2 Ug Xl’
' X

It should be noted that if we are given (Xv’Yv’Zv) for
v = 0,1,2, and the maps i,f, then some conditions are required to
ensure that the induced maps Z -+ Y -+ X of adjunction spaces are
homeomorphisms into, so that (X,Y,Z) can be regarded as a triple.

Useful conditions are given in the next Proposition.

Proposition 7. Suppose given maps i :(XO,YO) > (Xl’Yl)’ f: (XO,YO) > (XZ’Y

,Cf pairs such that ig ¢ XO -+ Xl’ iy ¢ YO > Y1 are inclusions of
closed subspaces. Let X = X2 UfX Xl’ Y= Y2 UfY Yl’ and let ¢ : Y > X

be the induced map. Then

9)
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(1) if Yl,Y2 are closed in Xl,X

closed map;

2 respectively, then ¢ is a
(ii) ¢ is injective if and only if fXIW is injective and

fX(W) n Y2 = ¢, where W = (Y1 n Xo)\YO;

(iii) ¢ is injective if Y0 = XO n Ylf

Proof. (i) If F is closed in Y and FllJ,Fz is the inverse image of F
"under the quotient map YlLl Y, - Y, then ¢(F) has inverse image in

. -1
X, u X, by the quotient map X;u X, > X the set (F1 u fX (Fz))\JFZ.

1 2

(ii) This follows from writing Y as the set-theoretic sum
(Y \XD)u Wu Y.

(iii) This follows from (ii).
In order to state Theorem C we will need the mapping cylinders

lM(fX)’ M(fY)’ M(fz) and the natural map, p = (pX,pY,pZ)_:(M(fx) U Xl’

1

M(fY) Uy M(fz) u Zl) + (X,Y,Z). If each of Xy - X,, Y. ~» Yl’ 7. +1Z

1’ 1’-70 0] 1

is a cofibration, then py, py, P, are homotopy equivalences ([4]7.5.4).
Theorem C (The Adjunction Space Theorem) Suppose given the adjunction
space triple of diagram (1). Suppose also that (i) the induced morphisms

ﬂl(Zv, ;v) - ﬂl(Yv,cv) are trivial for all T, € Zv and v = 0,1,2, = ;

(ii) the induced maps no(zv) -+ nO(Xv) are surjective for v = 0,1,2;

the induced morphisms of groupoids pl(Yv’ Zv) - pl(Xv’ Z)

(iii)
are surjective for v = 0,1,2;
(iv) the maps px,pi,yz are homotopy equivalences. .
Then the inducéd diagram
p (X555 Y) £ p(X,,Y,,Z,)
il/ |
p(X,Y,2)) —> P(X,Y,2)

is a pushout in the category of double groupoids.
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r = T - 1 ' = T
Proof Let X M(fx) 1] Xl’ X 1 X"\X,, X 2 X \Xl’ so that

1Tyt 1 - | -
X'y = Xlpn X'y =X %30, 1[ . Let Y' = M(fy) v ¥, 2' = M(£,) U Z,.
Then the projections P, * (X'v’ Y'v’z'v) > (Yv’ Yv, Zv) for v = 0,1,2

are triples of homotopy equivalences, as is the projection

p: X', ¥',2') » (X,Y,Z) by assumption (iv). It follows that assumptions

-

(1) - (iii) of Theorem B (applied to primed spaces) are satisfied.
Also Proposition 5 implies that the morphisms of homotopy double groupoids
induced by these. maps are isomorphisms.

Consider the following diagram:

P (%, Y, 2) > 0(Xy,Y,,2,)

(2)
P
0 ' 1 1 ' ' ' 2
p (X O’Y o,Z 0)——————}p(X 2,Y 2,Z 2)

(1 L l (3

p(X' X' 1,2" ) p(X',¥",2)

(4)
b A \ \g

P

The cells (1) - (4) are obviously éqmmutative, because they
are induced by commutative diagrams of maps. So the diagram defines‘an
isomorphism from its inner square to its outer square. Buf the inner
square is a pushout of double groupoids by Theorem B. So the outer

square is a pushout of double groupoids.
Rewmarks 1) Suppose given an adjunction space X = X2 Ug X1

X s
where L X2 are CW-complexes, XO

is «cellular Let Y ,Z, be respectively the 1- and O- skeletons

1s a subcomplex of X1 and fX s X.0 > X2

of vafor v =0,1,2 - . Then the induced diagram (1) is an adjunction

space triple, and also conditions (i) - (v) of Theorem C are satisfied.
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2) The assumption (iv) of Theorem C can be weakened to the

conditions that wl(M(fZ) v Zl,;) > nl(M(fY) U Yl,c) is trivial

for all ¢ in M(fz) U Z1 and p 1induces an isomorphism of homotopy
double groupoids.

Corollary Suppose given the adjunction space triple of diagram (1)
with Zv consisting of a base point of,Yv for'v = 0,1,2 -= . Suppose that
XO - Xl’ YO - Y1 are closed cofibrations, that all the Xv’Yv

are path—connected and that nl(YQ) > nl(Xv) is.surjeetive-for v = .0,1,2,

Then the induced square

HEsY) —> u(X,,Y,)

b

is a pushout in the category of crossed modules.
Proof. This is as for the Corollary to Theorem B.

Remark. A particular adjunction space triple which arises commonly

is when X is the union of closed subspaces Xl’XZ with intersection XO;
Y is a subspace of X which is the union of closed subspaces Yl’YZ with
~intersection Y0 and with Y1 c Xl’ Y2 <X ; and Z is a common base
point of all the Xv’ Yv' Then the Corollary to Theorem C applies

to give a result similar to the Corollary to Theorem B but without

the assumptions Yv =Yn Xv’ v =0,1,2,
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4, Pushouts of crossed modules.

The direct application of the adjunction theorem or of the
union theorem requires computatién of pushouts in the category of
double groupoids, about which we know little. However, for path-—connected
spaces with base-point, double groupoids with one vertex suffice, and
the applications require only knowledge of pushouts" in the category-&
of crossed modules. (See the Corollaries to Theorems B and C.) This
section describes the necessary computationé in 2:

There is no problem about the existence of pushouts in:E.
Crossed modules form an equational class of 2-sorted aléebras and therefore
g,has all limits and colimits (see[7,13,14]). It also has various kinds of
"free" objects given by left adjoints to various forgetful functors. In
particular, if & denotes the category of groups, let >(%0 be the category
whose objects are the morphisms of grand whose morphisms are commutative
=wquares in G. The functor C - C

> ~x %0

crossed module has a left adjoint F : C

0
x
& : A > B, we call F(8) = F(A,B,0) the free crossed module on 6.

which forgets the group action of a

+ C and, for a group homomorphism

Proposition 8. The free crossed module on the group homomorphism 6:: A -+ B

has the form 9 : G ~ B, where G is the group generated by the set A x B

with defining relations

(1) (al,b)(az,b) = (a b) and

1%2°
.. -1 _ -1
(ii) (al,bl) (aZ’bz) (al,bl) = (az,bz,b1 (eal)bl)
for all a

€ A and b,bl,b B. The action of b € B on G is given

1°%2 2 €
by (a,bl)b = (a,blb), and 3 : G > B is given by 3(a,b) = b_l(ea)b.

Proof. Let H be the group with generators A x N aﬁd defining relations (i).
Then, for each b € B, the set {(a,b); a € A} is a subgroup AP of H, isomofphic

to A, and H is the free product of these copies of A. We may therefore



) e

define a group homomorphism d : H‘ - B by d(a,b) = b—l(ea)b. Also B
acts naturally on H by permuting the free factors Ab according to the
rule (a,bl)b = (a,blb). It is easy to see that d(hb) = b-l(dh)b for
all h € H,b € B, but(H,B,d) fails to be a crossed module because

hgh + h_lh h in general. Let N be the normal subgroup of H generated

1

by all elements hcllh(h--]'hlh)-1 for h,h. € H. Then N is stable under the

1

action of B and is contained in the kernel of d. Hence B acts on G = H/N,
and d induces a homomorphism 3 : G -+ B making (G,B,3) a crossed module.
It is easy. to see that N is generated as normal subgroup by the elements
hcllh(h_lhlh)_l with h,h1 running through the generators (a,b) of H;

that is G is obtained froﬁ H by imposing the extra relations (ii). This
argument proves the existence of a crossed module of the form described

in the proposition with a canonical group homomorphism o : A - G

given by a > (a,l). One needs only to check its universal property.

But this is clear; for suppose we have a crossed module (M,N,d8) and

a commuting diagram

'

A
elN
G
B >

o 5
)

1y /
B

in which u and v are group homomorphisms. Then p induces a group

u

¥

=2 Q——* =

A%

homomorphism pu* : G - M by theArule (a,b) > (uajvb, the counterparts

of the relations (i) and (ii) holding in M by virtue of the crossed module
éxioms. This u* satisfies u* o a =y and gives the required morphism
of crossed modules (u*,v) : (G,B,3) - (M,N,§).

Remark. In the special case when A is a free group with free generators
{xi} , this free crossed module is determined by B and the elements

y. = G(Xi) € B, and it coincides with Whitehead's "free crossed B-module"

1

([241, p.455) as can be seen by comparing the two presentations,
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A more general concept is useful in practice. We say that
a morphism (a,B) : (A,B,d) - (A*,B*,3%) of crossed modules is universal
if, whenever (u,v) : (A,B,3) > (M,N,$8) is a morphism of crossed modules
and v factorizes in the form v =v* oB (where v* : B¥ > N is a group
morphism), there is a unique group morphism p* : A* ->M such that py* o a=

and (u*,v*) : (A%,B*,60%) > (M,N,8) is a morphism of crossed modules

A H > M
\\\Sg =
P A%X” 8
B VS N
5%
B vk
B%

Clearly, this condition determines A%*,o and 3* to within isomorphism if

the crossed module (A,B,3) and the group morphism B : B - B* are given;

we therefore refer to (A*,B*,5%*) as the universal crossed module induced

from (A,B,9) by the group morphism B : B - B*, The existence of A* o and 9%
under these circumstances is contained in the proof of the first of the

following descriptions.

Proposition 9. Let (a,B) : (A,B,3) -+ (A*,B*,3%) be a universal morphism

of crossed modules.

(1) If the free crossed module on the group morphism 8 © 3 : A » B*

is denoted by d : G - B*, with canonical group morphism y : A - G, then
A* = G/R, where R is the B*-subgroup of G generated by all y(ab)('ya)"sb

for a € A, b € B.

(ii) If B : B - B* is a surjection, then A* = A/TA,K] (with o : A - A%
the quotient map) where K = Ker -8 and [A,K] is the subgroup of A generated

by all amlak for a € A, k € K.
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(iii) If B : B > B* is an injection and T is a right transversal
of B(B) in B*, let H be the free product of groups At(t e T) each
isomorphic to A by an isomorphism a p’-at(a € A). Let B* act on H by
the rule (at)b* = (ab)u, where tb* = (Bb)u in B* and u € T. Let

§ : H » B* be defined by atr—; t—l(Baa)t. Then A* = H/S, 'where S

1

is the normal subgroup of H generated by all g h—lgSg for g, h ¢ H

(or for all g,h in some generating set of H).

Proof (1) Given a morphism of crossed modules (u,v): (A,B,3) » (M,N,6)
and a group morphism v* : B*¥ > N as in the diagram above, ‘there is

(by the universal property of free crossed modules) a group morphism

p' ¢+ G - M such that (u',v*) : (G,B*,d) - (M,N,8) is a morphism of crossed
modules and pu' oy =y, Nowd : G - B* kills R since it is a morphism
of B*-groups and when applied to Y(ab)(ya)“Bb gives

dy () (8b) "L (aya) 1 (8b) = 83 (a®) (Bb) L (Boa) L (8b)

8{5(a")b L (3a) b} = 1.

Hence, putting G* = G/R we obtain an induced crossed module d* : G* - B*
and we now have a morphism of crossed modules (y*,B) : (A,B,3) - (G*,B*,d%)
since the action of B on A is carried to that of B* on G* = G/R. Also,
u' + 6 > Mkills R since its kernel is a B*;subgroup of G and
u'{Y(ab)(Ya)_Bl_)} = w'y (@) ('ya) VP - @R (ua) TP - 1.
Thus we have a morphism of crossed modules (u*,v*) : (G*,B*,d*) - (M,N,S)
with u* o y* = y, This shows that (y*,8) : ( A,B,3) - (G*,B*,d*) 1is
universal and hence that A* = G*,

(ii) For b € B, a € A and k € K we have

(a-lak)b = (ab)—1 (ab)b_1kb e [A,K 1, so that [A,K] 1is stable under
the action of B. Thus B acts on A/[A,K], and K acts trivially, giving
an action of B* = A/K on A/[A,K]. One easily sees that (A/[A,K], B*,3%) _

is a crossed-module, where 3% : A/[A,K] - B* is induced by B o 3 : A -+ B¥,

and that is has the right universal property.



tb* = (Bb)y with t, y ¢ T, b ¢ B,b* € B*, then
% =
@™ = 6@ ) =yl abyy

u_lﬁ(b_l(aa)b)u
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Remarks, (1) Composites of universél morphisms of Crossed modules are
again universal, Hence, by combining (ii) and (iii) of Proposition 9,
One can obtain for any universga] morphism:(a,g) ¢ (A,B,3) » (A*,B*,a )
4 presentation of A* a5 a group in terms of A,B,B*,B and B8, An

alternative presentation cap be ‘obtained by'combiﬁing Propbsi;ion 9 (i) .-

with Proposition 8.

(2). For a general Pushout of Crossed modules
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the group morphisms Bi :.Bi -+ B induce universal morphisms‘
(di,si) s (AiBi,ai)—?(Ai,B,ai) i =0,1,2)
giving rise to a pushout diagram.
(Ai,B,ai)
//”’;# ‘\\\\§>
o) (A,B,3)
‘\\\\\\, ’//,/”?

(A',B,Bé)

(A9,B,2

of crossed B-modules (for fixed B). We can obtain presentations of
Aé,A',Aé from Proposition 9 and hence of the pushout A' of the induced
morphisms Aé -~ A} and Aé - Aé in)ﬁ, The group A' is equipped with a
morphism 3: A' > B and an action of B on A'. The group A is now

obtained as a quotient A'/N, where N is the normal closure of the elements

X y-lx yax for x,y € A'.

Proposition 10 (i) Given a group morphism 6 : A -+ B, the crossed

module (G,B,d) is the free crossed module on 6, with canonical morphism
a : A > G, if and only if the morphism of crossed modules

(a,B) + ( A,A,lA) + (G,B,3) is universal.

(ii) A morphism of crossed modules

(a,B) : ( A,B,3)—>(A%,B*,0%)

is universal if and only if the diagram

/(O,B*,O)\)
~, 7

(4,B,3)

(0,B,0) (A*,B%, 3%)

is a pushout of crossed modules. /
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(iii) A diagram

is a pushout of crossed modules if and only if (AZ,Bzgaz) + (A,B,0)

is universal and the induced diagram

Bl
V"
NS
By

of morphisms of groups is a pushout of groups.

Proof. This is entirely a matter of checking the appropriate

universal properties.
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5. Applications to second relative homotopy groups

The basic result for our applications is the following

special case of the corollaries to Theorems B and C.

Theorem D. Suppose that the commutative square

£
XO-__$ XZ
i i
Vv
N\ ——> X
£

of éointed.spaces satisfies one of the two following hypotheses.

Hypothesis A : the maps i,f,i,f, are inclusions of subspaces,
<

XO = X1 n X2’ and X is the union of the interiors of X1 and X2.

Hypothesis B: the map i 1is a closed cofibration and X is
><<

the adjunction space X, u_X..

2 f1

Suppose also that XO’XI’XZ are path—connected and that i, : wl(XO) - ﬂl(Xl)
is surjective. Then E* s u(Xl,XO) > u(X,XZ) is a universal morphism

of crossed modules,

Proof. Consider the diagram of triples

: £
(XO’XO’*) ey (XZ’XZ’*)
(is1,m)
(X% %) — 5 (,X,4) .

When Hypothesis A (resp.Hypothesis B) is satisfied we may apply Theorem B,
> >

Corollary ( resp.Theorem C, Corollary) to obtain a pushout of crossed

modules

£
*

| b
uX X)) —————>u(X,X,)
, f

*
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But u(XO,XO) and u(Xz,Xz) are the trivial crossed modules
0o - nl(Xo) and 0 -~ ﬂl(Xz), so f, : u(Xl,XO) -> u(X,Xz) is

universal by Proposition 10(ii).

Corollary 1. (Homotopy excision theorem in dimension 2).

Let X be the wunion of subspaces X X2 satisfying either Hypothesis‘ﬁ;

1.’

or the following Hypothesis B': X, and X
=<

1 o are closed, X, = X1 n X2

0

and 1 : XO - X1 is a cofibration. Assume that XO’Xl’XZ are non-empty

and path-connected and choose a base-point 1in XO. If ﬂl(Xl,Xo) = nl(XO
then the excision map er.: ﬁz(Xl,XO) > ﬂz(X,Xz) is surjective. If, in

addition, 1T2(X2,X.O) = 0 then € is an isomorphism.
Proof. Since wl(Xl,Xo) =0, ﬂl(XO) > ﬂl(Xl) is surjective and

the theorem therefore gives a universal morphism

€
1T2 (Xl,XO) —_— TTZ(X,XZ)

P

(X)) ——pem (X)),

where j 1is the inclusion of XO in X2 .
Since nl(Xz,Xo) =0, j, is surjective, and therefore so is € by
Proposition 9(ii). If also wz(XZ,XO) =0 fhen j, is an isomorphism,
and therefore so is € .
We observe that Theorem D is stronger than the 2-dimensional

homotopy excision theorem ([12],p.211) in several respects:

(i) It gives an algebraic description of wz(X,X ) without the
assumption that il(Xz,XO) = 0. )

(ii) In the case ﬂl(Xl,Xo) = nl(Xz,XO) =0 it not only gives
the surjectivity of € : nz(xl,xo) > nZ(X,Xz) but also determines its
kernel. 1In fact, if K is the kernel qf jo ® ﬂl(Xo) as ﬂl(Xz) then

K acts on G =ﬂ2(X1,XO) and the kernel of ¢ is [G,K], by Proposition

9(ii).

Xy)
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(i11) The extra condition nz(xz,xo) = 0 needed to show
that the excision map is an isomorphism can be weakened to the
assumption that the boundary map wz(Xz,XO) -> ﬂl(XO) is trivial.

(iv) The theorem applies to a general adjunction space situation.
We illustrate these points with some further applications.

Corollary 2. Let f : Z + Y be a map of path-connected, pointed space

and let X = Y‘uf CZ, where CZ is the non-reduced cone on Z. Then the

crossed module ﬁ(X,Y) is the free crossed module on the group morphism
nl(Z) - wl(Y).

Proof. We take XO =2z, X1 = CZ, X2 =Y in Theorem D. This gives a
universal morphism wn(CzZ,Z) -+ p(X,Y). But CZ is contractible so
the boundary map 93 : nz(CZ,Z) > nl(Z) is an isomorphism. Hence, by

Proposition 10(i) u(X,Y) is the free crossed module on f_ :ﬂl(z) > ﬂl(Y).

Remark. Any space Y obtained from Y by attaching a family of 2-cells

is homotopy equivalent, rel Y, to a space X =Y uy_CZ, where Z is a

£
bunch of circles. In this case nl(z) is a free group and we recover

Whitehead's theorem that n2(§,Y) is a free crossed wl(Y)-module, with

one generator y, € vl(Y) for each cell attached (See[24], p.493).

Corollary 3 Let X =Y u_CZ as in Corollary 2, and suppose that the

£
attaching map £ : Z + Y induces a surjection f, : wl(Z) +'w1(Y).
Then ﬂZ(X,Y) = wl(Z)/[wl(Z),K],‘where K =FKer f, and [ , ] denotes

a commutator subgroup. Hence there is an exact sequence

ﬂz(Y) > NZ(X) -> K/[ﬂle)’ K] »- O.

Proof. As in Corollary 2, we have a universal morphism of crossed

modules

TTl(Z) _.___> WI(X,Y)
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and since f*'is surjective, Proposition 9(ii) gives
m, (X,Y) = m, (2)/L7n,(2),K]. We therefore have a homotopy exact

sequence. 5
M, () >, X)) > WI(Z)/[Wl(Z).K] =, ),

and since 3 is induced by fy wl(z) -+ ﬂl(Y) its kernel is K/[nl(Z),K],

-

as asserted.

Remarks., (i) If we take Y to be a point in Corollary 3 we can deduce
as a special case that ﬂz(SZ) = -rrl(Z)Ab for any path—coﬁnected space
Z; this also follows from the absolute Hurewicz theorem;

(ii) Under the hypotheses of Corollary 3, the van Kampen

theorem gives nl(X) = vl(Y UfCZ) = 0. Hence, by the Hurewicz theorem,

e

m, (X)

H, (X)

HZ(X)' If we further assume that nz(Y) = 0, we obtain

ne

K/[wl(Z),K] and so the homology sequence of (X,Y) becomes

ces * H3(X,Y) ¥ HZ(Y) > K/[wl(z),K] > HZ(X,Y) > Hl(Y) + 0.

e

Since Hn(X,Y) = Hn(Y quZ,Y): Hn(SZ) (Z), the sequence can

B
be rewritten
ces HZ(Z) * HZ(Y) - K/[nl(Z),K] - Hl(Z) + Hl(Y) + 0.
Applying this to Eilenberg-MacLane spaces Z = K(G,1), Y = K(Q,1),
we deduce that any short exact sequence of groﬁps
0+>K+G+Q~+0

gives rise to an exact sequence

By(0) > H,@ - K/GK] > H (G »HQ -0,
a result which appears in [20]1 and [ 21] .

The next corollary covers a more general situation including
the attaching of handles. 4
Corollary 4. Let A,B,Y be the path-connected, pointed spaces,
and suppose we are given amap f : AxB + Y. Let X =Y Uf(CA x B).

Then there is a universal morphism of crossed modules
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nl(A) _— wz(X,Y)
ill Jf
™ (a) % ﬂl(B)—f*——,? ﬂng)
where nl(A) acts on itself by inner automorphisms and nl(B) acts
trivially on ﬂl(A). Hence WZ(X,Y) = G/R, where G - wl(Y) is the

free crossed module on the map f*i1 : vl(A) -+ nl(Y) and R is the

' —b*
subgroup of G generated by all 'y(a)y y(a) b for a € ﬂl(A), b e ﬂl(B)J
y € nl(Y), y being the canonical map ﬂl(A) + G and b* the image of b

under f*i2 s wl(g) -> WI(Y).

Proof. Theorem D gives a universal morphism u(CA x B, A x B) + u(X,Y),
and it is easy to identify WZ(CA x B, A X B) as nl(Aj, with boundary
map the canonical injection ﬂl(A) > ﬂl(A) x ﬂl(B). This giyes the
first statement. According to the description of universél morphisms

given in Proposition 9(i), ﬂZ(X,Y) is now obtained as the quotient G/R,

(a,,b) -f,(a,,b)
22 7! *272 .
where R is the Wl(Y)—Subgroup generated by all Y(a1 ) Y(al) . Since
(az,b) a2 ag
= = * = 7
Y(al ? Y(al ) Y(al) when a} f*ll(az) g nl(Y) and

f*(az,b) = ag b* = b* a§ , R is generated as a subgroup by all

v@ap? v

Corollary 5. If in Corollary 4 we take A = SP, B= s (p,q > 1) so

that X = Y uf(EI’+1 « §9) where £ : SPx s > ¥, then

(i) m,(X,Y) =0if p> 2;

(ii) for p =1 and q > 2, wz(X,Y) is the free crossed module
over nl(Y) with one generator g whose image in ﬂl(Y) is the class of

the loop fi1 : A > Y;
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(iii) forp=q =1, WZ(X,Y) is the free crossed module
over wl(Y) with one generator g as in (ii) and one defining relation

g = g, where y € ﬂl(Y) is the class of the loop fi2 : B + Y.
Ptoof, (i) When p > 2, we have nl(A) = ﬂl(Sp) = 0 and hence ﬂz(X,Y) =0

by Corollary 4.

(ii) When p = 1 and q > 2, Corollary 4 gives a universal morphism

Z —> ﬂz(X,Y)

id,

Z —> 'ﬂ‘l 4'9)

and by Proposition 10(i), this makes nz(X,Y) a free wl(Y)—module
as described.

(iii) When p = q =1 we have a universal morphism

Z — m, (X,Y)
i

4 |

z x z—>m ()

and nz(X,Y) = G/R where G is the free crossed nl(Y)-module on g
as in (ii) and R is generated as ﬂl(Y)-submodule by gy, by Corollary 4.

~ Remarks. 1) The assumption in Theorem D that i, ﬂl(Xo) - ﬂl(Xl)

is surjective cannot be dropped, as is shown by the following example.

1 2 1 2
Let Xo = %, X1 =8, X2 = S” so that X =§ v 8. Then u(Xl,Xd)= (0,0,0),
u(X:XZ) = (172(81 v SZ,S?),O,O) and so the induced morphism |

u(Xl,XO) > u(X, Xz)is not universal since in the homotopy exact
sequence of the pair (S1 v 52,52), HZ(SZ) > 1r2(S1 v SZ) is not

surjective (since nz(x) g H2(§) is an infinite sum of copies of Z).

2) We can however obtain universal morphisms of crossed
modules under more general assumptions than those of Theorem D. Consider
for example the situation of the Corollary to Theorem C. Then by

Proposition 10(iii) the morphism u(Xi,Yl) + u(X,Y) of crossed modules

is universal if in addition to the assumption of this Corollary we have
™, (X,,Y,) = 0, m,(X;,¥y) = 0.
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_6."" The Union Theorem

be a family of subsets of X whose interiors

X =
Let X {Xl.}l.e A

cover X. For each v = (v., ...,v ) € An, let X be the intersection
1 n v
of the sets X, - Let Y be a subspace of X, let Z be a subspace of Y
S ¢

and for each v in A" define

Y =YnX ,2Z =2ZnX.
v \)_ v

We shall suppose that for each v in A2 and ¢ € Zv the induced morphism

nl(Zv,;) > ﬂl(Yvéﬁ) is E;}Vlal;“ this .will imply that p(Xv’Yv’ Zv)

is defined for each v ¢ A2 and also for each v € A,

The p-sequence of the cover X is defined to be the diagram
b )

L:IZ p(X\)’Y\)"Z\)) _.-_a_.:; u D(XA,YA,Z}‘) ""'—c§ p(X,Y,2)
VEA b XeA

in which a,b are determined by the inclusions a, : X, n Xu + X,

and bv:XA

by the inclusions cy Xx -+ X, for X € A,

n Xh > Xu for each v = (A,u) € A2 and ¢ 1is determined

Theorem E (The Union Theorem). In the'above prséqueénce-ofPthe’cover -X ‘¢ is tt
x

coequaliser of a,b in.the categbrycof-doﬁﬁieigroupoids if

(i) the induced maps no(zv) > ﬂo(Xv),'ﬂO(Zﬁ)j# ﬂQ(Yv) are surjective

for all ve Asj e P

(ii) the induced maps Ibl (Yv‘,Zv) > Pl(xv’zv) are surjective for all

v € A8. , . ;

_Remarks 1. Conditioms (i), (ii) of the theorem imply conditions
on r-fold intersections for 1 < r < 8 since for such r any v ¢ At

defines v' € A8 by allowing suitable repetitions.
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2. The conditions on 8-fold intersections can probably be
reduced to conditions on 4 —fold intersections, but not to 2-fold

intersections only. An example for this is given later.

Proof, Suppose that we are given a morphism f£' : k:%yp(XA,YA,ZX) > G
of double groupoids such that f'e a = f' o b, we have to show that
there is a unique morphism £ : p(X,¥,Z) =+ G of double groupoids
such that f o ¢ = £', We first define £ on the 2-dimensional part
of p(X,Y,2) and to this end we construct for certain S S,

special elements of RZ(X,Y,Z)-corresponding elements of G2.

Suppose that 6 in RZ(X,Y,Z) is such that 6 lies in some
set XX of g%(by which we mean that 6(12) is contained in XA).Then
0 defines uniquely an element G(A) of RZ(XA’YA’ZA) and we obtain an
element F(8) of G2 by the rule F(8) = f'(B(A)).A It is a straightforward

consequence of the condition f'o.a = f'o.b that F(8) is independent

of the choiceof A such.that 6 lies in XA'

Suppose now that ¢,§ in R2(X,Y,Z) are such that ¢ lies in
XA’ Y 1lies in Xu and also- 8 = ¢ + ¢ is defined. Then E(¢), F(¥)
are uniquely defined in G2. Further 81¢ = aow lies in er1xu and

so the condition f'c a = f'o b implies that
= £ (A ) o N (—'—5(1-‘) =

Hence we obtain in Gz;an element g = F(¢) + F(y) which a priori

depends on ¢,y and not just on 8 = ¢ + Y.
. ) - Tl e )
Similar remarks apply to composites ¢ ° E.

ISl T T . <



‘_40_

More generally, suppose we are given a subdivision 6 = (Bij) of 6 in
RZ(X,Y,Z) such that each eij is in RZ(X,Y,Z) and also lies in some Xv,ve An,
for some n. Then 6,. also lies in some X, ,A €A, and so g.. = F(6..) is
) 1] A 1] 1]
well-defined. By a similar argument to the above so also is g = [gij].

We now show in Lemma 1 that this element g 1is not changed if 6 is varied
by certain special homotopies. This Lemma is the key place where we use
the connections and also the cancellations which the double groupoid structure

allows.

A convention we adopt from now on is that given a subdivision 6 = [eij]
and given for each (i,j) a v in A* such that eij lies in Xv’ we write Xij

for X , Y., for YnX.., and Z.. for ZnX...
v’ Tij ij ij ij

2,12) x I+ (X,Y,Z) be a

Lemma 1. Let 6, 6* eRz(X,Y,Z) and let H: (12,.1
" homotopy from 6 to 9*. Let H = [Hij] be an (mxn x1)- subdivision
of H such that each Hij lies in some two-fold intersection Xij of elements
of g(( Suppose also that a_11 the edges of all the Hij lie in Y and all
their vertices lie in Z. Let 6 = [eij] ’ o = [e*ij] be the subdivisions

* *
of 8 , 6 induced by that of H, so that Veij , 0 i are in R2(X,Y,Z). If

% * * .
gij = F(eij) X = F(8 ij)_’ then [gij] =[g ij] in G,

' *
Proof. Let the faces of H.. other than 6,. ,0 .. be B. . ., B. .,
E— ij 1] 1] 1,J-1° 1,3

Yi1 i Yij » oriented according to the conventions adopted in the homotopy
’

addition lemma (Proposition 4).

The edges of Hij lie in Yij and its vertices in Zij’ so Proposition 4

gives a relation in Py (Xij ’Yij
six faces of Hij' This relation is carried by the morphism £f' to a

’zij) between the classes represented by the

relation in G2 of the form
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gf,: -P—l cjl <, F_l —
1] i-1,]
_‘i,j—l 83 bi.3
i =T cij T J
where bij = F(Bij)’ cij = F(Yij).

The interchange law for G allows us to refine the subdivision

gk = [gfj] by the substitution (1) and compose the new parts in any
convenient fashion. By cancellation of pairs b,., -b.. and c..,cT} 5
ij ij ij’7ij

and by composing degenerate elements and absorbing O's and 1's, we can

obtain a new subdivision of g* of the form

-1 -1 =1, -1
T c01 essececssss e con r
_blo g]_l seccsccsse e gln bln
_bZO Byp crerreceene ngn b2n
—bmo gm]_ sescs0ss s gm bmn
-T Cop Crrereerees S r

Now H maps 12 x I into Z, so each of the four edges joining 6 to 6 is

a path in ZA for some A. By Proposition 3(i) these edges represent

identity elements in the corresponding pl(Xl,Yx,ZA) and therefore map

to identity elements in G Hence each of the degenerate elements at

1°

the four corners of (2) is of the form I'(e) = . Similarly,

(1)

(2)
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. 2 . , §
H maps I x I into Y, so each of the border squares biO’bin’coj’cnd
lies in Y and therefore, by Proposition 3(iii), represents a degenerate

element of some DZ(XA’YA’ZA)' The border elements of (2) are therefore

all degenerate in G, o So we can easily write

* -

g = o %o G)_l
by [gij] bl
le & ©

where bo, oo bl' ¢1 are degenerate. Also the vertical edges of

. o, . * *
Cos ;1 are @dentities 1n Gl’ so ¢, = lp,cl--lq where p =€,8 ,9 =€;8 -

*
Similarly bo,b1 are zero squares. S0 g ==[gij]’ which proves the

lemma.

We now show that some more general homotopies H from & to 0%

can be reduced to those of the type of Lemma 1.

. o |
Lemma 2. Let 6, 6 € RZ(X,Y,Z) and let H :(12, I?, Iz)x I+ (X,Y,Z) be a

*
homotopy from 6 to- 6 . Let H'= [Hij] be an (mxn x l)-subdivision of ‘H such

that each Hij 1ies in some two-fold intersection Xij of elements of‘ﬁ?

*

. * . *
Let 86 = [eij] , 0 = [eijg be the subdivision of 6,0 induced by that

x .
of H, and suppose that eij. 6 14 are in R2(X,Y,Z) for all i,j. Then

. A A * . A . .
_there is a homotopy H = [Hij] from [eij] to [eij] with Hijlylng in Xij
: A *
and such that the edges of Hij lie in Y.  Further [F (eij)J =[F(eij)]'
in Gzr
Proof. The final conclusion follows from Lemma 1, and so it is

A
enough to construct the homotopy H.
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The vertices of H,, all lie in Z.., and those edges of H..
ij ij ij

*
which lie in 8., or 6 .. also lie in Y... We label the other four
) ij ij ij

1
edges as follows

We now invoke hypothesis (ii) of the theorem to choose, for each

V..

ij @ path ni; in Y with the same end points as wij and a homotopy

Xij in X which is a homotopy rel end points from wij to “ij‘ We
make these choices in such a way that xij lies in the intersection

n (this is where we use the assumption

Y5 " Faa,s 0 BLia " Fiage
about 8~fold intersections) if wij does not lie on the boundary of H,

while for each of the edges wo E ’wi 0 s ¥ which do lie on the
] »

m,tj ’ wi,n
boundary of H, and are therefore in Y, we choose nij =¢&j and xij to
A
be the trivial homotopy. We now replace each cube Hij by a cube Hij
s * : .
having eij and 6 ij as opposite faces and having
ni-l,j-l ’ ni—l,j ’ ni,j-l s nij as edges- joining them. This can be done

by a canonical construction (of which we omit details) so that the

A %
faces of Hij apart from eij s 0 15 are typically of the following type :

1\\\: |

A *
So the cubes Hij determine a homotopy H from 6 to 6 as required.-
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We now turn to the construction of F(a) € G2 for a general
element a of RZ(X,Y,Z). Since X is covered by the interiors of the
sets X}\,there is an (an)-suﬁdiVision a=[aij] (in the strict sense
defined in § 2 ) such that o 5 lies in some set Xij , say. However
aij need not be an element of RZ(X,Y,Z), a?d so we shall construct a homotopy

h=[h..] from o =[a..] to an element 6 =[6..] such that each 6,. lies
ij ij Y1) , ij

in some XA and is in RZ(X,Y,Z), and then define F(a) = [F(aij)].

To this end, we start by labelling the edges and vertices of

o.. as follows:
1]

T. .
£y 113 £
i-1,j-1 i-1,j
o, . a.. C..
1,31 1] 1]
T..
1]
and construct h.., from a.. to 6...
1] 1] 1]
In what follows it is convenient to set X .=X_ .,
0,] 1,]
Xm+1,j = Xm,j ’ X:i.,0=xi,1 ’ Xi,n+1=xi,n'

(1) The point Eij will lie in Xij n xi+1,j n Xi,j+1 n Xi+1,j+1 "

and so we choose a point Cij in Z and a path wij from Eij to Cij
such that T is a path in this intersection. This choice
is possible by hypothesis (i). We restrict the choices still

further by insisting that if Eij belongs to Y then o 5 is a path in Y
(again ‘jnvoking hypothesis (1)) and if E_‘,i. belongs to Z then wij is a
path in Z (for example a constant path).

(2). Having chosen the W3 for 0<i<m, 0<j<n we next choose

for each horizontal edge Tij a square Tij :IZ+X whose
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restrictions to I x {0}, {0} xIand {1}x I are respectively

s W and w,;, and whose restriction to Ix {1} is a path

Ti5 0%, 51 ij

T',. in Y and such that Tij is a square in X,. nX . ., This

ij h] i+1,j

choice is possible by hypothesis (ii). We further insist that

if i3 is a path in Y (whence by previous choices w, ._, and

»
wij are paths in Y) then Tij is a square in Y; for example we

: v
may take Tij to be degenerate with T i3 [wi,j-l , Tij ’wij]'
For each vertical edge Gij we choose in like manner a square

S.. with edges o.. , and ¢',. subject to similar
1] 1] S 1]

“i-1,3 * “ij
conditions. ,
We map B==(Iz><{0}) U (izx I) to X by combining the following maps:

(X;Y9o) > aij (x,5,0),

(x,0,2) > Si_l’j(x,z) ,(x,l,z)?> Si’j(x,z))
(OaY,Z_)“) Ti"l,j(y’z) ’ (1SY:Z) Led Ti.,j (Y:z) o

This map is now composed with a fixed retraction' 12>(I-*B to
define a homotopy hij from aij to the opposite face eij. The

cubes hij clearly form an (mxnx1) - subdivision of a cube h,

~

which is a homotopy from a = [aij] to 8 =[eiﬁ]’ and since o has
edges in Y and vertices in Z, our construction ensures that h maps
2 .2}.‘.2

(I",I17,1%) xI into (X,Y,Z). Hence o and 6 represent the same

element o of pz(X,Y,Z).

If a morphism f': p(X,Y,Z) G exists satisfying £ °c=#f’, then
£G) = £B) = [£(; )1 = [F(o; )],
This proves the uniqueness of f, To prove the existence of f, we
show that  (a) F(a) = [F(eij)] depends only on the class o of a in

p(X,Y,Z) (b) the map f defined by F candbg extended to pl(X,Y,Z)

- and pO(X,Y,Z) so as to define a morphism f of double groupoids

satisfying fec = f',
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To emphasise the way that F(a) depends on the choices involved,
namely on the choice of the subdivision a = [uij] , on the choice of
X.. such that a.. lies in X,., and on the choice of the équares
1] 1] 1]
Sij ’Tij or, equivalently, on the choice of homotopies hij’ we write
F(a) = F(a, (Xl_‘]) ’ (hij)).

Lemma 3. F(a,(Xij), (hij)) depends only-on o,

vy 9 .
Proof. The homotopy h from o tof maps (IZ,IZ,I ) x I into (X,Y,Z),

and in the induced subdivision 6 = [eij], each eij maps (Iz,i% 12)

. ' o R .
into (Xij’Yij’zij)' Let h [h kzj be an alternative homotopy

constructed under the same rules with h'kz lying in X'kz’ inducing

= Tl = ' '
subdivisioms a [uklj’ =106 k2] . Then (o kz) and (aij) have a
common refinement (a"pq), in the sense that each o5 is subdivided into
a block of the a"pq (all blocks being the same size) and the same is

true for each o' . Each of the o  is necessarily in some X" _ of X
k4 Pq P4 x

and we can construct corresponding homotopies h"pq' It is enough,
) = ' 1 .
therefore, to prove that F(a,(xij), (hij)) F (a, (X kk)’ (h kl)) in the

B t . o
case when (akz) is a refinement of (aij).

Each square_a& is part of a unique square aij’ and we set

2
, _
. =% . ..

X K X ke " Xij' We now apply the hypotheses (i) and (ii) of our

. 8 ' . :
theorem, with ve A”, to construct according to our recipe a homotopy

1 ] 1

h' = [h-kﬂj from a to 6° such that each h

1 1
ke lies in X ke' The
) ]
. ' . ] ~at - . . l ~Q°* i
homotopies h ket % kg ) k&“’h ke % ke .9 ke together define

\J
. i .ab A . AP
homotopies H ke t @ ke 6 K2 which form a subdivision of a homotopy
t .
H' : 6" ~8' such that each H'kz lies in X'kz' We may then apply Lemma 2

to conclude that in GZ’

Py (K1) 5 (1)) = B (s By)e @)
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The latter element is in fact g’ =[g'k2] where g'k2= F(6 kz)'

1
However if “lkl is a part of o 50 then 68°, , is also a square in

ke
xij' Let a*ij be the composite of those squares e:kz such that
a'kl is a part of aij' Then we have also a subdivision h! = [h*ij]
where h*ij is a homotopy from aij to G:j lying in Xij' Let
g*ij = F(e*ij). Then by composing in G2 we find-that g! = [g*ij],
i.e. that
F (o, ()0 (h'1g)) = Fla, (), (%), @)

But now the same argument as for equation (1) shows that

F(a’(xij)'(h*ij)> =,F(a.(Xij).(hij))- 3)
The result follows from (1),(2) and (3).

Lemma .4 . F(a,(xij),(hij)) depends only on the class of o in p(X,Y,Z).

Proof. In view of Lemma 3 it is enough to show that if a ~ a' in
= 1 ' '
RZ(X,Y,Z), then F(a,(Xij),(hij)) F', X ij)’(h ij)) for some

. 3 . .
convenient choice of (Xij)’(x ij)’ (hij) and (h ij)' So let
K : (Iz,;z, I 2) x I -+ (X,Y,Z) be a homotopy from o to a'. Since the

interiors of the Xl cover X, there is an (m x n x p) - subdivision

] such that each K..
“ijk

K = [K,

{3k lies in some XA’ say Xijk' Let

o = [a,.], a' = [ag.] be the induced subdivisions of a,a' .

1]

We show that if (hij),(h'ij) are any homotopies based on these
subdivisions and constructed to our recipe, then
F s o * 0 = ' .A. '-‘ L] i i 1

(a,(XlJO),(hlJ)) F (o ,(XlJp),(h lJ)) A simple induction
on p (the number of layers between o and a') reduces us to the
case p = 1, so we may assume that the subdivision of K has a
single layer, K = [Kijﬂ, each Kij being a homotopy from

' 3 . 3

uij to a ijalylng in Xij' Then the homotopies
h.. : a., ~6,., h'.. : a'.. ~ 6!, also can be chosen to lie in
ij ij ij ij ij ij

xij’ and these homotopies combine with the Kij to give homotopies
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. o At ; ; . 2 i n
Hij ) eij e iy lying entirely in Xij’ and forming a subdivision
of a homotopy H from 6 = [%j] to 8' = [eij] . By Lemma 2,

we deduce that F(a’(xij)’(hij)) = F(a,(Xij),(hfij)).

We have now proved that there is a well-defined map
f pZ(X,Y,Z) - G2, given by f(a) = F(a,(Xij),(hij)), and which
satisfies f o ¢ = f' at least on 2-dimensional elements of p.

We show next that f preserves addition.

Let a,a',a%e pz(X,Y,Z) satisfy a = a'+a', Then we can choose
a,0',a" representing a,a‘',a" such that o = [aja"], We now compute
f(a) by means of a subdivision of a which is a refinement Ea'ijla"ijﬂ
of [a%a"], Since a'gﬂ'eRz(X,Y,Z) our prescription will ensure that
6ver the common edge of a'! and o' all choices of paths and squares will
_ be made in Y. We then obtain elements g'ij’g"ij of G2 such that

] — 1 " = " gy ] 1" . f
f(a') [g ij]’ f(a") [g'ij] and f(a) Lg ijlg ij] I; follows from

the interchange law that f(a) = £(a') + f£(a"). A similar argument

shows that f preserves vertical compositions of squares.

To see that f satisfies condition (iii) of Proposition 1, let

s epl(X,Y,Z) be represented by o€ Rl(X,Y,Z). Then T(s) is represented

by T'(o) = a, say. Choose a subdivision a = [aij] such that each aij
is in some X.. of the cover x. Since o is a square in Y, each a,.
1] = 1]

is in Yij’ so we may choose the squares eij and the homotopies hij
entirely within Y. Then eij represents a degenerate element of
pz(xij’Yij’Zij) by Proposition 3. Hence gij = f(eij) is a degenerate

element of G2 and therefore £(I'(s)) = f(a) = [gij] =g ig a degenerate

element of G2 by Proposition 2.

Now since a = T'(0), the edges 9.a and €.a are constant paths at

1 1

z = o(l). We may therefore choose the hij so that the corresponding

edges of 6 = [eij] are also constant at . It follows that g is of



-49-

3 t s o,
the form A(t ee), and is therefore T'(t) by Proposition 2.

Proposition 1 now implies that f can be extended uniquely to a
morphism of double groupoids f : p(X,Y,Z) > G and it only remains to
show that fec = f', However we already know this holds in dimension 2,
and since fo c and £' are morphisms of double groupoids, this also holds

in dimensions 1 and O.

This completes the proof of the Union Theorem.

N\
\
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Corollary. Let {Xx}ﬁszh be a family of subsets of X whose interiors
cover X, Let Z be a subspace of X, and 1et’ZJ = erXv. Then the

induced diagram of groupoids

. [
L) e %020 3 | P, (%52 )% b, (X,2)
veA b A € A ;

(where a,b,c are induced as in Theorem E) is a coequaliser diagram in
the category of groupoids if the induced maps ﬂO(Zv) +~ﬂo(Xv) are

surjective for all ve A8.

Proof. In Theorem E we take Y = X, and obtain a coequaliser diagram of
homotopy double groupoids from which we obtain the above diagraﬁ of
groupoids by applying the forgetful functor (GZ,GI,GO)r> (Gl,GO) from
~double groupoids to groupoids. However this forgetful functor has a

right-adjoint (Al,AO)|+ (AZ’Al’AO) where A, consists of all quadruples

2
T . -1 =1 =1 , . ;
(p g s) in Al such that p "rsq 'p = is defined, and so the forgetful

functor preserves colimits.
.’

Remark. The above Corollary seems to be new even for the case

Z = {c}. The conditions on 8-fold intersection can probably be reduced

to conditions on 3-fold intersections. In [22] (p.763 and p.775) it is

stated that conditions on 2-fold intersections are sufficient, but this is

false as is shown by the following example. ;

2

2

Examgle. Let X = R” and 1et‘X1 = {(x,y) : xz-ry =41, X, = {(x,y) : x > -1},

X, = {(x,y)' : x <1}, Z = {€0,2)}. Then X,%,,X X 0 X, X, X 5%, nX) are
all l-connected, but ﬂl(Xl,(O,Z)) = Z. Therefore the diagram of the Corollary

is not a co—equaliser diagram. Of course we do obtain a coequaliser diagram

of groupoids if we take z = {(0,2),(0,=-2) }.

This exémple does not contradict results of [11], since there the cover

{XA}AE A is assumed closed under finite intersection.
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