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DOUBLE GROUPOI DS AND CROSSED MODULES

by Ronald BROWN and Christopher B. SPENCER*

CAHIERS DE TOPOLOGIE

ET GEOMETRIE DIFFERENTIELLE

Vol. X VII -4 (1976)

INTRODUCTION

The notion of double category has occured often in the literature

( see for example (1 , 6 , 7 , 9 , 13 , 14] ). In this paper we study a more parti-
cular algebraic object which we call a special double groupoid with special
connection. The theory of these objects might be called «2-dimensional grou-

poid theory ». The reason is that groupoid theory derives much of its tech-

nique and motivation from the fundamental groupoid of a space, a device

obtained by homotopies from paths on a space in such a way as to permit
cancellations. The 2-dimensional animal corresponding to a groupoid should

have features derived from operations on squares in a space. Thus it should

have the algebraic analogue of the horizontal and vertical compositions of

squares ; it should also permit cancellations. But an extra feature of the

2-dimensional theory is the existence of an analogue of the Kan fibres of

semi-cubical theory. This analogue is provided by what we call a special
connection .

In this paper we cover the main algebraic theory of these objects.

We define a category DG of special double groupoids with special

connection, and a full subcategory DG! of objects D such that D0 is a

point. We prove in Theorem A that D§ is equivalent to the well-known

category of crossed modules [ 5, 10, 12] , while Theorem B gives a descrip-
tion of connected objects of DG.

Theorem A has been available since 1972 as a part of [4]. It was

explained in [4] that the motivation for these double groupoids was to find

* The second author was supported at Bangor in 1972 by the Science Research Coun-
cil under a research grant B/RG/2282 during a portion of this work.
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an algebraic object which could express statements and proofs of putative
forms of a 2-dimensional van Kampen Theorem. Such applications have now

been achieved in [3], which defines the homotopy double groupoid p (X, Y,Z)
of a triple and applies it, with Theorem A of this paper, to obtain new re-

sults on second relative homotopy groups.

The structure of this paper is as follows. In parag. 1 we set up the

basic machinery of double categories in the form we require. We do this in

complete generality for two reasons :

1° we expect applications to topology of general double groupoids,
2° we expect applications to category theory of the general notion of a

connection for a double category.

However the notion of connection is the only real novelty of this section.

In section 2 we show how crossed modules arise from double group-

oids. In section 3 we define the category fD§ and prove Theorem A. Section
4 discusses retractions and proves Theorem B. We also discuss «rotations»

for objects of DG .
We are grateful to Philip Higgins for a number of very helpful com-

ments.

1. Double categories.

Usually a double category is taken to be a set with two commuting

category structures, or, equivalently, a category object in the category of

small categories. We shall use another, but again equivalent, definition.

By a category is meant a sextuple (H, P, d0,d1, m, u) in which

//. P are sets, d0, d1 :H- P are respectively the initial and final maps,
"1 is the partial composition on H , and u: P -- H is the unit function; these

data are to satisfy the usual axioms.

By a double category D is meant four related categories

as part ial ly shown in the diagram
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and satisfying the rules (1.1- (1.5 ) given below. The elements of C will

be called squares, of H, V horizontal and vertical edges respectively, and
of P points . We will assume the relations

and this allows to represent a square a as having bounding edges pictured
as

while the edges are pictured as

’Vae will assume the relations

so that the identities 1a, °b for squares have boundaries
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We also require

and this square is written ox or simply o . Similarly, ex , fx are written

e, f if no confusion will arise.

We assume two further relations :

for all a , (:3 , y E C such that both sides are defined, and

( 1.5) the interchange law

whenever a , B, y , BE C and both sides are defined.

It is convenient to use matrix notation for compositions of squares.
Thus if a , f3 satisfy a, a = d0B, we write

and if E1 a = E0y, we write

More generally, we define a subdivision cf a square a in C to be a rectang-

ular array (aij), 1  i  m, 1, i ’n of squares in C satisfying

and

such that

We call a the composite of the array (aii) and write a =[aij]. The inter-
change law then implies that, if in the array represented by the subsequent

matrix, we partition the rows and columns into blocks Bkl and compute the
composite (3 kl of each block, then a = [Bkl].
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For example we may compute :

We now give two examples of double categories in Topology.

EXAMPL E 1. Let X be a topological space and Y, Z subspaces of X . The

double category A2 = A2 (X; Y, Z ) will have the set C of squares» to be

the continuous maps F : [0 , r]x (0 , s ] - X for some r, s &#x3E; 0 , satisfying

The « horizontal edges &#x3E;&#x3E; H will consist of the maps 0 , s] - Z , s &#x3E; 0 , and

the vertical edges V will consist of the maps [ 0, r] - Y, r &#x3E; 0 , while P

will be Y n Z . The obvious horizontal and vertical compositions of squares,

together with the usual multiplication of paths and the obvious boundary,
zero and unit functions will give us a double category. Note that in this

example it is convenient to keep H , V, P as part of the structure, rather

than just regard A2 as C with two commuting partially defined compositions.

EXAMPLE 2. Let T = (H , P ,d0 , d1 , . , f) be a topological category (by
which we mean that H , P are topological spaces and all the structure func-

tions are continuous). Let A X denote the set of Moore paths on a topolo-

gical space X . Then we obtain a double category A T whose squares are

the elements of A H , whose horizontal edges and vertical edges are H , A P

respectively, and whose points are P . The category structure on A P is

that given by the usual multiplication of Moore paths, while the two comp-
ositions on A H are the multiplication of Moore paths and the addition +
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induced by the composition o on H .

This last example arises in the theory of connections in differential

geometry. In order to explain this, suppose given as in the beginning of

this Section a double category D . By a connection for D we mean a pair

(T ,y) in which y : V - H is a functor of categories and F: V - C is a

function such that :

(1.6 the bounding edges of y (a) and h (a) , for a : x - y in V, are given

by the diagram

and

(1.7) the transport law holds, viz if a, b E V and a. b is defined, then

We call 1’ the transport of the connection and y the holonomy of the con-
nection. The reason for this terminology is the following

EX AMP L E  3. I.et T be the topological category of Example 2 and A T the

double category of paths on T . A connection (1,y) for A T then consists

of the transport r : A P &#x3E; A H and the holonomy y : A P- H . The transport
law&#x3E;&#x3E; is essentially equation ( 10) of the Appendix to [11] (where 1 is

called a « path-connections).

2. Doubl e groupoids.

From now on our interest will be in double groupoids, that is double

categories in which each of the four underlying categories is a groupoid.
In this section we -consider simple aspects of their homotopy theory, in par-
ticular their «homotopy groups &#x3E;&#x3E;. ,
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Let D be a double category as in Section 1 such that D is a double

groupoid. Then we have two sets of components of D , namely

We also have two fundamental groupoids Mh1D, Mv1 D . Each of these
has object set P , and 171 D for example has arrows x - y the equivalence
classes of elements of H (x, y) where a, b in H (x, y) are equivalent if

there is a square /3 whose bounding edges are given by

The multiplication in rr1 D is induced by +, and the verification that Mhl 
is a groupoid is easy. Similarly, we obtain the « vertical » fundamental group-

oid Mv1 D and so for each x in P we have two fundamental groups

The second homotopy group M2 (D, x) at a point x of D is the set

of squares a of D whose bounding edges are ex or f.. It is a consequence

of the interchange law that, when they are restricted to M2 (I), x ) , the op-

erations + , o coincide and are abelian.

The groups rr2 (D, x), x E P , form a local system over each of the

groupoids rr 7 D, Mv1D. Suppose for example that

We then define

and this gives on operation of H on the family i

If a, bE H (x,y) are equivalent by a square (3, then ya, yb have
the cotnmon subdivision and so ya - yb .So, we
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obtain an operation of Similarly, there is an ope-
ration of

We now show how to obtain from a double groupoid two families of

crossed modules.

We recall [5, 10, 12] that a crossed module (A , B , d) consists of

groups A , B , an operation of B on the right of the group A , written

and a morphism d: A - B of groups. These must satisfy the conditions :

A map of crossed modules consists of mor-

phisms f: A , A’, g : B - B’ of groups such that ga = d’ f and f is an

operator morphism with respect to g , i. e. 

So we have a category (F of crossed modules.

Let D be a double groupoid, and let x E P. We define the groups

M2 ( D, H , x), M2 ( D, V, x) to be the sets of squares of D with bounding
edges given respectively by

for some a E H, b E V respectively, and with group structures induced from

+, o , respectively. Clearly we have morphisms of groups

PROPOSITION 1. I f D is a double groupoid as above and x a point of D
then we have crossed modules
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PROOF. It is sufficient to define the operations and to verify the axioms

( i) and (ii). L et b E H{x}, a E M2(D, H, x) .We define

It is trivial to verify that this is an operation and that condition ( i ) for a

crossed module is satisfied. For the proof of condition (ii) we note that if

E (B) = b , then a b and -B+a+B have the common subdivision

and so ab=-B+a+B. A similar proof holds for y’ ( D , x ) .

If D is a pointed double groupoid ( by which we mean a base point x
is chosen), we abbreviate y ( D, x ) to y ( D ) .

A morphism f: D - D’ of double categories D, D’ consists of four

functions

commuting with the category structures. So there is a category of double

categories. Similarly there is a category of double groupoids and their mor-

phisms, and of pointed double groupoids (in which a base point is chosen

for each double groupoid and morphisms preserve base point). Clearly y de-

fines a functor from this last category to the category of crossed modules.

3. Specicrl double groupoids.

By a special double groupoid we shall mean a double groupoid D
as in Section 2 but with the extra condition that the horizontal and vertical

category structures coincide. These double groupoids will, from now on,

be our sole concern , and for these it is convenient to denote the sets of

points, edges and squares by D0 , D1 and D2 respectively. The identities

in D1 will be written ex, or simply e . The boundary maps D1 - D0 will
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be written 80 , 8 1 . 

By a morphism f: D - E of special double groupoids is meant a triple
of functions

which commute with all three groupoid structures.

A special connection for a special double groupoid D will mean a

connection (F y ) with holonomy map y equal to the identity D1 - D1.
Such a connection will be written simply T. A morphism f : D - E of spe-

cial double groupoids with special connections T,A is said to preserve

the connection i f 12 r = A f1.
The category DG has objects the pairs ( D, T) of special double

groupoid D with special connection, and arrows the morphisms of special
double groupoids preserving the connection. The full sub-category of -Tg
on objects (D,T) such that D has only one point will be written DG!. If
(i), T ) is an object of DG! then we have a crossed module y (D) by Prop-
osition 1. Clearly y extends to a functor y from Tgl to the category
of crossed modules. Our main result on double groupoids is :

TIIEOR EM A. The functor y: DG!-C is an equivalence of categories.
PROOF.  We define an inverse E : C - D§’ t to y .

Let ( ,1 , B ,d) be a crossed module. We define a special double group-
oid with special connection E = E( A, B ,d ) as follows. First, Eo is to

consist of a single point 1 say. Next E 1 = B , with its structure as a group
(regarded as a groupoid with one vertex). The set E2 of squares is to con-

sist of quintuples

such that a - ..f, a, b , c , d E R and

The boundary operators on 0 are given by the following diagram (there are

8 possible conventions for this boundary - the convention chosen is the most
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convenient in terms of signs and the expressions for addition and composi-
tion of squares). The addition and composition of squares are given by

It is straightforward to check that these operations are well-defined, i.e.

that with the above data

(for which condition (i) of a crossed module is needed). It is also easy

to check that each of these operations defines a groupoid structure on

E2 with the initial, final and zero maps for + being respectively

and for o being

The verification of the interchange law requires condition ( ii ) for a crossed

module, but again is routine and is left to the reader.

The special connection T : E1 - E 2 for E is given by

The verification of the transport law is trivial.

This completes the description of E = E (A , B, d) and it is clear that
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e extends to a functor E: C- DG! It is immediate that yE :C -C is nat-
urally equivalent to the identity. We now prove that ey is naturally equi-
valent to the identity.

Let (D, I° ) be an object of DG!. Let E = Ey (D) . Then E 0 = DO’
El = D1. We define n : E - D to be the identity on Eo and E1 and on

E2 by

(for (a) = a-I b c d -1 ) as shown in the diagram

which clearly has the correct bounding edges. Clearly 77 is a bijection :

E2 - D2 , so to prove 77 is an isomorphism it suffices to prove that 17 pre-

serves + , o and connections.

For + we have, by the definition of (3 d..l and using the notation of

equation ( 1 ) :

For o we have, using the notation of equation (2),

while on the other hand
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The equality of (3) and (4) follows from the fact that by the transport law

the right hand sides of both (3) and (4) have the common subdivision

Finally 17 preserves the connection since

Since the naturality of rj in the category DG! is clear, we have now

proved that 7y is a natural equivalence from Ey to the identity functor.

4. Retractions.

In the theory of groupoids a key role is played by the retractions

([8], 47, 92 and [2], 6.7.3 and 8.1.5 ). The object of this section is to set

up similar results on double groupoids to those for groupoids ( as in the last

section, double groupoid here will mean special double groupoid with spe-

cial connection ).

Let G be a double groupoid. Then (as in Section 1) the set 170 G

is the set of components of the groupoid (G1, G0) . We say that G is con-
nected if uo G is empty or has one element. We say a subdouble groupoid
G’ of G is representative in G if G’ meets each component of G ; we say
G’ is full in G if the groupoid (G’1 , G¿) is full in (G1, GO) and also the
set of squares with given boundary edges in G’ is the same for G’ as for G.

A double groupoid T is called a tree double groupoid if for each

x, y in To there is exactly one edge a in T 1 with

and for each quadruple (x, y, z, w) of points of To there is exactly one

a in T2 with
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For example if X is any set, there is a tree double groupoid T(X) in which

and

with the boundaries of i given by

The groupoid structures 2nd connection are then uniquely defined so as to

make T (X) a double groupoid

lllEOREM B. let G’ be a full, representative subdouble groupoid of the
double groupoid G. Then

( i ) there i s a retraction r G-G’ T 

(ii) if f: G - 11 is a rnorf phism of double groupoids such that fo is

injective, then there is a lull, representative subdouble groupoid H’ of 11
and a pushout ,square

in which f’ is the retraction of f and s is a retraction.

(iii ) iI G0 ns a singleton, then there is an isomorphism g : G - G’ X T,

where T i s a douhlo groupoi d. 

I ROOF F. (i) of each , E Go choose an edge Ox in G1 such that

ihis is possible since G’ is representative in G’ . Define

Since G’ is full in (;1’ for any edge a in G, the edge

belongs to G’1. So BBe have r1 : G1 &#x3E; (J 1 defined, ar d r1 is the usual retrac-
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tion defined for groupoids.
Now let a E G2 have boundaries given by the diagram

We define r2 (a ) to be

(it is convenient to denote

It is straightforward to check that r2 preserves + and o . To prove

that r2 preserves connections we have to prove that

Now

However it is a simple consequence of the transport law that

It follows that (That r2 preserves T also

follows from Proposition 1 of [3].)
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(ii) Let 11’ the the  l ub30ub1: groupoid of H on

Then we have a commuta- ive d-’a2ram

in which i , j are mclusions and f’’ is the restriction of r.
We choose edges 0x, x E G0 , and so r: G-G’ as ii (i). F ,)r each

y in H0, let

(in which case x is unique ), and otherwise let O(y) = ey . . Then o = f1 0
3.n:1 the edges 0 (y), y E H0 with the connection A for H determine a re-

traction s : H - H’. We prove (*) is commutative. If x E G0, then

If a:x-y in G1, then

Finally, if a E G2, then ,s f (a ) -- fr (a) . s immediate frcm the Jefirition

and tÎ1e fact that f preserves the connection.
To prove (*) a pushout, suppose given a commutative diagram f double

groupoids

lr there is a morphism 1V: H’ -) K such that w s - v , then "/1 = w s j = vj,
so there is at ’nost one such it; . On the other hand, let w = v " . Thep



359

so 7.L’ need verify only w s = l’. If vEH , then ó(y), and hence also

v o (y), is an identity for )- ?-, f l’ x ) for anx x , whi le if y = f ( then

which is again an identity. It follows that u’s =: vjs = v on /i . Finally
on H 2 the relation ws = v follows from the f,tct that if y = f ( t ) &#x3E; then

and so frcm the definition of s we obtain h at. or H2, w s = vi i, , This

completes the proof of ( ii).

( ii i Let Go {xo} . Let T = T( Go, be the tree double groupoid de-

fined above. Then there is a unique morph sm f: G - T of double groupoids
such that o is the identity. Let r: G - C ’ be the retraction defined as in

(r) by choices of edges 0(x) with

D r ine g : G - G’ X T to have component s r and f respectively. Clearly

go is a bijection, and it is a standard fact about groupoids that g is a bi-.

je ion. But g2 is also a bijection, since it has inverse

wh,- re and B has

Therefore g is an is3morphism.

COROLLARY. RY. If G is a connected double groupoid and x is a point of G,
then tiiere is all is ,morphism G z G{ xl X 1 where r; f Â } is the fut L sub-

d luble groupoid of C with point set {x}, and 7’ is a trpp double groupoid.

A an intf resting application of this c’Jrollary, vte deduce properties
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of a  rotation» r which interchanges the horizontal and vertical composi-
tions of squares in a double groupoid.

Let G be a double groupoid, with connection P . The rotation r

associated with h is the function T: G2 -+ G2 such that if a E G2 then the

edges of a and r (a ) are related by

and r (a) is defined to be

THEOREM C. The rotation r satis fies :
(i) whenever a +B is defined,
(ii) whenever a o y is defined,

( v ) r is a bijection.

P ROO F . Clearly (iv) is a consequence of (iii) which also implies that
r9 is a bijection ; ( v) follows easily.

For the proofs of (i), (ii) and (iii) we use Theorem A and B (iii),
which imply that it is sufficient to prove the theorem for the case of a dou-

ble groupoid G = E(A, B, a ) determined by a crossed module (for the theo-
rem is clearly true for tree double groupoids, is true for a product if true for
each factor, and is true in one groupoid if true in an isomorphic one).

However, in the notation of the proof of Theorem A , a straightforward
calculation shows that :
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From this it is easy to deduce ( i ) and ( ii ) . Note also that

But by the definitions of + and o ,

This completes the proof of Theorem C .

REMARKS. 10 We have been able to find direct proofs of (i) and ( ii ) of

Theorem C using only the laws for double groupoids. A similar proof for (iii) 
has been found by P. J. Higgins ; this proof involves an (c anti-clockwise »

rotation Q , and checking that

2° The methods of this paper can be applied to p ( X , Y, Z) , the homo-

topy double groupoid of a triple described in [3] , to prove the existence

of homotopies between various maps
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