JOURNAL OF
PURE AND
APPLIED ALGEBRA

ELSEVIER Journal of Pure and Applied Algebra 135 (1999) 23-31

Galois theory of second order covering maps
of simplicial sets !
Ronald Brown?®*, George Janelidze®

2 School of Mathematics, University of Wedles, Dean St., Bangor, Gwynedd LL57 1UT, UK
Y Mathematics Institute, Georgian Academy of Sciences. Thilisi, Georgia

Communicated by A. Carboni; received 1 October 1995; received in revised form 24 April 1997

Abstract

A classical theory gives an equivalence between the category of covering maps of a space and
the category of actions on sets of the fundamental groupoid of the space. We give a corresponding
theory in dimension 2 for simplicial sets as a consequence of a Generalised Galois Theory.
This yields an equivalence between a category of 2-covering maps of a simplicial sct B and
a catcgory of actions on groupoids of a certain double groupoid constructed from B. © 1999
Elsevier Science B.V. All rights reserved.

1991 Math. Subj. Class.: 55U10; 18G55

0. Introduction

There is a classical description of covering maps of a “good” space B in terms of
actions of the fundamental group =,(B,b) of B. This description can instead be used
as a definition of the fundamental group.

There are second order analogues of the fundamental group. These include not just
the second homotopy group but also the crossed module formed by the second relative
homotopy group and the fundamental group, as considered by Whitehead [12] and by
Mac Lane and Whitehcad [11]. Several closely related structures were proposed by
Quillen (the crossed module of a fibration), Brown and Higgins (the double groupoid
of a pair [3], crossed modules over groupoids [4]), Loday (the fundamental cat!-group
of a map [10, 5]), and others.
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However there has been no corresponding theory of second order covering maps. The
purpose of this paper is to develop such a theory for simplicial sets, as a special case
of Galois theory in categories [7]. The second order notion of fundamental groupoid
arising here as the Galois groupoid of a fibration is slightly different from the above
notions but it yields the same notion of the second relative homotopy group, considered
as a crossed module.

The paper contains four sections. The first section recalls an appropriate simplified
version of Galois theory in catcgories with respect to an adjunction [7]. The second
section describes the connection with the classical theory of coverings. The main re-
sults are in the third section: this gives the Galois theory with respect to the adjunction
between simplicial sets and groupoids. The fourth section gives the corresponding no-
tion of second order covering and second order fundamental double groupoid; these
second order coverings are described as the “fibrational” internal actions of this double
groupoid in the category of groupoids.

1. Galois theory in categories

Let C be a category with pullbacks and .7 a class of morphisms in C containing all
isomorphisms, closed under compositions, and pullback stable: .7 can be considered
as a pseudofunctor

F C% = Cat

defined as follows: given an object B in C, the objects of #(B) are all pairs (4, %),
where x:4 — B is a morphism in .7 and morphisms (4, 2) — (A4’,2’) are all commu-
tative triangles in C

A A
B

We will write #(B)=(C | B).
Note that for any morphism p:F — B in .7 the pullback functor
F(p)=p"(ClB) = (C|E)
(A, 2) — (E xp A, pr1)
has a left adjoint p, :(C | £)— (C | B) which is the composition with p, i.e. for a given
object (D, ) in (C | E), we have py(D.d)=(D. pd). If in addition p* is monadic, then

we say that p:E — B is an effective .7 -descent morphism.
Let

c= X, mile—HL sl — 1
H



R. Brown. G. Janelid=c | Journal of Pure and Applied Algebra 135 (1999) 23 31 25

be an adjunction between categories C and X with pullbacks and let .# and #'
be classes of morphisms in C and X respectively satisfying the conditions above. If
I(FYC 7' and H(F')C.7 then for any object B € C we obtain an induced adjunction

IB
(C|BY—=— (X | I(B)), 08 8y — HEIE, B 1BHP — 1 iy
HB
in which

124, ) =(I(A), [(2)):
HE(X, ¢) = (B <) H(X), pri)

via the pullback

B x g H(X) H(X)
pri H{¢$)
B HI(B)

ng
for any (X, ¢) in (X | I(B));
Nty = (2014) 2 A = B Xpypy HI(A):
;;f\'.((/)) - "5.\'1([)"2 )*
i.e. it is the composition

1 pra)

1(B x5y H(X)) IH(X) =% X

Let I'=(C.X.I.H,n,e,.7,.7") be the data above; as in [7] we will say that I' is a
Gulois structure.

Let p:E — B be an effective .7 -descent morphism, i.e. (E, p) is a monadic extension
in the sense of [7, Definition 6.7] and let Gal,(E, p)=

HE xg E x4 5)31(5 XBE)EI(E)

be its Galois pregroupoid in the sense of [7]. The fundamental theorem of Galois theory
[7. Theorem 6.8] establishes a certain category equivalence

Spl(E. p) ~ Cospl(Gal(E, p),X) (1)

between a full subcategory Sp/-(E, p) of (C | B) whose objects can be described as
“coverings split over (£, p)” and a certain category Cospl(Gual;(E, p),X) of “co-split
Gal((E, p)-actions” in X. In this paper we will consider only a special case where

Spl(E. p)=1{(A, %) €(C | BY | 0{g 4. pry)is an isomorphism} 2)
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and
Cospl (Gal(E, p),X) = X“En my (x| I(E)) 3)

— see [7] for details.
According to the results of [7] a sufficient condition for that is:

Condition 1.1. The morphisms . 5% and &>*#" > are isomorphisms.

2. The “easiest case”; coverings of abstract families

Let A be a category and let C= Fum(A) be the category of families of objects in A;
a morphism (f.2):(4,),e4 — (A, ),7c 1 consists of a map f: A — A" and morphisms
1;\:A;~—>Af,(;_) for all 2 A. For example, Sets = Fam(l), where Sets is the usual
category of sets and 1 is the category with exactly one morphism.

If A has pullbacks, then so also does C, but the converse is not true; we will assume
only that C has pullbacks.

Consider the following Galois structure I =(C, X, L H,n, &, 7 ,. 7).

C = Fam(A) as above, assuming that A has a terminal object ¢, and C has pullbacks;

X = Sets;

(A )ien— A

H:X— Z'\,e/\. t = (A )vey where A, =1 for all x € X, with obvious # and &;

F and F' are the classes of all morphisms in C and X, respectively.

If p:E— B is an effective descent morphism in C with connected E, ie. with
E in A, then Spl(E, p) consists of those (4, 2)€ (C | B) for which there exists an
isomorphism in (C | E) of the form

Exgd = 2E

./

where > E is a (possibly infinite) coproduct of copies of £ with the canonical mor-
phism to E — in fact this coproduct is just a family each member of which is E.

Clearly (4) agrees with the ordinary notion of covering space. Moreover, under an
appropriate choice of C= Fum(A) and p:E — B, the category equivalence (1) gives
the classical equivalence

Cov(B) ~ Sets™® (5)

between the category Cov(B) of covering spaces over a “good” topological space B,
and the category Sets™'?) of its fundamental group actions. In fact (5) is a special
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case of the covering theory in a molecular topos — see [1], which itself is a special
case of the situation considered here as explained in detail in [8].

Note that the category Sets™ of simplicial sets can also be used as C (any category
of the form Sezs”, where D is a small category, is a molecular topos and in particular
is the category of families of its connected objects), which again will give (5) as a
special case of (I).

3. The Galois structure for second order coverings

Consider the following Galois structure I'=(C,X,/,H,n.¢,.7 ,.7'):

C=Sets™ is the category of simplicial set — here and below we use as far as
possible the terminology and notation of Gabriel and Zisman [6] for simplicial sets;

X is the category of groupoids;

H : X — C is the canonical inclusion, often called the nerve functor, and written as
D' in [6];

[ =m :C— X (written as IT:4°6 —%r in [6]) is the left adjoint of the canonical
inclusion H : X — C, with obvious 5 and &;

7 1s the class of fibrations in the sense of Kan [6, p. 65] and so .#' = .Z NX is the
class of fibrations of groupoids in the sense of [2] — so H(.F7')C-Z by the definition,
and clearly also /(.7 )=7".

Recall [6. p. 65] that a simplicial set B is a Kan complex if and only if the unique
map B—1 is a fibration.

Proposition 3.1. If B is « Kan complex, then &# . 18H® — 1« |;5), is an isomorphism.
Proof. Since «:/H — 15 is an isomorphism, we have to show that for any fibration
of the form ¢: X — [(B) in X the morphism I{(pri): (B Xuyp, H(X)) — IH(X) is
an isomorphism of groupoids. Furthermore, since the functors / and // do not change

vertices of simplicial sets, it suffices to show that for any vertex (b,x) of Bx s H(X)
the homomorphism

T (B Xyppy H(X ). (b,x)) — m(H(X).x) (6)

is an isomorphism.
The pullback diagram

B

B Xpyp) H(X)

H(X)

HI(B)
Hip)
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gives a commutative diagram with exact rows

mB,b)— m({b}F,(b,x)) — m(B Xz H(X),(h,x)) — m(B,b) — ne({b}xF,(h,x))

n2(HI(B), na(h)) — m(F.x)

m(H(x),x) —— m(HI(B), 1a(h)) —> mo(F,x)

where £ =H(¢) '(nz(h)), and the homomorphism (6) is an isomorphism by the stan-
dard (non-abelian) five-lemma (see, e.g., [2]) since we know that

(i) all arrows not involving ny are group homorphisms;

(ii) ma(HI(B),ns(bh))=0 since HI(B) is a groupoid considered as a simplicial set;

(iii) the projection ({b} x F.(h.x))— (F,x) is an isomorphism and hence so also
are the induced maps on m; and my;

(iv) m(B,b) — m(HI(B),ng(b)) is an isomorphism by the definition of n;.

The exact sequence for a fibration used above is described in [6, p. 117] — we may
use it here since B is a Kan complex and H(X)— HI(B) and pry:B xyys H(X)— B
are fibrations. [

Proposition 3.2. Let p:E — B be u surjective fibration of Kan complexes. Then p is
an effective descent morphism in C satisfying the Condition 1.1,

Proof. Since p is surjective and C is a topos, p is an eflective global-descent morphism
and in order to show that p is an effective .#-descent morphism we need only show
that if

pra

Expd—— A4

is a pullback diagram in which pr: £ xgA — E is a fibration, then so also isa:4—B
(see [9] for details).
Consider a commutative diagram

(N

in which 7 is the inclusion of the £-horn of A". We have to prove that there exists a
completion f': A" — A such that af' = f, fli=y.
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Choose f): A" — E such that pf; = /. This 1s possible since p is surjective. Let
h={(filyg): A} =E xg4:

A—" L Ex,B_ P A

i ff',/, pr, o

A"’ E B
A 4

Since pr is a fibration, the lift f7 exists, and then pr; [ is the required completion.

We can apply Proposition 3.1 to complete the proof once we know that p satisfies
the Condition 1.1. For this it suffices to show that £, E xg £, £ xg E xg FE are
Kan complexes. This follows from the assumptions that £ is Kan and p:E — B is a
fibration, since then £ xg E X3 E—F xp E — E are also fibrations. O

From this and the results of [7] described in the first section we obtain

Corollary 3.3. If p: £ — B is a surjective fibration of Kan complexes, then there is
a category equivalence

SpIF(E, p) ~ XOUED (1 (X | I(E))
i which Spl-(E, p) is the full subcategory of (C | B) with objects those pairs (4, )

for which the diugram
NEx A
Exgd —— HI(E x5 A4)

Pn HI(pr1) (8)

HI(E)

is a pullback.
In addition we have

Proposition 3.4. Let p:E— B and p' . E' — B be surjective fibrations of Kan com-
plexes such that each connected component of E is contractible. Then

Spl(E'. p") C SpI(E, p).

Proof. We need to show only that there exists a morphism f:E — E’ with p’f = p.
This is a standard lifting argument on each component of £. [J
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Proposition 3.5. If p:E— B is u surjective fibration of Kan complexes then the
Gulois pregroupoid Gal/(E.p) is an internal groupoid in groupoids, ie. is a
double groupoid.

Proof. As mentioned in [7. 5.5¢] it suffices to show that the canonical morphisms

T((E xXgE) xg (E xg EN))—I{E xg EY Xpypy [{E X3 E)
T(E % EYXp (EXg EYXp (E xg E))y—I(E xg E) Xpypy [(E X3 E)
X (E Xg E)
are isomorphisms. However, this follows from the more general known statement

(which can be easily proved using again standard arguments involving the exact
sequence of a fibration): The functor / =m; preserves all pullbacks

K > L

M —

P
in which L,N are Kan complexes and f is both a fibration and a split surjection. []
Clearly Gal,(E, p) contains as an “object group™ Loday’s cat'-group
TE Xp E, ) —= mi(E. %)

of the fibration p:E£ — B [10]. This cat'-group is known to be equivalent to other
similar structures, for example the crossed module 7 (F,*)— (£, *), due to Quillen.

4. Second order coverings and the second order fundamental groupoid

The general results of [7] applied to the Galois structure described in the previous
section suggest the following:

Definition 4.1. A fibration 2:4 — B of Kan complexes is said to be a second order
covering if there exists a surjective fibration p:£ — B such that the diagram (8) is a
puliback.

Note that instead of saying that the diagram (8) is a pullback we could say that
E x5 A— E can be obtained from a fibration of groupoids X — HI(E), (where HI(E)
is the ordinary fundamental groupoid I(E)= = (E) of E, considered as simplicial set)
by pulling back along £ — HI(E). So our “second order coverings” are in the same
relationship with the usual coverings, as groupoids are with sets.
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Let 2-Cou(B) be the category of second order coverings of B. From Proposition 3.4
and Corollary 3.3 we obtain

Theorem 4.2. Let p: E — B be a surjective fibration of Kan complexes such that each
connected component of E is contractible. Then
(a) 2-Cov(B) = Spl(E, p), where T is the Galois structure described in Section 3;
(b) 2-Cor(B) is equivalent to the category of those internal actions F = (Fy,m, &)
of the Gulois groupoid Gal/(E, p)= Gal, (E, p)=

TUE xg E xg E) = m(E xg E)— m((E)

in the category of groupoids for which the projection functor n:Fy—m(E) Is a
fibration.

Remark 4.3. As mentioned in Proposition 3.5, Gal/(E, p) is just a double groupoid
— but it is better to consider it as an internal groupoid in the category of groupoids,
since there are two ways to consider a double groupoid as such an internal groupoid.

Now we can define the second order fundamental groupoid of a Kan complex B
as Gal;(E, p), where p:E— B is as in the theorem above. It is determined uniquely
up to certain “Morita equivalence”, and naturally contains the fundamental groupoid
m1(B) together with the action of this groupoid on the family {n(B.b)}sep of second
homotopy groups of B.

Note that all fibres of second order coverings are groupoids, so that this theory is
related to that of the classification of fibre bundles with fibre a K(G. 1), where G is a
groupoid.
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