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Abstract 

We give a form of the Van Kampen Theorem involving covering morphisms in a lextensive 
category. This includes the usual results for covering maps of locally connected spaces, for light 
maps of compact Hausdorff spaces, and for locally strong separable algebras. @ 1997 Elsevier 
Science B.V. 

1991 Muth. Sut~j. Cluss.: lSB99,57MlO 

0. Introduction 

Let B be a topological space and B 1, B2 open subspaces of B such that B = BI U B2. 

The classical Van Kampen Theorem asserts that the canonical morphism of groups 

~I(BI>~) +n,(~,n~2,b) n1(B2, b) - 711(&b) (1) 

is an isomorphism, i.e., that the fundamental group nl(B,b) is a pushout of nl(B1.b) 

and rc1 (B2, b) over II~(B~ f’ B2,b). Here it is assumed that there is a single base point 

b, say, contained in BI n B2, which is itself assumed path-connected. 

A common proof of this theorem uses the definition of the fundamental group in 

terms of paths. However, it is well known that there is another proof of the isomorphism 

(1 ), for the case of B1 n B2 connected, using covering spaces. This is sometimes called 

the “tautologous proof”; an exposition is given in [7, Section 4.61. 

However, for the isomorphism (1) one can avoid all these assumptions of connectiv- 

ity and the choice of base point by replacing the fundamental groups nt( -, b) by the 
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fundamental groupoids ni(-) ~ see [2,3]. The proof of this theorem in [2,3] uses the 

definition of the fundamental groupoid in terms of paths. There is an analogous result 

in terms of covering spaces, as follows. 

Suppose that B is a “good” space - so that the fundamental groupoid nl(B) classifies 

the coverings of B, i.e., there is an equivalence of categories (see e.g. [3, Ch. 91) 

Coverings(B) N SetsKI”). (2) 

Then (1) can be generalised and formulated in terms of coverings as an equivalence 

of categories 

Coverings(B) N Coverings xooverings(~, n~z) Coverings( (3) 

We will then say that the class of coverings satisfy the Van Kampen Theorem for the 

given diagram 

(4) 

In this form we require only that BI, B2 form an open cover of B. 
We shall put this form of the Van Kampen Theorem in a general setting. One major 

reason is to consider the theorem for other classes of maps than topological coverings. 

The second, is that analogous theorems occur in algebra [12], where the category 

under consideration is the opposite of a category of commutative rings. This algebraic 

situation is the one from which arose Grothendieck’s general formulation of Galois 

theory, for which he introduced the notion of descent, and this led to the Galois theory 

in categories of [8]. Thus, one of our aims is to produce one Van Kampen theorem 

which includes these cases, and others. 

We use two concepts which were introduced a long time ago but until recently have 

not been much studied for their own sakes. 

One concept is the condition on a map of spaces that it be an effective descent 

morphism. This condition on the map BI + B2 + B is found to be necessary and 

sufficient for the Van Kampen Theorem. This contrasts with the sufficient homotopical 

conditions used for example in [3, Ch. 81. 

A second concept is that of lextensive category, which turns out to be exactly the 

natural context for these questions. The advantage of such categories is that we can 

prove a theorem which includes both the topological and algebraic situations which 

are of immediate interest, as well as many others. These examples are discussed in the 

final section. 
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1. A general setting for the Van Kampen theorems 

Here is the general setting for the above considerations. 

Let C be a category with pullbacks, and let g be a class of morphisms of @ which 

contains all isomorphisms and is pullback stable. The latter means that if 

Pr2 
Ex,A-A 

PYI 

I I 

%I 

E-B P 

is a pullback diagram in @ with CI in .F, then pq is also in R 

Now let Y(B) be the full subcategory of the comma category (Cc 1 B) with objects 

all pairs (A,cc) with c( : A ---f B in R Any morphism p : E + B in C determines the 

pullback functor 

(5) 

p* : F(B) + F(E) (6) 

defined by 

p*M r> = (E XB 4 PHI 1, 

via the pullback (5). 

Now consider a commutative diagram in @ of the form 

(7) 

We define F(B1) x.Y(B~) F(B2) as the category of triples ((Al, C(I ), (AZ, c(2), 4) where 

(A~,ctl) is in I, (A~,cQ) is in F(Bz), and Q, : fT(A~,xl) ---f fz(A2,~) is an 

isomorphism. Since grfl = g2f2, the pair (gt,gz) induces a mnctor 

K r/,,gz : F(B) 4 I x.F(B,,) 9:(B2). (9) 

Definition 1.1. We will say that F satisfies the Van Kampen Theorem for a given 

commutative diagram (8) if the functor K g,,q2 above is an equivalence of categories. 

Accordingly, by “Van Kampen Theorems” we will mean assertions that for certain 

diagrams (8) Ky,.s2 is an equivalence of categories. 
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2. Effective descent morphisms 

Let @, F and p : E * B be as above. An P-descent data for p is a triple (C, y, 0 

in which (C, y) is an object in R(E) and s’ : E XB C + C is a morphism in C from 

the pullback 

P’I 

I I 

p; 

E-B P 

to C making the following diagrams commute: 

Exnc< /? 
E 

(10) 

(11) 

(13) 

There is an obvious notion of morphism of &descent datas for p, which form a 

category Des,F(p). There is a commutative diagram 

* 
S(B) 

A p 
Des,(p) (14) 

where U, : (C, 7, t) H (C, y) is the forgetful functor, and K,, the so-called comparison 

functor, is defined by (A, x) H (E xg A, pq, 0, where E xB A and prl are as in the 

pullback (5), and t = 1~ x PY2 : E xg E xB A 4 E xs A. 

The morphism p : E -+ B is said to be an efective P-descent morphism if the 

functor K, is an equivalence of categories (this and other related notions are recalled 
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in detail in [lo]). Following [lo], we will say that p is an effective global-descent 

morphism if this is true for F being the class of all morphisms in 62. Recall that in 

this case Des.p(p) = (C 1 E)r where T is the monad determined by the adjunction 

P’ 

(@ 1 B) / cc 1 El P! -I p*> 
(15) 

P! 

where p! is the composition with p. That is, p is an effective global-descent morphism 

if and only if p* : (@IB)+(@IE) is monadic. 

The following result, also mentioned in [lo], is often useful. 

Proposition 2.1. Suppose that for any pullback (5) in @ with prl : E XB A + E in 

9, r : A + B is also in 9; then every eflective global-descent morphism in C is an 

@ctive P-descent morphism. 

3. The general Van Kampen Theorem 

A category @ is said to be lextensive if it has finite limits (in fact we will use only 

pullbacks), and finite coproducts which are disjoint and universal; these conditions have 

been considered by many authors for a long time, but we take the name “lextensive” 

from a recent paper [6] of Carboni, Lack and Walters, where a nice introduction to 

the subject is given. 

One can also define a category C to be lextensive if it has finite limits and finite 

coproducts, and for any pair X, Y of objects of Cc the functor 

(a= 1 X) x (a= 1 Y) 2 (a= L x + Y) (16) 

is an equivalence - or, equivalently, the functor 

(ClX-t Y)X(ClX) x (ClY), (17) 

where i : X 4 X + Y and j : Y --f X + Y are the coproduct morphisms, is an 

equivalence. 

Note that if @ is a lextensive category, then (C L 0), where 0 is an initial object of 

C, is a codiscrete groupoid, and so 
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Thus, the equivalence (17) is just a Van Kampen Theorem for the diagram 

(18) 

Moreover, it turns out that any kind of Van Kampen Theorem in a lextensive cat- 

egory is equivalent to a certain “usual” property, namely the property of being an 

effective descent morphism, as we see from the Proposition 3.2 below. 

Lemma 3.1. Let 

be a pullback diagram in a Iextensive category @, in which g1 and g2 (and so also 

f 1 and f 2) are monomorphisms, and let F be a class of morphisms in @ which is 

pullback stable and contains all isomorphisms. Let p : BI + B2 --) B denote the mor- 

phism induced by g1 and g2. Then there exists an equivalence of categories between 

F(B1) x.~(&,) F(B2) and Des.,-(p) such that the diagram 

s(B,) x.F,B,,) p(4) - Des,(p) 

d /A 
9(B) 

commutes (up to an isomorphism). 

Proof. We will just show how to construct the desired functor from Des&p) to 

F(B,) x.g(&) P(B2) (on objects) and omit the calculations. 

Given an object (C, y, 5) in Des,-(p), we first use the equivalences (16) and (17) 

and obtain 

B2 xB C i’I C, & BZ, 
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so that C = C, t-C,, y = y, fyz, and 5 = 5,+& via (BI fBz)x~C ” BI x&+-B2 XBC. 

Then we induce compositions 

i,j = 1,2, so that 5 is determined by (<,,,5,2,&,,&2). Then we note that BI XLS BI ” 
B,, B, xg B2 Z Bo E B2 xg B,, 82 xg B2 E B2 (the first and the last isomorphisms 

follow from the fact that g, and g2 are monomorphisms), which gives 

Bi Xg Cj g 
ci 
BO XB, Cj 

Moreover, it is easy to show 

and 52, can be factored as 

if i = j, 

ifi#j. 

that <, 1 and <22 must be canonical isomorphisms and t ,2 

in fact one can show also that r;, and t;, are the inverses of each other. 

Now the desired functor can be constructed by 

(C,::, 5) +-+ ((~l,Yl),(~2~Y2)~~;,). q 

According to Descent theory, this lemma gives: 

Proposition 3.2 (“General Van Kampen Theorem”). Let 

be a pullback diagram in a lextensive category C in 
phisms. Let .F be a class of morphisms in C which 
all isomorphisms. Then the following are equivalent: 

(a) d satisjes the Van Kampen Theorem for the 

w)hich gI and g2 are monomor- 
is pullback stable and contains 

pullback diagram above; 
(b) the morphism B1 + B2 4 B induced by g1 and g2 is an efective &descent 

morphism. 

Note that if 9 is the class of all morphisms, then the pullback above is also a 

pushout. This may be deduced from Proposition 3.2, or shown directly. 
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4. Examples 

Example 4.1. Let @ be a lextensive category and let 9 be the class of decidable 

(= separable) morphisms in @ in the sense of [4]. Then by Proposition 2.1 and [4, 

Theorem 1.1 (12)] every effective global-descent morphism in @ is an effective & 

descent morphism. 

Example 4.2. Let 

I 

c, X I i H, (18) 

H 

be an adjunction between categories @ and X such that C is lextensive and for any 

object C in @, the category (X 1 Z(C)) IS a full reflective subcategory of (@ 1 C) via 

the induced adjunction between (C J, C) and (X Ll(C)). Let 9 be the corresponding 

class of “coverings” in C, i.e., the class of all morphisms x : A + B in @ such that 

there exists an effective descent morphism p : E --+ B for which the diagram 

E xfl A - HI(E x8 A) 

I I 
E b HI(E) 

is a pullback (see [8] and the references there). Then clearly Proposition 2.1 can 

be applied and we conclude that every effective global-descent morphism in C is an 

effective g-descent morphism. 

Example 4.3. Let C be the category of topological spaces and let F be the class of 

all local homeomorphisms; [IO, Theorem 4.71 says that every effective global-descent 

morphism in @ is an effective *descent morphism. 

Observe that the situations of Examples 4.1, 4.2 themselves include several impor- 

tant concrete examples. As mentioned in [4], 4.1 includes the examples of separable 

algebras and decidable morphisms in a topos. Example 4.2 includes the following: 

(i) componentially locally strongly separable algebras in the sense of Magid [ 111, as 

shown in [8]; (ii) light maps of compact Hausdorff topological spaces (described as 

categorical coverings in [5]); ( iii coverings of locally connected topological spaces. ) 

In this last example, we take @ to be the category of &tale spaces over B where B is 

assumed locally connected. For X we take the category of sets over QB. The functor 

I is induced by ~0. The functor H is given by pullback by B + noB. The more general 

situation of coverings in a molecular topos, introduced by Barr and Diaconescu [l], is 

described in terms of an adjunction in [9], and so is also a special case of 4.2. 

So in each of these cases we obtain a Van Kampen theorem for the pullback diagram 

(8): the natural morphism 
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is an equivalence of categories provided B1 + B, B2 + B are monomorphisms, 

Bo = BI xB B2, and BI $ B2 --+ B is an efective global-descent morphism. 
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