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Introduction
The fundamental groupoid TT(X) of a topological space X has been known
for a long time but has been regarded, usually, as of little import in
comparison with the fundamental group—for example, the groupoid is
described in ((3) 155) as an 'interesting curiosity'. In this paper we
shall generalize the fundamental group at a point a of X, namely 7r(X,a),
to the fundamental groupoid on a set A, written TT(X, A), which consists
of the homotopy classes of paths in X joining points of A n X. If a e A,
the fundamental group TT{X,O) can be recovered from knowledge of
n(X,A), but the latter groupoid is often easier to describe because the
category of groupoids has exactly the right properties to model success-
fully the geometric constructions in building up spaces.

As an example of this, consider an adjunction space Bu^Z, where
/ : Y -> B is continuous and Y is a closed subspace of Z (so that B\JfZ
is obtained by glueing Z to B by means of/) . The following is a basic
step in computing the fundamental group of a space: Compute the
fundamental group of B\JfZ in terms of the fundamental groups of B, Y, Z
and the maps induced by i: Y -» Z, f: Y -y B. This is insoluble without
some local conditions on Y in Z, as an example of H. B. Griffiths (6)
shows. With suitable local conditions (and other topological conditions
which may be regarded as inessential) a special case of this problem was
solved by van Kampen in (10). His answer was a formula describing the
fundamental group of B \JfZ in terms of generators and relations.

We shall use groupoids to give in Theorem 4.2 a general and natural
solution to this problem. With this theorem one can derive by a uniform
method the fundamental groups of spaces from a large class which
includes all CW-complexes, and, a fortiori, all simplicial complexes.
Even for the latter spaces the methods here are simpler than the classical
combinatorial methods.

Theorem 4.2 is a deduction from our main result, Theorem 3.4, which
determines a groupoid TT(X, AO) when X is the union of the interiors of
two sets Xlt X2. Other work on the fundamental group of a union has
been done by P. Olum (11), the author (1), R. H. Crowell (2), and
A. I. Weinzweig (12). The results of (11) and (1) are not as powerful
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as the groupoid theorems here, since the exact sequence considered in
these papers does not determine the fundamental group completely
when X1nX2 is not path-connected. The papers (2) and (12) are con-
cerned with the fundamental group of a union [JX^: (2) deals only with
the case in which each Xa is path-connected; the general case is con-
sidered in (12), but the formulation is in terms of groups only and is
hence most complicated. We shall in § 6 indicate theorems which certainly
contain those of (2) and probably also those of (12).

The use of groupoids in the present context was suggested by a reading
of (7). The fact that groupoids are useful suggests the principle that one
should take notice of all the structure there is in a given situation. Now
one generalization of a path in a space is a mapping of an n-dimensional
cube. For such mappings there is an addition, sometimes denned, in
each of n directions; so one is led to consider n-dimensional groupoids.
The advantage of these is that, unlike the homotopy groups, they permit
subdivisions, and so one can hope for a van-Kampen-type theorem. At
the moment I can prove the n-dimensional version of the case A = X
of Theorem 3.4, but the formulation of the other cases, and so the use
of these objects for computing homotopy groups, presents difficulties. I
hope to say more on this another time.

I would like to thank W. H. Cockcroft, P. J. Higgins, and R. M. F. Moss
for helpful comments on an earlier draft of this paper.

1. Groupoids

A groupoid G is a category whose objects form a set and in which
each map is an isomorphism. The objects of G are called places, the
maps of G are called roads; if a: x ->• y, j8: y -> z are maps in G, their
composite is written a + jS: x -> z, while the inverse of a is — a: y -» x.

A subgroupoid H of a groupoid G is a subcategory of G such that H
is also a groupoid. This condition is simply that if a is a road of H,
then so also is —a. The subgroupoid H is full if for any two places
x, y of H the two sets H(x, y), G(x, y) of roads from x to y in H, G respec-
tively, are equal. Any set of places of G determines in an obvious way
a full subgroupoid of G. In particular, for a single place x of G this full
subgroupoid is a group, the place group (or vertex group) at x.

A groupoid G is connected if for any places x, y of G there is a road in G
from x to y. The components of any groupoid G are the maximal con-
nected subgroupoids of G; it is easily seen that these exist and are full
subgroupoids of G. If the components of G are all place groups, then G
is called totally disconnected.
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A subgroupoid H of G is representative if for each place x of G there is
a road from a; to a place of H; thus H is representative if H meets each
component of G.

Let G, H be groupoids. A morphismf: G -> H is a (covariant) functor.
Thus / assigns to each place x of G a place f(x) of # , and to each road
<x: x -> y in G & road /(a): /(re) -> f{y) in # , and / satisfies

when a+/J is defined.
In addition to the obvious notion of isomorphism of groupoids there

is also the notion of equivalence. First let / , g: G -» H be morphisms
of groupoids. A homotopy 6: f ~ g is simply a natural equivalence of
/ , g when these are considered as functors. Thus 6 assigns to each place
x of G a road 6{x): f(x) -> g(x) in H such that if ex: x -» y in G then the
following diagram commutes:

„ , e(x)
f(x) > g(x)

that is f(oc) + 8(y) = 6(x) + g(a). Two groupoids (?, / / are equivalent if
there are morphisms f:G-+H,g:H->G such that gr/ ~ l,fg~ 1.

In fact any groupoid is equivalent to a totally disconnected groupoid
consisting of one place group in each component. This is a special case
of Lemma 1.1 below (cf. (8)).

Let H be a subgroupoid of G, and let i: H —> G be the inclusion. A
retraction of G onto H is a morphism r: G -> H such that ri = 1; and
such a retraction is a deformation retraction if ri — 1, ir ~ 1. If such r
exists, we call H a retract, respectively deformation retract, of G.

1.1. LEMMA. .4 /wZZ, representative subgroupoid of G is a deformation
retract of G.

Proof. Let H be the subgroupoid and i: H -> G the inclusion. If a;
is a place of H let r(x) = a: and let 6(x) = 0: x -> x.

If a; is a place of G but not of H let r(x) be a place of H in the same
component of G as x, and let 0(a;) be a road from r{x) to x.
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Finally, if a: x -»• y is a road in G then r(a) is uniquely defined by the
condition that it make the following diagram commutative:

a
x > y

6{X

r(a)

It is easy to check that r is a morphism G -> H. Clearly ri = 1, 6: ir ~ 1.

We note a fact used later, that, for any x in G,

r{d{x)) = 0: r{x)->r{x). (1.2)

In order to model the processes of identification occurring in the
topology, we need two kinds of identification of groupoids.

First we need the quotient groupoid ((7) 9). A subgroupoid N of G
is normal if N and G have the same places and (i) N(x, y) = 0, x # y,
(ii) a + N(y,y) — a. ^ N(x,x) for all a in G(x,y), all places x, y. Such a
normal subgroupoid determines a quotient groupoid G/N.

Any family of sets Rx such that Rx £ G(x, x) has a normal closure N. The
elements of N are all consequences of R, that is N(x, x) consists of all finite
sums

for ĉ  in G(x, xt) and ri an element, or the inverse of an element, of RXi.
Any morphism f\G^-H such that /(a) is a zero of if for each road a
of R factors uniquely through the projection G -> G /̂iV, and the latter
groupoid is called the groupoid G with the relations r = 0, r e R.

Secondly we need the universal a-groupoid of (7). Let Gp be the set
of places of a groupoid G, let S be a set, and let a: Gp -> S be a function.
A groupoid U with set of places S is defined as follows. The set U(x, y)
of roads from x to y is non-trivial if and only if both x and y belong to
the image of CT. In this case a set W(x, y) of words is defined by stipulating
that <xx...(xn is a word if for some xi} yi in Gp we have (i) ô  e G{xi,yi),
(ii) axx = x, ayn = y, (iii) oyi = oxi+1, i = 1, ..., n—1. An equivalence
relation between words is generated by the basic relations

uOv ~ uv, u'{a + f})v' ~ u'aflv'

for words u, v, u', v'. Intuitively, two words are equivalent if one can
be obtained from the other by a sequence of computations in G. The
set U(x,y) is the set of equivalence classes of words. The obvious
multiplication of words induces an addition of equivalence classes of
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words, and it is easy to see that U is a groupoid. To show the dependence
of U on G and on a, we write U as Ua(G).

A morphism/: G -> H of groupoids induces a function fp: Gp -> Hp of
the sets of places. We say t h a t / i s a a-morphism iffp = a. For example
the morphism a*: G -> Ua(G) which sends a road a to the equivalence
class of the word ex, is a cr-morphism.

We say that f:G-+H is a universal a-morphism if it satisfies the
following conditions: (i) / is a a-morphism, (ii) if g.G-^-K is any
ra-morphism then there is a unique r-morphism g*: H -+ K such that
g*f = g. It is easy to prove that a*: G -» Ua{G) is a universal a-morphism.
(The definition of universal a-morphism is phrased slightly more strongly
than that of (7), which is restricted to a-morphisms. The advantage of
this definition is that it implies directly that if / : G ->• H is a universal
a-morphism, and g: H -> K is a universal r-morphism, then gf: G -> K
is a universal ra-morphism. It follows easily that UT(T{G) is isomorphic
to UT{Ua(G)), and this enables one to shorten some of the proofs of (7).)

Let S consist of one element, and let a: Gp -> S be the unique function.
Then Ua(G) is a groupoid with one place, that is Ua(G) is a group. This
is called the universal group of G and is written U(G).

Because a groupoid may have many zeros, the concept of cokernel of a
morphism is not useful. What is useful is the difference cokernel (5) of
two morphisms. Let/, g: G -> H be two morphisms. A difference cokernel
of/, g is a morphism c: H -> C to some groupoid C such that (i) cf = eg,
(ii) if d: H -> D is any morphism such that df = dg then there is a unique
morphism d': C -> D such that d'e = d.

1.2. LEMMA. Any morphisms f, g: G -> H admit a difference cokernel.

Proof. Let a: Hp -> S be the difference cokernel in the category of
sets of the two functions fp, gp: Gp -> Hp (thus S is obtained by factoring
Hp by the equivalence relation generated by fp{x) ~ gp(x) for all x in Gp).
If a is a road in G then a*/(a), a*g(oc) are roads in Ua(H) with the same
end-points. Let C be Ua(H) with the relations o*f(<x) — o*g(a.) = 0 for all
roads a in (7, and let c: fT -> C be the composite H -> £/„.(#) -> C. It is easy
to see that c is a difference cokernel of/, g.

Let {(rA}AeA be a family of groupoids. In the category of groupoids
the sum UA#A is simply the disjoint union of the family. This rather
trivial construction, and the less trivial construction of Ua(G), give the
category of groupoids a great deal of power. For example let X be a
set. For each x in X let x be the elementary groupoid with two places
0, 1 and one road x from 0 to 1 and —x from 1 to 0. Let fi{X) be the
sum of these elementary groupoids x for each x in X. Then U(fl(X)),
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the universal group of P(X), is F{X), the free group on X. A similar
construction gives the free groupoids of (7).

We note by the way that x and U(x) can be represented by the
diagrams

U(£)

and of course U(£) is isomorphic to Z. This, in essence, is why the
fundamental group of the circle is Z.

An I-groupoid is a groupoid G with set of places / . The free product
G = Gx * G2 of two /-groupoids is U(r(G1 u> G2) where a is the obvious
projection (G1^G2)P -> / . Let ir\Gr^-G ( r = l , 2 ) be the obvious
morphisms. It follows from (7) that ix, i2 are injections, and so we shall
assume that Gv G2 are subgroupoids of G.

The existence of arbitrary sums and of difference cokernels implies
that the category of groupoids admits arbitrary right roots (5). (As in
(5), we restrict the term 'direct limit' to right root on a directed set.)
We leave the reader to prove the existence of direct products, difference
kernels, and left roots.

2. The fundamental groupoid
The fundamental groupoid TT(X) of a topological space X is a quotient

of the category, or semi-groupoid, P{X) of paths in X defined as follows.
The places (or objects) of P(X) are the points of X. A path from x to y
is a map a: [0, r] -> X for some r ^ 0 such that a(0) = x, a(r) = y. If
a: [0, r] -> X, b: [0, s] -> X are paths from x to y, y to z respectively,
then a + b is the path from x to z defined by

a(t), O^t^r,

b(t-r), r ^t < r + s.

Two paths a, b are equivalent (a ~ b) if there are constant paths a', b'
such that a + a', b + b' are homotopic rel end-points. (This definition was
suggested to me by Dr I. M. James.) This is an equivalence relation.

The places of the groupoid 7T(X) are the points of X, and the roads
from x to y are the equivalence classes of paths from x to y. The projec-
tion P(X) -> IT(X) is written px.

A map / : X -> Y of spaces induces a morphism ir(f): TT(X) -> TT(Y) of
groupoids. A homotopy F:f~g of maps X -> Y induces a homotopy
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6: 7r(/) ~ Tr{g), where if x e X then 6(x) is the class of the path t —*- F(x, t).
Thus the equivalence class of TT(X) (but not the isomorphism class) is a
homotopy invariant of X. From now on we shall abbreviate TT(/) to / .

We shall be interested in full subgroupoids of rr(X). Let A be any
set. By TT(X,A) we mean the full subgroupoid of n(X) whose places are
Af)X. For example if A consists of a single point a of X then
n(X,A) = n(X,a), the fundamental group of X at the point a. Notice
that an inclusion X -> Y induces a morphism TT(X,A) -> TT(Y,A). We
say that A is representative in X if A meets each path-component of X.

3. The main theorem
Let ^ be a category, and let ix: Co-> Cx, i2: Co -> C2 be maps in #'.

A union (see, for example, (9)) of ilf i2 is a pair (u1} u2) of maps
u±: C-i -» C, u2: C% -> C with the following properties:

(i) ttjtj = 2*2*2.
(ii) if u'x: C± -> C", 1*2: C2 -> C" are maps such that i t ^ = 2̂*2 then

there is a unique map u: C -> C such that w^ = wi, -ŵ g = W2-
It is easily seen that a union, if it exists, is unique up to isomorphism.

Such a union is known in the literature also as a 'pushout' of ilt i2 (5),
and the square

C
u0

is known as a pushout square. The union is a special case of the concept
of right root (5). In the category of groups, or of groupoids, the union
is known also as the free product with amalgamation.

Throughout this section, let X be a topological space, and let Xo, Xv X2

be subspaces of X such that the interiors of Xx, X2 cover X, and
Xo = Xt n X2. Let X be the square of inclusions

u l (3.1)

Ug

Then X is a pushout square.



392 R. BROWN

We suppose that X is path-connected (since if not we may apply the
following results to each path-component of X at a time). Then each
path-component of Zj meets X2, and conversely.

Our object is to obtain direct information on full subgroupoids of
TT(X,A). We assume that A is representative in Xo (and hence, since X
is path-connected, A is representative also in Xv X2); in many examples
A would be taken to be exactly one point in each path component of Xo.
We assume also the following conditions.

(3.2) (i) A = A^ A2, 4 , = ^ n A2.
(ii) For each point a ofA2 there is a road dx{a) in rr(Xv A) from some
point of AQ to a.
(iii) For each point a of Ax there is a road 62(a) in TT{X2, A) from
some point of Ao to a.

(iv) If ae Ao then 0x(a) = 62(a) = 0: a ->• a.
For each a in A, let 6(a) be ufl-^a) or u2d2{a) as a e A2 or a G A V These

choices 0lt 62 determine, as in Lemma 1.1, retractions rv r2, and r = r±r2,
in the following commutative diagram (strictly, rx: TT(XVA) -> ^(X^A^
is determined by 6V and rx: TT(X,A) -> TT(X, AJ) is determined by u^;
similarly for r2):

TT{X2) A2)

(3.3)

3.4. THEOREM. In the diagram (3.3), (r2uv rxu2) is the union of rxix, r2i2.

The proof is carried out in later sections in three steps: step 1, the
case A = X, is in §5, and is the only step involving topology; step 2,
the case A = Ao, is in § 6; step 3, the general case, is in § 7.

It should be noted that if Xo, Xv X2 are path-connected, and if A
consists of a single point * of Xo (so that r2 = rx = 1), then Theorem 3.4
is the theorem of van Kampen as formulated in (3), (11).

We now try to interpret Theorem 3.4 so as to give more direct
information. Let ax: Ax -> AQ, a2: A2^> Ao be the functions determined
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by the retractions rv r2. Let

Q1 = U^{Xlt A,), G2 = U^(X2, A2),

Sl =

So we have a diagram

= CTr*

G,

(3.5)

r(X,A0)

It is a simple deduction from Theorem 3.4, and from the various universal
properties involved, that in this diagram (tv t2) is the union of sv s2.

Let A consist of exactly one point in each path-component of Xo.
Then in (3.5), Gv G2, and 7T(X,A0) are -40-groupoids. Further, TT(X0,A)

is totally disconnected. So we have easily:

3.6. COROLLABY. TT(X,A0) is isomorphic to the free product of the
A0-groupoids Gx = U^iX^, Aj), G2 = U<T27T(X2, A2) with the relations 5xa = s2a
for all a in TT(X0, a), a in A.

3.7. COROLLARY. Let each path-component of Xv X2 be simply connected.
Then the fundamental group of X is a free group.

Proof. We take A = Ao. Then TT(X, A) is a free product of free
^4-groupoids, with trivial relations. Therefore TT(X, A) is a free groupoid.
The result follows from the corollary to Theorem 7 of (7).

The following is a more elaborate example. Suppose that Xx is
path-connected and that * is a point of XQ. Let A consist of exactly
one point in each path-component of Xo (including *), and let

^0 = -̂ 1 = {*}» A2 = A.

Let A' be a subset of A such that * e i ' and A' contains exactly one
point in each path-component of X2. For each a in A, let a' be the unique
point of A' in the same path-component of X2 as a. Let Ta> be a maximal
tree groupoid in the component Ca' of TT(X2, A) containing a'. Let £a be
the unique road in Ta> from a' to a. Then Fa' = U(Ta>) is a free group
on generators fia (a ̂  a'), the images in Fa' of the roads £a. Let fxa, = 0.
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3.8. COROLLARY. With the above conditions, 7r(X, *) is isomorphic to
the free product of the groups TT(XV *), 7r(Z2,a'), Fa', all a' in A', together
with the relations

r l h a = ~ Pa + (£a + ha ~ £a) + Pa

for each a in A and a in TT(X0, A).

Proof. We apply Corollary 3.6: Gx = TT{X1,*)) G2 = UTT{X2,A). But
TT(X2,A) is the sum of its components Ca>, and so O2 is the free product
of the groups U(Ca'). By results of (7), U(Ca') is isomorphic to the free

product of the groups 7r(Z2Ja') and Fa'\ an explicit isomorphism is
determined by

for j8 a road in Ca' from ax to a2. This proves the formula for the relations.

This result becomes more comprehensible in terms of TT(X,A). For
each a in A, let £a be a road in TT{XX,A) from * to a (£+ = 0), and let
Aa = %£o. Let the retraction rx be determined by these roads. Then,
for ocin7r(X0,A),

uxrxix(x = Aa + w1i1a-Aa.

In the morphism Tr(X2,a')*Fa' -> 7r(JC5*), each element y of TT{X2ia') is
sent to the conjugate Au. + u2y — Ao., while a generator [xa of Fa> is sent to

Hence the element — *s s e n * a + %2*2a ~ â*
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the given relations are only consequences (in the groupoid sense) of the
relations u^oc = u2i2<x.

It is an easy consequence of Corollary 3.8 that F, the free product of
the groups Fa> for a' in A', is a retract of TT(X, *). Hence F is embedded
in 7T(X, *), and the invariant T(TT(X, *)) considered by S. Eilenberg in (4)
is greater than or equal to the number of generators of F.

4. The groupoid of an adjunction space
We consider the problem of determining the fundamental group of

an adjunction space W — Bl)fZ, where f.Y^-B and Y is closed in Z.
The special case of this considered by van Kampen in (10) is that in
which B is path-connected and Y is the union of a family of disjoint
subspaces Bif i e I, such that Bi -» B is a homeomorphism. He
also needs a metric on W, and makes additional assumptions on Y, Z,
and B to ensure that this exists.f

By definition of adjunction spaces, there is a diagram

Z

f

B

I (4.1)

W

in which (i,f) is the union of / , i in the category of topological spaces.
Let X = Mf\jZ be obtained from the mapping cylinder Mf by attaching
Z by means of the map y —>- (y, 0) on Y. Thus Z is a subspace of X.
Let p: X -> W be the natural projection.

We assume given a set A which is contained in Y, is representative
in Y and in Z, and is such that the set Q =f(A) is representative in B.
We assume also that X is path-connected.

4.2. THEOREM. In the diagram

(4.3)

f An earlier theorem is that of H. Seifert in 'Konstruction dreidimensionaler
geschlossener Raume', Ber. Verb. Sachs. Akad. Leipzig, Math. Phys. Kl. 83 (1931)
26-66. This gives essentially the special case of 4.2 in which W is a simplicial
complex and Z, B are subcomplexes of W such that Z, B and Y = Z n B are
connected.
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(i,f) is the (groupoid) union off, i if and only if p: Mf\JZ -> BvfZ induces
an isomorphism of fundamental groups.

Proof. Let Xx = X\B, X2 = Mf U Y, and Xo = Zx n X2. The interiors of
X1} X2 cover X, and so we can apply Theorem 3.4.

Let AQ consist of exactly one point in f~\q) for each q in Q; we shall
use conditions (3.2) with A2 = Ao, Ax = A, and 62 defined as below.

For each a in A let <xa be the road in TT(X2) which is the class of the
path from a down the mapping cylinder to f(a), and let

where a0 is the element of Ao such that f(a) = f(a0). Note that in 7T(B),

a)) = 0:f(a)->f(a).
Consider the following diagram, whose outer part is

r(YtA) 7T(Z,A)

(4.4)

> n{W,Q)

(4.3), and whose centre square is induced by 92 as in Theorem 3.4. The
cells (i)—(iv) are commutative; (i) is induced by inclusions, and (iv) is
induced by p and its restriction, so these are obviously commutative.
The commutativity of (ii) and (iii) is a consequence of p{d2(a)) = 0.

Each morphism marked » is induced by a homotopy equivalence
and is bijective on places; therefore these morphisms are isomorphisms.
Therefore (4.4) is an isomorphism of its centre cell to its outer cell if
and only if p: TT(X,A0) -^ TT(W,Q) is an isomorphism. This morphism is
bijective on places. Also, TT(X,AQ) is connected. Therefore p is an
isomorphism if and only if p maps the place groups isomorphically. Thus
the theorem follows from Theorem 3.4.

4.5. Remark. The map p: X-* W induces an isomorphism of
fundamental groups in quite a wide range of cases. If (Z, Y) has the
homotopy extension property then p is even a homotopy equivalence.
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4.6. Remark. It is an easy consequence of Corollary 3.8 that the
fundamental group of a wedge of n circles (with the weak topology if n
is infinite) is a free group on n generators, the generators being the classes
of the loops round one of the circles. From this and Theorem 4.2 one
obtains the well-known formulae for the fundamental group of a
CW-complex.f

4.7. Remark, van Kampen's theorems in (10) are of course stated in
terms of generators and relations. This form of the theorem can be
deduced from Theorem 4.2 and the results of (7) in a similar fashion
to the argument for Corollary 3.8. In fact the formula of Corollary 3.8
is closely related to van Kampen's.

5. Proof of Theorem 3.4—the case A = X

P(X0)

•* 0 G

(5.1) (5.2)

Suppose that (5.1) is a commutative square of morphisms of groupoids.
Let wa = vapXa: P(Xa) -> G (a = 1,2). Then (5.2) is commutative. We
first prove that there is a unique morphism w: P(X) -> G such that

Let a 6 P{X). By the Lebesgue covering lemma we can make a
subdivision

a = ax + ... + an

such that each ai belongs to one or other of P(XX), P(X2); so we may
define w(aj to be wx{a^) or w2(<̂ )> a n d this makes sense because if
ai E P{XX) nP(X2) = P{X0) then w^) = w2K). Let

w(a) = w(a1) + ...+w{an).

The usual argument of superimposing subdivisions shows that w(a) is
independent of the subdivision and that w(a + b) = w(a) + w(b). Clearly
w is the unique morphism P{X) -> G such that wua = wa, a = 1, 2.

We now prove that w, like wv w2, takes the same value on equivalent
paths.

Step 1. Since wx, w2 map constant paths to zeros, so also does VJ.

f See the author's forthcoming book Elements of modern topology (McGraw-Hill).
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Step 2. Let F: R -> Xa be a map, where R is a rectangle. The sides
of R determine paths a, b, c, d in Xa (see figure), and clearly a + b ~ c + d.

It follows that

Step 3. Let a, b: [0,r] -> X be paths in X, and let JF: [0,r] x / -> X
be a homotopy a ~ 6 rel end-points. We may by a grid subdivide
[0, r] x / into rectangles so small that each is contained in F'^Xj) or
Jp-1(X2). It follows from Step 2 and a simple cancellation argument that

w(a) = w(b).

Step 4. Let a, b be equivalent paths in P{X). Then there are constant
paths a', b' such that a + a' ~ b + b' rel end-points. So

w(a) = w(a + a') = w(b + b') = iv{b).

It follows now that w determines a morphism v: 7T(X) -+ G such that
vpx = w, vua = va, a = 1, 2.

Suppose that v': TT{X) -> G is a morphism such that

« \ = \ : 7r(Xa)-*G, a = 1, 2.

Then w' = v'px: P{X) -+ G is a morphism such that

A = w«- P(XJ ->G, oc=l,2.

Therefore w' = w, and so v' = v since p ^ is surjective.

6. Proof of Theorem 3.4—the case A = Ao

Let i: TT(X,A) -> TT(X) be the inclusion. We construct a retraction
r: 7r(X) -» TT(X,^4) as follows.

Since A is representative in Xo, we may construct as in Lemma 1.1
a retraction r0: 7r(X0) -> 7r(X0,̂ L).

In constructing r0, certain choices are made. We construct retractions
rx: rr{Xx) -> ^(X^A), r2: TT(X2) -> ^(Xg,^) as in Lemma 1.1 but using the
choices already made for r0. This ensures that
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and also that the choices of roads which determine rx, r2 together deter-
mine a retraction r: TT(X) -> n(X, A) such that

rux = uxrx, ru2 = u2r2.

Thus we have a map r: TT(X) -> TT(X, A) of squares such that

Suppose now that u'x: TT(XX,A) ->• 0, u2: 7T(X2,A) -» 0 are morphisms
of groupoids such that u'xix = u2i2. Let vx = u'xrx, v2 = u'2r2. Then

vxix = u'xrxix = u'xixr0 = u'2i2rQ = u'2r2i2 = v2i2.

By §5 there is a unique morphism v: TT(X) -> 0 such that vux = vx,

u = vi: TT(X,A) -> Ĝ.
vu2 = v2. Let

Then, for a = 1, 2,

uua = M a = vu^ = waia = <r a t a = < .

Suppose that -w': 7r(Z,^4) ->• (r is a morphism such that u'ux = u'x,
u'u2 = u2. Then, as is easily verified, v' — ur satisfies v'ux = vx, v'u2 = v2.
Therefore v' = v, and so

u' = u'n = v't = vi = u.

This completes the proof.

6.1. Remark. The above proof is a special case of the proof that a
retract of a right root is a right root. Precisely, let Y, V, A, A': *& -> 3)
be functors such that V, A' are constant. Let y: F -> V, 8: A -> A' be
natural transformations. Let i: 8 -> y, r: y -^ 8 be maps of natural
transformations such that n = 1. Then 8 is a ngrfa root if y is a right root.

6.2. Remark. Let °ll = {U} be a set of subsets of X such that the
interiors of the U in % cover X and ^ is closed under finite intersection.
We regard °tt as a category with its objects the elements and its maps
the inclusion of one element in another. Let <&d be the category of
groupoids. Let I\ F : # -> &d be the functors U —>- TT{U), U — • TT{X)

respectively, and let y: F ->• F' be the natural transformation induced
by the inclusions U -> X. Our proof in § 5 generalizes easily to prove
that y is a right root.

Now suppose that A is a set representative in U for each U in <?/.
Let A, A': % -> &d be the functors U *->- TT(U, A), U -~>- TT(X, A) respec-
tively. Let 8: A -> A' be the natural transformation induced by the
inclusion U -> X. By Remark 6.1, 8 is a right root if there is a retraction
r: y -> 8.
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We say that % is stratified if there is function / from % to the ordinals
such that f(U) <f{U') whenever U, U' are elements of °U such that U
is a proper subset of U'. Such a stratification exists if for example % is
finite, or if % is well ordered. Given such a stratification / , we can
construct a retraction r: y -> 8 by transfinite induction as follows.

We may suppose that % contains the empty set 0, that / (0) = 0, and
that the image of / is an interval in the set of ordinals. Let co > 0 be
an ordinal in the image of/. Suppose that for each U in % with f(U) < w,
and for each x in U, we have chosen a road B^x) in TT(U) from a point
of A n l to x so that if i: U -> V is an inclusion in %, and f{U') < co,
then i*dv{x) = 6v.{x). For any F in U such that / (F) = o>, let F° be
the union of all proper subsets U of F such that U e °U. If x e F°, we
choose U in <% such that # e ?7 and C7 is a proper subset of F; we then
define 0v(x) = i%djj{x), where i: U -*• V is the inclusion. By our inductive
assumption, 6v(x) is independent of the choice of U. If a; £ V\V°, we
define 6v(x) to be any road in n( V) from a point of A n F to x. The
inductive assumption is now easily verified for ordinals < w; so we have
completed the inductive construction of r: y -> S.

The case when °U is stratified seems to be the useful one. It can be
proved in general that 8: A -> A' is a right root in two ways: (a) by
imitating from the start the proof in (2), or (b) by assuming that °U is
an open cover and using two subsidiary covers °U', %". Here <?/' is obtained
from °tt by adding in the unions of all stratified subsets of °ll, and °U"
is a cofinal, stratified subcover of %'.

The condition that ^ be closed under finite intersection can in some
cases be weakened to the following: there is a subset V of % such that
the interiors of the F in "T cover X and % consists of all intersections
F n F' for F, V in 'V'. The known cases are when A — X (the proof is
easy) and ((12) 775) when each set of % is path-connected and A consists
of a single point p in the intersection of all the sets of tf/.

7. Proof of Theorem 3.4—the general case

Let G b e a groupoid, and suppose given a commutative diagram

By §6 there is a unique morphism w: TT(X,A) ->• 0 such that

wiii = vxrlt wu2 = v2r2.
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Let i: TT(X,AQ) -» 7T(X,A) be the inclusion, and let

v = wi: TT(X, AO) -> 0.
We shall prove that

vr2ux = vx, vrxu2 =.v2,

and that v is the only such morphism.
Let a, in 7T(XX,AX), be a road from a to b. Then 9(a) = u2d2(a),

6(b) = u2d2{b). Therefore

vr2ux(ot) = w{d(a) + ux(a) — 6(b))

= wu2d2(a) + wux(a) — wu282(b)

= v2r262(a) + vxrx{a) - v2r262(b)

= «Vi(«) by (1.2)

= ^(a) since a is a retraction.
Similarly, vrxu2 = v2.

Finally, suppose that v': TT(X, AO) -> G is a morphism such that

v'r2uy = vx, v'rxu2 = v2.
Then

v'rux = v'r2uxrx = vxrx,

v'ru2 = v'rxu2r2 = v2r2.

Hence v'r = w, and so v' = v'n = WL = v.
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