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Theory and Applications of Categories, Vol. 1, No. 3 55survey by Brown and Huebschmann [12], and the book edited by Hog-Angeloni, Metzlerand Sieradski [20], give wider applications.The paper of Mac Lane and Whitehead [26] uses Theorem W to show that the 2-dimension-al homotopy theory of pointed, connected CW -complexes is completely mod-elled by the theory of crossed modules. This is an extra argument for regarding crossedmodules as 2-dimensional versions of groups.One of our aims is the explicit calculation of examples of the crossed module(@ : �2(A [ �V;A)! �1(A) ) (1)of a mapping cone, when �1(V ); �1(A) are �nite. The key to this is the 2-dimensionalVan Kampen Theorem (2-VKT) proved by Brown and Higgins in [9]. This implies ageneralisation of Theorem W, namely that the crossed module (1) is induced from theidentity crossed module (1 : �1(V )! �1(V )) by the morphism �1(V )! �1(A):Presentations of induced crossed modules are given in [9], and from these we provea principal theorem (Theorem 2.1), that crossed modules induced from �nite crossedmodules by morphisms of �nite groups are �nite. We also use topological methods toprove a similar result for �nite p-groups (Corollary 4.3). These results give a new rangeof �nite crossed modules.Sequels to this paper discuss crossed modules induced by a normal inclusion [15], andcalculations obtained using a group theory package [16].The origin of the 2-VKT was the idea of extending to higher dimensions the notionof the fundamental groupoid, as suggested in 1967 in [4]. This led to the discovery ofthe relationship of 2-dimensional groupoids to crossed modules, in work with Spencer[14]. This relationship reinforces the idea of `higher dimensional group theory', and wasessential for the proof of the 2-VKT for the fundamental crossed module [9]. In viewof the results of Mac Lane and Whitehead [26], and of methods of classifying spaces ofcrossed modules by Loday [25] and Brown and Higgins [11] (see section 3), the 2-VKTallows for the explicit computation of some homotopy 2-types, in the form of the crossedmodules which model them.In some cases, the Postnikov invariant of these 2-types can be calculated, as thefollowing example shows.Corollary 5.5 Let Cn denote the cyclic group of order n, and let BCn denote itsclassifying space. The second homotopy module of the mapping cone X = BCn2 [ �BCnis a particular cyclic Cn-module, An, say. The cohomology group H3(Cn; An) is a cyclicgroup of order n, and the �rst Postnikov invariant of X is a generator of this group.The method used for the calculation of the cohomology class here is also of interest.It introduces a new small free crossed resolution of the cyclic group of order n in order toconstruct an explicit 3-cocycle corresponding to the above crossed module. This indicatesa wider possibility of using crossed resolutions for explicit calculations. It is also relatedto Whitehead's use of what he called in [32] `homotopy systems', and which are simplyfree crossed complexes.The initial motivation of this paper was a conversation with Rafael Sivera in Zaragoza,in November, 1993, which suggested the lack of explicit calculations of induced crossed



Theory and Applications of Categories, Vol. 1, No. 3 56modules. This led to discussions at Bangor on the use of computational group theorypackages which culminated in a GAP [29] program [16], and to the development of generaltheory.1. Crossed modules and induced crossed modulesIn this section, we recall the de�nition of induced crossed modules, and of results of [9]on presentations of induced crossed modules. We then give some basic examples of these.Recall that a crossed module M = (� : M ! P ) is a morphism of groups � :M ! Ptogether with an action (m; p) 7! mp of P on M satisfying the two axioms� CM1) �(mp) = p�1�(m)p� CM2) m�n = n�1mnfor all m;n 2M and p 2 P . We say that M is �nite when M is �nite.The category XM of crossed modules has as objects all crossed modules. Morphismsin XM are pairs (g; f) forming commutative diagramsM //���g P�� fN //� Qin which the horizontal maps are crossed modules, and g; f preserve the action in the sensethat for all m 2 M;p 2 P we have g(mp) = (gm)fp: If P is a group, then the categoryXM=P of crossed P -modules is the subcategory of XM whose objects are the crossedP -modules and in which a morphism (� : M ! P )! (� : N ! P ) of crossed P -modulesis a morphism g : M ! N of groups such that g preserves the action ( g(mp) = (gm)p;for all m 2M; p 2 P ), and �g = �:Standard algebraic examples of crossed modules are:(i) an inclusion of a normal subgroup, with action given by conjugation;(ii) an inner automorphism crossed module (� : M ! Aut M) in which �m is theautomorphism n 7! m�1nm;(iii) a zero crossed module (0 : M ! P ) where M is a P -module;(iv) an epimorphismM ! P with kernel contained in the centre of M .Examples of �nite crossed modules may be found among those above, the inducedcrossed modules of this paper and its sequels [15, 16], and coproducts [6] and tensorproducts [13, 19] of �nite crossed P -modules.Further important examples of crossed modules are the free crossed modules, referredto in the Introduction, which are rarely �nite. They arise algebraically in consideringidentities among relations [12, 20], which are non-abelian forms of syzygies.We next de�ne pullback crossed modules. Let � : P ! Q be a morphism of groupsand let (� : N ! Q) be a crossed Q-module. Let �0 : ��N ! P be the pullback of N by



Theory and Applications of Categories, Vol. 1, No. 3 57�, so that ��N = f(p; n) 2 P � N j �p = �ng, and �0 : (p; n) 7! p: Let P act on ��N by(p1; n)p = (p�1p1p; n�p): The veri�cation of the axiom CM1) is immediate, while CM2) isproved as follows:Let (p; n); (p1; n1) 2 ��N: Then(p; n)�1(p1; n1)(p; n) = (p�1p1p; n�1n1n)= (p�1p1p; n�n1 )= (p�1p1p; n�p1 )= (p1; n1)�0(p;n):1.1. Proposition. The functor �� : XM=Q! XM=P has a right adjoint ��.Proof. This follows from general considerations on Kan extensions.The universal property of induced crossed modules is the following. Let (� :M ! P ),( : C ! Q) be crossed modules. In the diagramM�� f //��� �� P�� ���M //�g}}{ { { { QC 66 mmmmmmmmmmmmmmmmmthe pair (��; �) is a morphism of crossed modules such that for any crossed Q-module( : C ! Q) and morphism of crossed modules (f; �), there is a unique morphismg : ��M ! C of crossed Q-modules such that g�� = f:It is a consequence of this universal property that if M = P = F (R), the free groupon a set R; and if w : R ! Q is the restriction of � to the set R; then ��F (R) is the freecrossed module on w; in the sense of Whitehead [32] (see also [12, 20, 28]). Constructionsof this free crossed module are given in these papers.A presentation for induced crossed modules for a general morphism � is given in Propo-sition 8 of [9]. We will need two more particular results. The �rst is Proposition 9 of thatpaper, and the second is a direct deduction from Proposition 10.1.2. Proposition. If � : P ! Q is a surjection, and (� : M ! P ) is a crossed P-module, then ��M �= M=[M;K]; where K = Ker �, and [M;K] denotes the subgroup of Mgenerated by all m�1mk for all m 2M; k 2 K:The following term and notation will be used frequently. Let P be a group and letT be a set. We de�ne the copower P ~� T to be the free product of groups Pt; t 2 T;each with elements (p; t); p 2 P; and isomorphic to P under the map (p; t) 7! p: If Q is agroup, then P ~� Q will denote the copower of P with the underlying set of the group Q:



Theory and Applications of Categories, Vol. 1, No. 3 581.3. Proposition. If � : P ! Q is an injection, and (� : M ! P ) is a crossed P-module, let T be a right transversal of �P in Q. Let Q act on the copower M ~� T bythe rule (m; t)q = (mp; u); where p 2 P; u 2 T; and tq = (�p)u: Let � : M ~� T ! Qbe de�ned by (m; t) 7! t�1(��m)t: Let S be a set of generators of M as a group, and letSP = fxp : x 2 S; p 2 Pg. Then ��M = (M ~� T )=Rwhere R is the normal closure in M ~� T of the elementsh(r; t); (s; u)i = (r; t)�1(s; u)�1(r; t)(s; u)�(r;t) (r; s 2 SP ; t; u 2 T ):Proof. Let N = M ~� T: Proposition 10 of [9] yields that ��M is the quotient of N bythe subgroup hN;Ni generated by hn; n1i = n�1n�11 nn�n1 ; n; n1 2 N; and which is calledin [12] the Pei�er subgroup of N . Now N is generated by the set (SP ; T ) = f(sp; t) : s 2S; p 2 P; t 2 Tg; and this set is Q-invariant since (sp; t)q = (spp0; u) where u 2 T; p0 2 Psatisfy tq = (�p0)u: It follows from Proposition 3 of [12] that hN;Ni is the normal closureof the set h(SP ; T ); (SP ; T )i of basic Pei�er commutators.1.4. Example. The dihedral crossed module. We show how this works out in the follow-ing case, which exhibits a number of typical features. We let Q be the dihedral group Dnwith presentation hx; y : xn = y2 = xyxy = 1i, and let M = P be the cyclic subgroupC2 of order 2 generated by y: Let Cn = f0; 1; 2; : : : ; n� 1g be the cyclic group of order n:A right transversal T of C2 in Dn is given by the elements xi; i 2 Cn: Hence ��C2 has apresentation with generators ai = (y; xi); i 2 Cn; and relations given by a2i = 1; i 2 Cn,together with the Pei�er relations. Now �ai = x�iyxi = yx2i: Further the action is givenby (ai)x = ai+1; (ai)y = an�i: Hence (ai)�aj = a2j�i, so that the Pei�er relations areajaiaj = a2j�i: It is well known that we now have a presentation of the dihedral groupDn, from which we recover the standard presentation hu; v : un = v2 = uvuv = 1i bysetting u = a0a1; v = a0; so that ui = a0ai: Then�u = x2; �v = y;so that y acts on ��C2 by conjugation by v: However x acts byux = u; vx = vu:Note that this is consistent with the crossed module axiom CM2) sincevx2 = (vu)x = vuu = u�1vu:We call Dn = (� : Dn ! Dn) the dihedral crossed module. It follows from these formulaethat � is an isomorphism if n is odd, and has kernel and cokernel isomorphic to C2 if nis even. In particular, if n is even, then by results of section 3, �2(BDn [ �BC2) can beregarded as having one non-trivial element represented by un=2.



Theory and Applications of Categories, Vol. 1, No. 3 591.5. Corollary. Assume � : P ! Q is injective. If M has a presentation as a groupwith g generators and r relations, the set of generators of M is P-invariant, and n = [Q :��(M)]; then ��M has a presentation with gn generators and rn+ g2n(n � 1) relations.Another corollary determines induced crossed modules under some abelian conditions.This result has useful applications. If M is an abelian group, or P -module, and T is aset, we de�ne the copower of M with T , written M ~� T , to be the sum of copies of M ,one for each element of T:1.6. Corollary. Let (� : M ! P ) be a crossed P -module and � : P ! Q a monomor-phism of groups such that M is abelian and ��(M) is normal in Q. Then ��M is abelianand as a Q-module is just the induced Q-module in the usual sense.Proof. We use the result and notation of Proposition 1.3. Note that if u; t 2 T andr 2 S then u�(r; t) = ut�1(��r)t = (��m)ut�1t = (��m)u for some m 2 M; by thenormality condition. The Pei�er commutator given in Proposition 1.3 can therefore berewritten as (r; t)�1(s; u)�1(r; t)(s; u)�(r;t) = (r�1; t)(s; u)�1(r; t)(sm; u):Since M is abelian, sm = s: Thus the basic Pei�er commutators reduce to ordinarycommutators. Hence ��M is the copower M ~� T; and this, with the given action, is theusual presentation of the induced Q-module.1.7. Example. Let M = P = Q be the in�nite cyclic group C1, let � be the identity,and let � be multiplication by 2. Then ��M �= C1 �C1, and the action of a generator ofQ on ��M is to switch the two copies of C1. This result could also be deduced from wellknown results on free crossed modules. However, our results show that we get a similarconclusion simply by replacing each C1 in the above by a �nite cyclic group C2n, andthis fact is new.2. On the �niteness of induced crossed modulesIn this section we give an algebraic proof that a crossed module induced from a �nitecrossed module by a morphism with �nite cokernel is also �nite. In a later section we willprove a slightly less general result, but by topological methods which will also yield resultson the preservation of the Serre class of a crossed module under the inducing process.2.1. Theorem. Let (� : M ! P ) be a crossed module and let � : P ! Q be a morphismof groups. Suppose that M and the index of �(P ) in Q are �nite. Then the induced crossedmodule (� : ��M ! Q) is �nite.Proof. Factor the morphism � : P ! Q as �� where � is injective and � is surjective.Then ��M is isomorphic to ����M: It is immediate from Proposition 1.2 that ifM is �nitethen so also is ��M: So it is enough to assume that � is injective, and in fact we assumeit is an inclusion.



Theory and Applications of Categories, Vol. 1, No. 3 60Let T be a right transversal of �P in Q: Let Y = M ~� T be the copower of M andT; and let � : Y ! Q and the action of Q on Y be as in Proposition 1.3. The equationstq = (�p)u which determine this action in fact provide a function(�; �) : T �Q! P � T; (t; q) 7! (p; u):A basic Pei�er relation is then of the form(m; t)(n; v) = (n; v)(m�(t;v�1(��m)v); �(t; v�1(��m)v)) = (n; v)(mp; u) (2)where m;n 2M; t; u 2 T and q = v�1(��m)v.We now assume that the �nite set T has l elements and has been given the total ordert1 < t2 < � � � < tl. An element of Y may be represented as a word(m1; u1)(m2; u2) : : : (me; ue): (3)Such a word is said to be reduced when ui 6= ui+1; 1 � i < e, and to be ordered ifu1 < u2 < � � � < ue in the given order on T . This yeilds a partial ordering of M ~� T where(mi; ui) � (mj; uj) whenever ui � uj.A twist uses the Pei�er relation (2) to replace a reduced word w = w1(m; t)(n; v)w2,with v < t, by w0 = w1(n; v)(mp; u)w2. If the resulting word is not reduced, multiplicationin Mv and Mu may be used to reduce it. In order to show that any word may be orderedby a �nite sequence of twists and reductions, we de�ne an integer weight function on theset Wn of non-empty words of length at most n by
n : Wn ! Z+; (m1; tj1)(m2; tj2) : : : (me; tje) 7! le eXi=1 ln�iji:It is easy to see that 
n(w0) < 
n(w) when w! w0 is a reduction. Similarly, for a twistw = w1(mi; tji)(mi+1; tji+1)w2 ! w0 = w1(mi+1; tji+1)(n; tk)w2the weight reduction is
n(w) �
n(w0) = ln+e�i�1( l(ji � ji+1) + ji+1 � jk ) � ln+e�i�1;so the process terminates in a �nite number of moves.This ordering process is a special case of a purely combinatorial sorting algorithmdiscussed in [17].We now specify an algorithm for converting a reduced word to an ordered word.Various algorithms are possible, some more e�cient than others, but we are not interestedin e�ciency here. We call a reduced word k-ordered if the subword consisting of the �rstk elements is ordered and the remaining elements are greater than these. Every reducedword is at least 0-ordered. Given a k-ordered, reduced word, �nd the rightmost minimalelement to the right of the k-th position. Move this element one place to the left with



Theory and Applications of Categories, Vol. 1, No. 3 61a twist, and reduce if necessary. The resulting word may only be j-ordered, with j < k,but its weight will be less than that of the original word. Repeat until an ordered wordis obtained.Let Z = Mt1 �Mt2 � : : :�Mtl be the product of the sets Mti = M � ftig. Then thealgorithm yeilds a function � : Y ! Z such that the quotient morphism Y ! ��M factorsthrough �: Since Z is �nite, it follows that ��M is �nite.2.2. Remark. In this last proof, it is in general not possible to give a group structureon the set Z such that the quotient morphism Y ! ��M factors through a morphism toZ: For example, in the dihedral crossed module of example 1.4, with n = 3; the set Zwill have 8 elements, and so has no group structure admitting a morphism onto D3: Thisexplains why the above method does not give an algebraic proof of Corollary 4.3, whichgives conditions for ��M to be a �nite p-group. However, in [15], we will give an algebraicproof for the case P is normal in Q:3. Topological applicationsAs explained in the Introduction, the fundamental crossed module functor �2 assigns acrossed module (@ : �2(X;A)! �1(A)) to any base pointed pair of spaces (X;A). We willuse the following consequence of Theorem C of [9], which is a 2-dimensional Van Kampentype theorem for this functor.3.1. Theorem. ([9], Theorem D) Let (B;V ) be a co�bred pair of spaces, let f : V ! Abe a map, and let X = A [f B. Suppose that A;B; V are path-connected, and the pair(B;V ) is 1-connected. Then the pair (X;A) is 1-connected and the diagram�2(B;V ) //���� �1(V )�� ��2(X;A) //�0 �1(A)presents �2(X;A) as the crossed �1(A)-module ��(�2(B;V )) induced from the crossed�1(V )-module �2(B;V ) by the group morphism � : �1(V )! �1(A) induced by f:As pointed out earlier, in the case P is a free group on a setR, and � is the identity, thenthe induced crossed module ��P is the free crossed Q-module on the function �jR : R! Q.Thus Theorem 3.1 implies Whitehead's Theorem W of the Introduction. A considerableamount of work has been done on this case, because of the connections with identitiesamong relations, and methods such as transversality theory and \pictures" have provedsuccessful ([12, 28]), particularly in the homotopy theory of 2-dimensional complexes [20].However, the only route so far available to the wider geometric applications of inducedcrossed modules is Theorem 3.1. We also note that this Theorem includes the relativeHurewicz Theorem in this dimension, on putting A = �V , and f : V ! �V the inclusion.We will apply this Theorem 3.1 to the classifying space of a crossed module, as de�nedby Loday in [25] or Brown and Higgins in [11]. This classifying space is a functor B



Theory and Applications of Categories, Vol. 1, No. 3 62assigning to a crossed module M = (� : M ! P ) a pointed CW -space BM with thefollowing properties:3.2. The homotopy groups of the classifying space of the crossed module M = (� : M !P ) are given by �i(BM) �= 8><>: Coker � for i = 1Ker � for i = 20 for i > 2:3.3. The classifying space B(� : 1 ! P ) is the usual classifying space BP of the groupP , and BP is a subcomplex of BM: Further, there is a natural isomorphism of crossedmodules �2(BM; BP ) �=M:3.4. If X is a reduced CW -complex with 1-skeleton X1; then there is a mapX ! B(�2(X;X1))inducing an isomorphism of �1 and �2.It is in these senses that it is reasonable to say, as in the Introduction, that crossedmodules model all pointed homotopy 2-types.We now give two direct applications of Theorem 3.1.3.5. Corollary. Let M = (� : M ! P ) be a crossed module, and let � : P ! Q be amorphism of groups. Let � : BP ! BM be the inclusion. Consider the pushoutBP //���B� BM��BQ //�0 X: (4)Then the fundamental crossed module of the pair (X;BQ) is isomorphic to the inducedcrossed module (� : ��M ! Q), and this crossed module determines the 2-type of X:Proof. The �rst statement is immediate from Theorem 3.1. The �nal statement followsfrom results of [11], since the morphism Q! �1(X) is surjective.3.6. Remark. An interesting special case of the last corollary is when M is an inclusionof a normal subgroup, since then BM is of the homotopy type of B(P=M): So we havedetermined the 2-type of a homotopy pushoutBP //Bp��B� BR��BQ //p0 X



Theory and Applications of Categories, Vol. 1, No. 3 63in which p : P ! R is surjective.We write �V for the cone on a space V:3.7. Corollary. Let � : P ! Q be a morphism of groups. Then the fundamental crossedmodule �2(BQ[B��BP;BQ) is isomorphic to the induced crossed module (� : ��P ! Q):4. Finiteness theorems by topological methodsThe aim of this section is to show that the property of being a �nite p-group is preservedby the process of induced crossed modules. We use topological methods.An outline of the method is as follows. Suppose that Q is a �nite p-group. To provethat ��M is a �nite p-group, it is enough to prove that Ker (��M ! Q) is a �nite p-group.But this kernel is the second homotopy group of the space X of the pushout (4), and sois also isomorphic to the second homology group of the universal cover fX of X: In orderto apply the homology Mayer-Vietoris sequence to this universal cover, we need to showthat it may be represented as a pushout, and we need information on the homology of thespaces determining this pushout. So we start with the necessary information on coveringspaces.We work in the convenient category T OP of weakly Hausdor� k-spaces [24]. Let� : fX ! X be a map of spaces. In the examples we will use, � will be a covering map.Then � induces a functor �� : T OP=X ! T OP=fX:It is known that � has a right adjoint and so preserves colimits [2, 1, 24].For regular spaces, the pullback of a covering space in the above category is again acovering space. These results enable us to identify a covering space of an adjunction spaceas an adjunction space obtained from the induced covering spaces.If further, � is a covering map, and X is a CW -complex, then fX may be given thestructure of a CW -complex [27].We also need a special case of the basic facts on the path components and fundamentalgroup of induced covering maps ([7, 8, 27]). Given the following pullbackbA //���0 fX�� �A //f Xand points a 2 A; ~x 2 fX such that fa = �~x; in which � is a universal covering map andX;A; fX are path connected, then there is a sequence1! �1( bA; (a; ~x))! �1(A; a) f�! �1(X; fa)! �0( bA)! 1: (5)This sequence is exact in the sense of sequences arising from �brations of groupoids [7],which involves an operation of the fundamental group �1(X; fa) on the set �0( bA) of path



Theory and Applications of Categories, Vol. 1, No. 3 64components of bA. It follows that the fundamental group of bA is isomorphic to Ker f�,and that �0( bA) is bijective with the set of cosets (�1(X; fa))=(f��1(A; a)): It is also clearthat the covering bA! A is regular and that all the components of bA are homeomorphic.Let M be the crossed module (� : M ! P ) and let � : P ! Q be a morphism ofgroups. Let X = BQ [B� BMas in diagram (4). Let � : fX ! X be the universal covering map, and let dBQ;\BM; dBPbe the pullbacks of fX under the maps BQ ! X; BM ! X; BP ! X: Then we maywrite fX �= dBQ [ bB�\BM; (6)by the results of section 3.From the exact sequence (5) we obtain the following exact sequences, in which �1X �=Q �P (P=�M):1! �1(dBQ) ! Q ! Q �P (P=�M) ! 1;1! �1(\BM) ! P=�M ! Q �P (P=�M) ! �0\BM ! 1;1! �1(dBP ) ! P ! Q �P (P=�M) ! �0dBP ! 1:4.1. Proposition. Under the above situation, let the groups �1(dBP ), �1( dBM), �1(dBQ)be denoted by P 0;M 0; Q0 respectively, and let BM0 denote a component of dBM. Thenthere is an exact sequenceH2(P 0) ~� �0dBP ! (H2(BM0) ~� �0 dBM)�H2(Q0)! �2(X)!! H1(P 0) ~� �0dBP ! (H1(M 0) ~� �0 dBM)�H1(Q0)! 0:Proof. This is immediate from the Mayer-Vietoris sequence for the pushout (6) and thefact that H2(fX) �= �2(X):4.2. Corollary. If � : P ! Q is the inclusion of a normal subgroup, and X = BQ [B��BP; then �2(X) is isomorphic to H1(P )
I(Q=P ); where I(G) denotes the augmentationideal of a group G:This result agrees with Corollary 2.5 of [15], in which the induced crossed module itselfis computed, in the case P is normal in Q, via the use of coproducts of crossed P -modules.4.3. Corollary. Let M = (� : M ! P ) be a crossed module and let � : P ! Q be amorphism of groups. If M , P and Q are �nite p-groups, then so also is ��M .



Theory and Applications of Categories, Vol. 1, No. 3 65Proof. It is standard that the (reduced) homology groups of a �nite p-group are �nitep-groups. The same applies to the reduced homology of the classifying space of a crossedmodule of �nite p-groups. The latter may be proved using the spectral sequence of acovering, and Serre C theory, as in Chapters IX and X of [21]. In the present case, weneed information only on H2(BM); and some of its connected covering spaces, and thismay be deduced from the exact sequence due to HopfH3K ! H3G! (�2K) 
ZGZ! H2K ! H2G ! 0for any connected space K with fundamental group G (see for example Exercise 6 onp.175 of [3]). Proposition 4.1 shows that Ker (��(M) ! Q) �= �2(X) is a �nite p-group.Since Q is a �nite p-group, it follows that ��M is a �nite p-group.Note that these methods extend also to results on the Serre class of an induced crossedmodule, which we leave the reader to formulate.5. Cohomology classesRecall [22, 3] that if G is a group and A is a G-module, then elements of H3(G;A) maybe represented by equivalence classes of crossed sequences0! A!M ��! P ! G! 1; (7)namely exact sequences as above such that (� : M ! P ) is a crossed module. Theequivalence relation between such crossed sequences is generated by the basic equivalences,namely the existence of a commutative diagram of morphisms of groups as follows0 // A�� 1 // M //��� f P�� g // G�� 1 // 10 // A // M 0 //�0 P 0 // G // 1such that (f; g) is a morphism of crossed modules. Such a diagram is called a morphismof crossed sequences.The zero cohomology class is represented by the crossed sequence0 ! A 1�! A 0�! G 1�! G! 1;which we sometimes abbreviate to A 0�! G:In a similar spirit, we say that a crossed module (� : M ! P ) represents a cohomologyclass, namely an element of H3(Coker �;Ker �):



Theory and Applications of Categories, Vol. 1, No. 3 665.1. Example. Let Cn2 denote the cyclic group of order n2; written multiplicatively,with generator u: Let n : Cn2 ! Cn2 be given by u 7! un. This de�nes a crossed module,with trivial operations. This crossed module represents the trivial cohomology class inH3(Cn; Cn), in view of the morphism of crossed sequences0 // Cn //1�� 1 Cn //0�� � Cn //1�� � Cn�� 1 // 00 // Cn // Cn2 //n Cn2 // Cn // 0where, if t is the generator of the top Cn; then �(t) = un:5.2. Example. We show that the dihedral crossed module Dn of Example 1.4 representsthe trivial cohomology class. This is clear for n odd, since then � is an isomorphism. Forn even, we simply construct a morphism of crossed sequences as in the following diagram0 // C2 //1�� �= C2�� f2 //0 C2�� f1 //1 C2�� �= // 00 // C2 // Dn //� Dn // C2 // 0where if t denotes the non trivial element of C2 then f1(t) = x; f2(t) = un=2: Just forinterest, we leave it to the reader to prove that there is no morphism in the other directionbetween these crossed sequences.A crossed module M = (� : M ! P ) determines a cohomology classkM 2 H3(Coker �;Ker �):If X is a connected, pointed CW -complex with 1-skeleton X1; then the classk3X 2 H3(�1X;�2X)of the crossed module �2(X;X1) is called the �rst Postnikov invariant of X: This classis also represented by �2(X;A) for any connected subcomplex A of X such that (X;A)is 1-connected and �2(A) = 0: It may be quite di�cult to determine this Postnikovinvariant from a presentation of this last crossed module, and even the meaning of theword \determine" in this case is not so clear. There are practical advantages in workingdirectly with the crossed module, since it is an algebraic object, and so it, or familiesof such objects, may be manipulated in many convenient and useful ways. Thus theadvantages of crossed modules over the corresponding 3-cocycles are analogous to someof the advantages of homology groups over Betti numbers and torsion coe�cients.However, in work with crossed modules, and in applications to homotopy theory, in-formation on the corresponding cohomology classes, such as their non-triviality, or their



Theory and Applications of Categories, Vol. 1, No. 3 67order, is also of interest. The aim of this section is to give background to such a de-termination, and to give two example of �nite crossed modules representing non-trivialelements of the corresponding cohomology groups.The following general problem remains. If G;A are �nite, where A is a G-module,how can one characterise the subset of H3(G;A) of elements represented by �nite crossedmodules? This subset is a subgroup, since the addition may be de�ned by a sum of crossedsequences, of the Baer type. (An exposition of this is given by Danas in [18].) It mightalways be the whole group.The natural context in which to show how a crossed sequence gives rise to a 3-cocycleis not the traditional chain complexes with operators but that of crossed complexes [22].We explain how this works here. For more information on the relations between crossedcomplexes and the traditional chain complexes with operators, see [10].Recall that a free crossed resolution of the group G is a free aspherical crossed complexF� together with an epimorphism � : F1 ! G with kernel �2(F2):5.3. Example. The cyclic group Cn of order n is written multiplicatively, with generatort: We give for it a free crossed resolution F� as follows. Set F1 = C1, with generator w;and for r � 2, set Fr = (C1)n: Here for r � 2; Fr is regarded as the free Cn-module onone generator w0; and we set wi = (w0)ti. The morphism � : C1 ! Cn sends w to t; andthe operation of F1 on Fr for r � 2 is via �: The boundaries are given by1. �2(wi) = wn;2. for r odd, �r(wi) = wiw�1i+1,3. for r even and greater than 2, �r(wi) = w0w1 : : :wn�1:Previous calculations show that �2 is the free crossed C1-module on the elementwn 2 C1. Thus F� is a free crossed complex. It is easily checked to be aspherical, and sois, with �, a crossed resolution of Cn:Let A be a G-module. Let C(G;A; 3) denote the crossed complex C which is G indimension 1, A in dimension 3, with the given action of G on A, and which is 0 elsewhere,as in the following diagram � � � // 0 // A // 0 // G:Let (F�; �) be a free crossed resolution of G: It follows from the discussions in [10, 11]that a 3-cocycle of G with coe�cients in A can be represented as a morphism of crossedcomplexes f : F� ! C(G;A; 3) over �: This cocycle is a coboundary if there is an operatormorphism l : F2 ! A over � : F1 ! G such that l�3 = f3:F4�� //�4 F3��f3 //�3 F2~~ l}}}}}}}} �� //�2 F1�� �0 // A // 0 // G



Theory and Applications of Categories, Vol. 1, No. 3 68To construct a 3-cocycle on F� from the crossed sequence (7), �rst construct a mor-phism of crossed complexes as in the diagramF4 //�� F3 //�� f3 F2 //�� f2 F1 //��� f1 G�� 10 // A // M //� P // G (8)using the freeness of F� and the exactness of the bottom row. Then compose this withthe morphism of crossed sequences0 //�� A�� 1 // M //��� P // ��  G�� 10 // A // 0 // G //1 GHence it is reasonable to say that the morphism f3 of diagram (8) is a 3-cocycle corre-sponding to the crossed sequence.We now use these methods in an example.5.4. Theorem. Let n � 2; and let � : Cn ! Cn2 denote the injection sending a generatort of Cn to un; where u denotes a generator of Cn2: Let An denote the Cn-module whichis the kernel of the induced crossed module N = (@ : ��Cn ! Cn2). Then H3(Cn; An) iscyclic of order n and has as generator the class of this induced crossed module.Proof. By Corollary 1.6 the abelian group ��Cn is the product V = (Cn)n. As a Cn-module it is cyclic, with generator v; say. Write vi = vti; i = 0; 1; : : : ; n � 1. Then eachvi is a generator of a Cn factor of V . The kernel An of @ is a cyclic Cn-module on thegenerator a = v0v�11 : Write ai = ati = viv�1i+1: As an abelian group, An has generatorsa0; a1; : : : ; an�1 with relations ani = 1; a0a1 : : : an�1 = 1:We de�ne a morphism f� from F� to the crossed sequence containing N as in diagram(9), where1. f1 maps w to u;2. f2 maps the module generator w0 of F2 to v = v0:3. f3 maps the module generator w0 of F3 to a0:(C1)n��0 //�4 (C1)n��f3 //�3 (C1)nzz luuuuuuuuuu �� f2 //�2 C1�� f1 // Cn�� 10 // An // (Cn)n //@ Cn2 // Cn (9)



Theory and Applications of Categories, Vol. 1, No. 3 69The operator morphisms fr over f1 are de�ned completely by these conditions.The group of operator morphisms g : (C1)n ! An over f1 may be identi�ed withAn under g 7! g(w0): Under this identi�cation, the boundaries �4; �3 are transformedrespectively to 0 and to ai 7! ai(ati)�1: So the 3-dimensional cohomology group is thegroup An with ai identi�ed with ai+1; i = 0; : : : ; n�1: This cohomology group is thereforeisomorphic to Cn; and a generator is the class of the above cocycle f3:5.5. Corollary. The mapping cone X = BCn2 [B��BCn satis�es �1X = Cn; and �2Xis the Cn-module An of Theorem 5.4. The �rst Postnikov invariant of X is a generatorof the cohomology group H3(�1X;�2X), which is a cyclic group of order n.The following is another example of a determination of a non-trivial cohomology classby a crossed module. The method of proof is similar to that of Theorem 5.4, and is leftto the reader.5.6. Example. Let n be even. Let C 0n denote the Cn-module which is Cn as an abeliangroup but in which the generator t of the group Cn acts on the generator t0 of C 0n by sendingit to its inverse. Then H3(Cn; C 0n) �= C2 and a generator of this group is representedby the crossed module (�n : Cn � Cn ! Cn2), with generators t0; t1; u say, and where�nt0 = �nt1 = un: Here u 2 Cn2 operates by switching t0; t1: It is not clear if this crossedmodule can be an induced crossed module for n > 2. However, n = 2 gives the case n = 2of Theorem 5.4.5.7. Remark. The crossed module (�2 : C2�C2 ! C4) also appears as an example in [23,pp.332-333]. The proof given there that its corresponding cohomology class is non-trivialis obtained by relating this class to the obstruction to a certain kind of extension.References[1] Booth, P.I. and Brown, R., On the applications of �bred mapping spaces toexponential laws for bundles, ex-spaces and other categories of maps, Gen. Top.Appl. 8 (1978) 165-179.[2] Booth, P.I. and Brown, R., Spaces of partial maps, �bred mapping spaces, andthe compact open topology, Gen. Top. Appl. 8 (1978) 181-195.[3] Brown, K.S., Cohomology of groups, Graduate texts in Mathematics 87, Springer-Verlag, New York (1982).[4] Brown, R., Groupoids and Van Kampen's Theorem, Proc. London Math. Soc. (3)17 (1967) 385-401.[5] Brown, R., On the second relative homotopy group of an adjunction space: anexposition of a Theorem of J.H.C. Whitehead, J. London Math. Soc. 22 (1980) 146-152.
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