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SOME NONPROJECTIVE SUBGROUPS OF FREE

TOPOLOGICAL GROUPS

RONALD BROWN

ABSTRACT. For the free topological group on an interval   [a, b] a fam-

ily of closed, locally path-connected subgroups is given such that each

group is not projective and so not free topological.  Simplicial methods are

used, and the test for nonprojectivity is nonfreeness of the group of path

components.  Similar results are given for the abelian case.

Introduction. Let F(X) be the free topological group on a pointed space

X [4]. The object of this note is to give a family of closed subgroups of

F([a, &]) which are not projective and so not free topological.  The only pre-

vious example of a nonfree closed subgroup of an   F(X) has been given by

Graev [4], but this was written down explicitly only in the abelian case, and

I do not know if Graev's example is projective.

The structure of this paper is as follows.  § 1 examines the topological

group ttJH  of components of a topological group, and proves the key result

that if B  is projective with open components then  nQB  is a discrete, free

group.  The methods are simple and categorical; similar results are given for

the group 77„B of path-components, and for the abelian case.

In §2 the examples of nonprojective subgroups of free topological groups

are given as realisations of simplicial subgroups of free simplicial groups.

An Appendix summarises the definitions and results from simplicial theory

which are used in §2.

I would like to thank Dr. S. A. Morris for pointing out the problem from

which this work arose, and both he and a referee for helpful comments.

1.  The group of components of topological groups.  For any topological

space  X, let  nQX denote its set of components with its topology as a quo-

tient of X.   Then  rrQX is totally disconnected [2, p. 125, Example 2].  Also

X has open components if and only if  ttqX is discrete—in particular this

holds if  X is locally connected.

The object of this section is to describe 77 Q tot a colimit of topological

groups, for free topological groups, and for projective topological groups.

Let J   be the category of topological spaces and continuous mappings,
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and J^j^ the full-subcategory of J   on the totally disconnected spaces.  The

corresponding categories of pointed spaces are written  A   , A. ,   ; of topologi-

cal groups and continuous morphisms are written J§, 3\, §; of topological

abelian groups and continuous morphisms are written  A(${3, A.,  ClC,.

Proposition 1. (i) The functor 77 Q maps 3"§ to 3\ . § and z's left ad-

joint to the inclusion 3\ ,  § —* !T§.

(ii) The functor 77  • J§ —* J *<£_§  preserves colimits.

(iii) // G = lim Ga z's a colimit of topological groups  G    each with open

components, then the topological group  ttqG  is discrete and isomorphic as

abstract group to the colimit  lim uQG     of the discrete groups  7? A3 .

(iv) A colimit of topological groups each with open components has open

components.

Proof. Here (i) is trivial, and (ii) follows from (i). (iii) follows from the

fact that the colimit of discrete topological groups is discrete, and (iv) fol-

lows from (iii).

A particular case of Proposition 1 is that if G, H are topological groups

each with open components, then their free topological product fe] G * // has

open components, and 77Q(G * //) =* 770G * 77.//.

We now consider free topological groups.  The forgetful functor  U: Jy

—> J     has a left-adjoint  F, called the (Graev) free topological group functor,

with universal arrow   z: X —> F(X) for each space with base point  X.

Proposition 2.   Let  X be a space with base point.

(i)  The map irAi): 77..X —> 77nF(X) is universal for continuous maps f

from  77„X to totally disconnected topological groups such that f maps the

base point to the identity of the group.

(ii) // X has open components, then 77QF(X) z's discrete and isomorphic

as discrete group to  FrrAX).

(iii) // X has open components, so also does  F(X).

Proof,  (i) The functor  77.F  is left-adjoint to the composite  J^j^a ~*

ygj/g-*.

(ii) It follows from (i) that rr0(z): uQX —> nQFiX) is also universal for

maps from  X into discrete groups (since discrete implies totally disconnect-

ed). If X has open components then  77.X is discrete and  z: 770X —» F770(X)

is also universal for maps into discrete groups.  Hence  770F(X)  ~ p770(X).

(iii) This follows from (ii).

Corollary 3.  // X is a k  -space with open components, then the identity

component of F(X) is a free topological group.

Proof.  The identity component of  F(X) is a subgroup and is open by
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Proposition 2.  The result follows from the topological Neilsen-Schreier theo-

rem [l, Corollary 9].

Remark.  The universal arrow  ttqX —> 7TqF(X) extends to a morphism of

topological groups /: Fz70(X) —» tt0F(X).  Proposition 2 shows that / is an

isomorphism if (and clearly only if) FttAX) is totally disconnected—the lat-

ter is known to be true only in some cases, for example if nQX is 0-dimen-

sional and Hausdorff [7, Theorem 3.7].

We now consider projective topological groups [5]. A topological group

B is projective if given any diagram of morphisms of topological groups

B

[*
G -*H

I

such that / has a continuous section, then ip lilts to a morphism B —► G.

Clearly a free topological group F(X) is projective; I do not know of an ex-

ample of a projective nonfree group.

Theorem 4.  Ij B  is a projective topological group with open components,

then 77.B  is a discrete, free group.

Proof. The identity B —► B extends to a morphism /: F(B) —> B which

has a section the universal arrow B —> F(B). Since B is projective, there

is a morphism s: B —> F(B) such that fs = 1„. This implies that  ttqB is

isomorphic as topological group to a subgroup of  ttqF(B).

Since B has open components, so also does  F(B). Hence ttqB is a

discrete free group.

There are two other analogues of Theorem 4 which are worth stating.

First of all, it is useful to replace  ttq by  ttq, the space of path-components,

with its quotient topology. There is the added complication that rrQX need

not be totally path-disconnected (the usual  sin (l/x) space gives an example),

but Proposition 2 is still valid with connectedness notions replaced by those

of path-connectedness—the proof is left to the reader.

Second, exactly similar results and proofs apply to topological abelian

groups.  Detailed statements and proofs are left to the reader, but for use in

the next section we record an abelian, path-connectedness analogue of Theo-

rem 4.

Theorem 5.  If B  is a projective topological abelian group with open

path-components, then nJi  is a discrete, free abelian group.

The proof is left to the reader.

2.  Examples. We present our examples of nonprojective subgroups of

free topological groups as realisations of simplicial subgroups of free
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simplicial groups.  This has the advantage of making it immediate that the

subgroups are both closed and locally path-connected.  It also makes easier

the computation of 77-. Background on simplicial theory is given in the Appen-

dix.

Let [a, b] be a closed interval of real numbers with a taken as base

point.

Theorem 6.  Let  e be an integer greater than  1, and let B  be the sub-

group of Fi[a, bl) generated by  b  and the elements  t , a < t < b.   Then  B  is

closed, locally path-connected and nQB = Z . Hence B  is not projective.

Proof.  We consider  [a, b] as the realisation  RiK) where   K has one

nondegenerate simplex  c in   K,, two nondegenerate simplices  a, b in   K.

with  d~c = b, d.c = a, and  a  as base point.  Let  C be the simplicial subgroup

of  F(K) generated by  b  and by  c .   Let  ia, b\  denote also the 0-skeleton of

K.   Then we have a commutative diagram of morphisms of simplicial groups

y x
F{a,b\ C

\f /r
^-F{a, b\

in which /, /' are inclusions, and g, g' are defined respectively by  gib) =

b€, g'ic) = c€.  It is straightforward to verify that this diagram is a pushout

of simplicial groups.  Since  770 preserves colimits, we have on taking  77 Q  a

pushout of groups

1

Z/X     G
Z TTpG

77   g\     /

0     z

in which  n.g is multiplication by   t. Hence  tz.C ^ Zf.

Let B be the realisation of C.  Then  77,6 ^ Z(, and B is a closed and

locally path connected subgroup of F[a, b]. By Proposition A.l of the Appen-

dix, B is generated by the realisations of the simplices  b and c  , i.e. by  b

and by  /  , a < t < b.   This completes the proof.

We give another example in the nonabelian case to show how the method

can be extended.  First we need a theorem of Nickolas [9] to the effect that

F[a, b] contains F(X) as closed subgroup for any compact metric space X

of finite dimension.

Theorem 7o  Let  A = gp{b., . . . , b  ; rx, . . . , r  j  be the group generated

by  /).,..., b    with relations r., . . . , r , and suppose r,, . . ., r    generate
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freely the subgroup gp!<"., • ■ ., r  \ of gp \b^ .. . , b   \.   Then there is a closed

subgroup B  of F[a, b] with  tt AB  isomorphic to  A.

Proof.  Let   K be the simplicial set with nondegenerate elements   zz, b.,

. . . , b    in   KQ, Cj, .. ., c    in   Kj   with  dQci = a, d.c. = b., i = 1, ..., re.

Then the realisation  R(K) is the wedge of re  segments, and so  FR(K) is

embeddable in  F[a, b] by the result of Nickolas.

Let C be the simplicial subgroup of F(K) generated by  b., ... , b    and

by the words r,, .... r    obtained from r,,.. ., r    by replacing each  b. by

c., i= 1,.. ., re.  Consider the diagram of simplicial groups

F(K)

F\a,bv ... ,bn\ ^C

X    /
F\a, bv ... , bn\

in which /, /' are inclusions, and g, g' are defined by g(b .) = r., g'(c.) = r.',

z = 1, .. ., re. Certainly the diagram is commutative—I claim it is a pushout

of simplicial groups. For suppose b: F(K) —> G, k: F\a, b.,...,b \—»G are

morphisms of simplicial groups such that hf = kg. It is easily checked, using

the fact that C^ is freely generated by s^b^ rj, i = 1,... , re, that there is a

unique morphism tf>: C —> G such that tfig = h, tf>f' — k, given by tf>(b.) =

k(b%), tp(r^) = h(c), z = 1.re.

It follows as in the proof of Theorem 6 that 77QC ̂  A. The group B =

R(C) is the required closed subgroup of  FR(K) and so of  F[zz, b\

In the abelian case we can obtain more complete results.

Theorem 8. Let A be any finitely generated abelian group. Then there

is a closed, locally path-connected subgroup B of AF[a, b] such that ttqB

is isomorphic to A.    Hence if A  z's not free, then B  is not projective.

Proof. We write  A  as a direct sum  Z,   +•••+ Z,  + P where  0 < e.,
<?1 tr i'

e.| e+1, and   P is a free abelian group of rank s.

Choose in  [zz, b] points zzQ = a<zZj<---<zz   < bl <• • '< b   = b.   Let  K

be the pointed simplicial set with nondegenerate elements a ,. .., a , by

. . . , b     in   K_, c.,..., c    in   K.   and with face operators given by   dQc. =

aV ^\ci =ai—V *' = ^.r> an<^ w'£h aQ = a as base point. The realisation

R(K) can be identified with  k a] U \b y ... , bj, and so RUF(K)) = AFR(K)

can be regarded as a closed subgroup of AF[a, b\

Let  C be the simplicial subgroup of AF(7<) generated by  KQ and by the

elements  t.c., i= 1.r.   According to [6, §22] ttqC is isomorphic to
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HQANiC) where  A^iC) is the normalised chain complex of  C.   But  ANiC) is

freely generated in dimension 0 by  ax, . . . , a , by ..., b    and in dimension

1 by  e jC j, . . . , € c    with boundary

(Kc1cl) = elav    die.c.) = e.a.~e._xa._x,       i = 2, .. . , r.

Since  ^|^+1. z = 1, ..., r, it follows that z70AN(C) fig A.  Let B = RiC).   Then

770B  is isomorphic to A. But B is a closed, locally path-connected subgroup

of  AFiK), and so of AF[a, b].  So the proof is complete.

It is interesting to note that  B is in fact the subgroup of AF[a, b] gen-

erated by a    . . ., a , b,, . . . , b    and by  et, a.   , < t < a., i — 1.r.
J       l r       1 s 'ri—1—     —     i ' *

Remarks. 1. It does not seem possible to deduce nonabelian examples

from the abelian ones.  The reason is that if p: F(X) —► AFiX) is the natural

map, and  B  is a subgroup of AFiX), then  B is not in general the abeliani-

sation of  p~   (B).

2.  A similar construction to that of Theorem 8 but in the nonabelian

case gives a closed subgroup  B  of  F[a, b] such that  77„B = Z     *...* Z

* Q, where  e.|e.   ., i = I, . .., r, and  Q is a free group of rank s.

Appendix.  Basic references for simplicial theory are [3], [6]—here we

summarise the definitions and results we need.

Let  A0  be the opposite category to the category  A with objects   [m\ =

iO, . . . , zzzj, t?z = 0, 1, 2,. .. , and with arrows all increasing functions.  If C

is any category, a functor  X: A° —■ C is called a simplicial object in  C,

and  X[7zz] is also written  X   .  In particular we shall take for C the categor-

ies   S  , §, U§ of countable pointed sets, countable groups, countable abelian

groups respectively and so obtain the functor categories  A°o   , A°(-), A°(lCj

of pointed simplicial sets, simplicial groups and simplicial abelian groups

respectively.  (The countability assumption can be avoided by taking the

realisation discussed below to be a functor to ^-spaces rather than spaces-

see [3].)

Let  C be a simplicial group.  A simplicial subgroup of  C is a simplicial

group B  such that each  B     is a subgroup of C   , and the inclusion B -^ C

is  a simplicial map.  We need to consider how to generate simplicial subgroups.

Suppose then that  (X)     Q is a sequence such that  X     is a subset of  C

for m > 0. The simplicial subgroup of C generated by X is the smallest sim-

plicial subgroup of C containing  X; this clearly exists and is written gp X.

The free group, free abelian group functors  F, AF map o    —* y, o   —*

Q§  and are the left adjoints of the forgetful functors  § —♦ a   , (% —> §  ; they

induce functors  F: A°S* — A°§, AF: A°S* -. A°flg  respectively.  Thus if

K is a pointed simplicial set, then   FK iAFK) is the free 'abelian) simplicial

group on   K.

A simplicial set is called discrete if as a functor  A0 —• h    it is equiv-
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alent to a  constant functor, and so can be identified with a pointed set.

There is a functor ttq: A°b   —> o    left-adjoint to the inclusion  c)    —> A°a  .

Also  77.  commutes with products, and so induces functors  A°)-) —> (-j, A°(l)-)

—> CtC,  also written  77„  and again left-adjoint to the obvious inclusions.  It

follows that each   ttq preserves colimits, and it also follows as in § 1 that

there are equivalences of functors tt F ~ F77 : A°e   —► §, ttqAF ~ AFttq:

A°S* - Q§.

There is a realisation functor  R: A°S    —► J     which has a right adjoint

S: A   —> A°b , the singular functor. There is a natural bijection ttqR(K)—>

ttqK tot any simplicial set   K.   It is an important fact that if  K, L ate simpli-

cial sets, then the natural map rj: R(K x L) —> R(K) x R(L) is a homeomor-

phism ([6, p. 57]; it is for this reason we assume countability).  It follows

that if  K is a simplicial group with multiplication  cf>: K x K —► K, then  R(K)

with multiplication

R(7<) x R(7<) ̂  R(K x K) ̂ i R(K)

is a topological group. Thus R induces functors A0^ —> J^, A0Ct(-j —• JCt§,

also written R. Further, R: A°C) —► JC, has a right adjoint the singular func-

tor S: J ^ —► A°)-j, and it may be proved from this that there are equivalences

of functors  RF c* FR: A°S* — J§, RAF ~ AFR: A°S* — Jflg.

For any pointed simplicial set   K, the realisation  P(7<) is a-CW-complex

with cells in one-one correspondence with the nondegenerate simplices of K. In

particular, R(K) is locally path-connected.  Also, by examining the nondegen-

erate simplices of F(7<), AF(7<), one can obtain cell structures for FR(K),

AFR(K).

It  L is a subsimplicial set of the simplicial set   K, then   R(L) is a sub-

complex of R(K); in particular  R(L) is closed in  R(K), More generally, let

(X   )     „  be any sequence such that  X    C K   , m > 0.  Then we define  R(X)
y    m'm   0 f        1 m_m_

to be the smallest subcomplex of   R(K) containing the realisations of nonde-

generate simplices of  7< which lie in  X.   The main observation we need for

the explicit description of the examples of §2 is

Proposition A.l.  If G  is a simplicial group, and X    C G   , m > 0, then
1 ' or m —       m _

the subgroups  R(gp(X)) and gp(R(X))  of R(G) coincide.

Proof.  Certainly these groups are both subgroups of  R(G).

Since  P(gp(X)) is a subgroup of R(G) containing R(X), it follows that

R(gp(X))2 gpR(X).

To prove that gp P(X) 3 P(gp(X)) we need to prove that if 77 is any

subgroup of R(G) such that  77  contains   R(X), then  H contains   R(gp(X)).

For this it is sufficient to prove that if  a, r are re-simplices of  G  such that

R(a) and R(r) ate contained in  77 then so also are  R(a~   ) and R(ar).
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That  Rio~   ) C H is clear from the fact that the inverse operation in

RiG) is the realisation of the inverse operation in   G.  To prove  Rior) C H,

let   o, t be the subcomplexes of G generated by   o, r respectively.  Then

Rio) = Rio), RiT) =£(?). So

Rior) C K(o?) = R(rp)P.(a x ?) = Me/Or," HR(a) x R(t)).

But  Rio)CH, Ri?)CH, and  Rido)rj~l  is the multiplication in   R(G).  Since  //

is a subgroup, it follows that  Rior) C //.
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