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Introduction

Chain complexes with a group of operators are a well known tool in algebraic topology, where they
arise naturally as the chain complex C∗X̃ of cellular chains of the universal cover X̃ of a reduced
CW -complex X. The group of operators here is the fundamental group of X.

J.H.C. Whitehead in his classical but little read paper [31] showed that the chain complex C∗(X̃)
is useful for the homotopy classification of maps between non-simply connected spaces (see below).
His methods must have seemed at the time to be circuitous. In modern parlance, he introduced the
categories CW of CW -complexes, HS of homotopy systems, and FCC of free chain complexes with
operators, together with functors1

CW
ρ−→ HS

C−→ FCC.

In each of these categories he introduced notions of homotopy and he proved that C induces an
equivalence of the homotopy category of HS with a subcategory of the homotopy category of FCC.
He also showed that if X and Y are reduced CW -complexes such that dimX 6 n and πiY = 0 for
2 6 i 6 n − 1, then ρ induces a bijection of homotopy classes [X, Y ] → [ρX, ρY ]. Further, CρX is
isomorphic to the chain complex C∗X̃ of cellular chains of the universal cover of X, so that under
these circumstances there is a bijection of sets of homotopy classes

[X,Y ] → [C∗X̃, C∗Ỹ ].

This result can be interpreted as an operator version of the Hopf classification theorem. It is surpris-
ingly little known. It includes results of [26, 29] published later, and it enables quite useful calculations
to be done easily, such as the homotopy classification of maps from a surface to the projective plane
[13].

∗This is an edited version of this paper with some changes in notation, and some corrections, 03/04/08.
1In this edited version we will later write Π for Whitehead’s ρ in order to be consistent with current versions of [6].
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A recent account of Whitehead’s work is in [1]. However, our aim is somewhat different. In the
first place we eliminate from Whitehead’s account both the freeness assumptions, and the assumptions
of only one vertex. So we consider categories FTop of filtered spaces, Crs of crossed complexes, and
Chn of chain complexes with a groupoid as operators. We construct functors

FTop
Π−→ Crs

∇−→ Chn

and show that for a class of filtered spaces X, ∇ΠX does give the chain complex of universal covers
of X. We also show that ∇ has a right adjoint Θ (which it does not have in the case of only one
vertex); these functors are related to some well known tools in the homology of groups, such as relation
modules, Alexander modules, and derived modules.

Notions of homotopy and higher homotopy have been analysed for the categories FTop and Crs in
[8]. We give a similar analysis for the category Chn and discuss the homotopy-preserving properties
of ∇. This enables us to give a more general version of Whitehead’s results.

Thus our results and methods give a clearer picture of the relation between Whitehead’s work and
standard methods of homological algebra. One advantage of our approach is that, because crossed
complexes appear in a variety of algebraic situations (cf. [21], and the survey article [3]) one can
expect analogues of these methods to form part of the general machinery of non-Abelian homological
and homotopical algebra. In fact, applications of our methods, based on an earlier draft, have been
found by Porter in commutative algebra [28] and the theory of profinite groups [19].

1 Chain complexes over groupoids

The symmetric monoidal closed structure on the category Crs of crossed complexes, constructed in
[8] from tensor products and homotopies, relies crucially on the consideration of crossed complexes
over groupoids as well as over groups. The same is true for chain complexes with operators. There
are well known definitions of tensor product and internal hom functor for chain complexes of Abelian
groups (without operators). If one allows operators from arbitrary groups the tensor product is easily
generalized (the tensor product of a G-module and an H-module being a (G × H)-module) but the
adjoint construction of internal hom functor does not exist, basically because the group morphisms
from G to H do not form a group. To rectify this situation we allow operators from arbitrary groupoids
and we start with a discussion of modules over groupoids.

Let Mod denote the category of modules over arbitrary groupoids. An object of Mod is a pair
(M,H) where H is a groupoid, M is a family of Abelian groups M(p), p ∈ ObH and H acts on M
by (x, a) 7→ xa with the usual axioms. (Here xa is defined when x ∈ M(p), a ∈ H(p, q), and then
xa ∈ M(q).) We normally use additive notation for M and multiplicative notation for H. A morphism
in Mod is a pair (θ, φ) : (M, H) → (N, K) where φ : H → K is a morphism of groupoids and θ is a
family of morphisms of Abelian groups θ(p) : M(p) → N(φ(p)) preserving the actions, that is

θ(q)(xa) = (θ(p)(x))φ(a) when x ∈ M(p), a ∈ H(p, q).

As is customary, we write M for the H-module (M,H) when the operating groupoid H is clear from
the context. For a fixed groupoid H, we have a subcategory H-Mod consisting of all H-modules and
all morphisms of type (θ, idH); this is just the functor category AbH . However, to simplify notation,
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we will assume throughout this paper that the Abelian groups M(p) for p ∈ ObH are all disjoint; any
H-module is isomorphic to one of this type.

The tensor product in Mod of modules (M, H), (N, K) is the module (T, H ×K) where, for p ∈
ObH, q ∈ ObK, T (p, q) = M(p)⊗Z N(q) and the action is given by

(x⊗ y)(a,b) = xa ⊗ yb.

We write M ⊗N for the (H ×K)-module T . This tensor product clearly gives a symmetric monoidal
structure to the category Mod, with unit object the module (Z, 1), where 1 denotes the trivial group.

The internal hom functor in Mod is equally natural. Let (M,H), (N,K) be modules. The mor-
phisms (θ, φ) : (M,H) → (N, K) for fixed φ : H → K form an Abelian group under element-wise
addition, so all morphisms M → N form a family of Abelian groups indexed by the set of morphisms
H → K. This indexing set is the set of objects of the functor category KH which is, in fact, a groupoid
and it is clear that this groupoid, which we denote GPD(H,K), acts on the morphisms M → N giving
a module MOD(M, N) = MOD((M, H), (N,K)). It is straightforward to verify the natural bijection

Mod(L⊗M, N) ' Mod(L,MOD(M, N)),

where L is a G-module. These families of groups are modules over GPD(G×H, K) ∼= GPD(G,GPD(H,K))
and the actions agree, giving a natural isomorphism of modules

MOD(L⊗M, N) ∼= MOD(L,MOD(M, N)).

Proposition 1.1 The functors ⊗ and MOD give Mod the structure of symmetric monoidal closed
category.

These ideas extend immediately to chain complexes over groupoids. A chain complex M over H
is a sequence

· · · ∂−→ Mn
∂−→ Mn−1

∂−→ · · · ∂−→ M1
∂−→ M0

of H-modules and H-morphisms satisfying ∂∂ = 0. A morphism f : (M,H) → (N, K) is a family of
morphisms fn : (Mn,H) → (Nn,K) (over some φ : H → K, independent of n) satisfying ∂fn = fn−1∂.
These form a category Chn and, for a fixed groupoid H, we have a subcategory H-Chn of chain
complexes over H.

The tensor product of chain complexes M , N over groupoids H, K respectively is the chain complex
M⊗N = T over H×K where Tn = ⊕i+j=n(Mi⊗Nj). Here, the direct sum of modules over a groupoid
G is defined by taking the direct sum of the Abelian groups at each object of G. The boundary map
∂ : Tn → Tn−1 is defined on the generators a⊗ b of Tn by

∂(a⊗ b) = ∂a⊗ b + (−)ia⊗ ∂b,

where a ∈ Mi, b ∈ Nj , i + j = n.
The internal hom functor CHN(−,−) is defined as follows. Let M , N be chain complexes over

the groupoids H, K respectively and let F = GPD(H, K). Then the morphisms of chain complexes
M → N form an F -module (as in the case of morphisms of modules). We write S0 for this module
and take it as the 0-dimensional part of the chain complex S = CHN(M, N). The higher-dimensional
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elements of S are chain homotopies of various degrees. An i-fold chain homotopy (i > 1) from M to N
is a pair (s, φ) where s : M → N is a map of degree i (that is, a family of maps s : Mn → Nn+i, n > 0)
which in each dimension is a morphism of modules over φ : H → K. Again the i-fold homotopies have
the structure of an F -module Si and we define the boundary map ∂ : Si → Si−1 (i > 1) by

(∂s)(x) = ∂(s(x)) + (−)i+1s(∂x),

the morphism φ : H → K being the same for ∂s as for s. We observe that ∂s is of degree i − 1 and
preserves the module structure. Also ∂s commutes or anticommutes with ∂, namely

∂((∂s)(x)) = (−)i+1(∂s)(∂x).

It follows firstly that when i = 1, ∂s is a morphism of chain complexes, so lies in S0, and secondly
that ∂∂ : Si → Si−2 is 0 for i > 2. We define CHN(M,N) to be the chain complex

· · · −→ Si
∂−→ Si−1 −→ · · · −→ S0 over F.

Again, if L is a chain complex over G, there is a natural bijection

Chn(L⊗M, N) ∼= Chn(L,CHN(M, N))

which extends to a natural isomorphism of chain complexes

CHN(L⊗M, N) ∼= CHN(L,CHN(M, N))

over GPD(G×H,K) ∼= GPD(G,GPD(H, K)).

Proposition 1.2 The functors ⊗ and CHN give Chn the structure of symmetric monoidal closed
category. The unit object is the complex

· · · → 0 → · · · → 0 → Z

over the trivial group. The symmetry map M ⊗N → N ⊗M is given by

x⊗ y 7→ (−)ijy ⊗ x

for x ∈ Mi, y ∈ Nj.

2 Derived modules and the functor ∇
A crossed complex is a type of non-Abelian chain complex with operators, the non-Abelian features
being confined to dimensions 6 2. We recall the definition from [5].

Let C1 be a groupoid with object set C0. By a ‘non-Abelian’ C1-module we mean a family of groups
A = {A(p); p ∈ C0} on which C1 operates, obeying all the laws for a C1-module except commutativity.
We write A additively, C1 multiplicatively. Such a module is a crossed module over C1 if it equipped
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with a morphism δ : A → C1 of groupoids sending A(p) to C1(p, p) (for p ∈ C0) which satisfies the
two laws

δ(ac) = c−1(δa)c, (a ∈ A(p), c ∈ C1(p, q)),
aδa

1 = −a + a1 + a (a, a1 ∈ A(p)).

Examples are (i) any Abelian C1-module, with δ = 0 and (ii) any totally disconnected normal sub-
groupoid of C1, with δ the inclusion map. The kernel of δ is always in the centre of A.

A crossed complex C is a sequence

· · · // Cn
δ // Cn−1

// · · · // C2
δ // C1

δ0
//

δ1
// C0

such that

(i) C1 ⇒ C0 is a groupoid;

(ii) C2 → C1 is a crossed module over C1;

(iii) Cn is a C1-module (Abelian) for n > 3;

(iv) δ : Cn → Cn−1 is an operator morphism for n > 3;

(v) δδ : Cn → Cn−2 is trivial for n > 3;

(vi) δC2 acts trivially on Cn for n > 3.

We note that all the groupoids Cn (n > 1) have the same object set C0 and all the morphisms
δ : Cn → Cn−1 map objects identically.

A morphism f : C → D of crossed complexes is a family of groupoid morphisms fn : Cn → Dn

(n > 0) which preserves all the structure. This defines the category Crs of crossed complexes.
Details of the functors ⊗ and CRS defined on Crs can be found in [8]. For a general understanding

of the present paper it is enough to know that they give a symmetric monoidal closed structure
on Crs and that they satisfy certain formulae which will be quoted. Our aim now is to construct
∇ : Crs → Chn which relates the two monoidal closed structures.

The basic constructions used to linearise the theory of groups in homological algebra are the group
ring ZG and augmentation module IG of a group G, and the derived module Dφ of a group morphism
φ : H → G (usually appearing in the form Dφ = IH ⊗H ZG). These are the ingredients of ∇ and
one advantage of working with the category Mod (which includes modules over all groups) is that one
can exploit the formal properties of these functorial constructions. We first extend them to the case
of groupoids.

Let G be a groupoid. For q ∈ ObG, let
→
ZG(q) be the free Abelian group on the elements of G

with target q. Then
→
ZG is a (right) G-module under the action (a, g) 7→ ag of G on basis elements.

Let
→
Z be the (right) G-module consisting of the constant family

→
Z(p) = Z for p ∈ ObG, with trivial

action of G (that is, if g ∈ G(p, q) then g acts as idZ :
→
Z(p) →

→
Z(q)). The augmentation map

ε :
→
ZG →

→
Z, Σnigi 7→ Σni
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is a morphism of G-modules and its kernel
→
I G is the (right) augmentation module of G. The group

→
I G(q) has Z-basis consisting of all g − 1q, where g is a non-identity element of G with target q. Any

morphism of groupoids φ : H → G induces a module morphism
→
ZH →

→
ZG over φ which maps

→
I H

to
→
I G. So we have functors

→
Z and

→
I from Gpd to Mod, and we now construct a right adjoint to each

of them.
Given a module (M, H), the semidirect product H n M of H and M is the groupoid with

Ob (H nM) = ObH, (H nM)(p, q) = H(p, q)×M(q) and composition

(x, m)(y, n) = (xy, my + n),

defined when x ∈ H(p, q), y ∈ H(q, r), m ∈ M(q), n ∈ M(r).
The projection H n M → H has as its homomorphic sections all maps x 7→ (x, fx) where

f : H → M is a derivation, that is, it maps H(p, q) to M(q) and satisfies

f(xy) = (fx)y + fy

whenever xy is defined in H. More generally, if G is any groupoid, a morphism G → H nM is of the
form x 7→ (ψx, fx) where ψ : G → H is a morphism of groupoids and f : G → M is a ψ-derivation,
that is, f maps G(p, q) to M(ψq) and satisfies

f(xy) = (fx)ψy + fy

whenever xy is defined in G.

Now the map κ : G →
→
I G, given by κ(x) = x− 1q for x ∈ G(p, q), is a derivation and is universal

in the sense that every derivation f from G to a G-module N is uniquely of the form f = f̂κ, where

f̂ :
→
I G → N is a G-morphism (see Lemma 1.2 of [15] for the corresponding fact for categories).

Indeed, if ψ : G → H is a morphism of groupoids and M is an H-module, then any ψ-derivation

f : G → M is uniquely of the form f = f̂κ where f̂ :
→
I G → M is a morphism of modules over ψ.

Thus we have a natural bijection

Mod((
→
I G, G), (M, H)) ∼= Gpd(G,H nM),

that is, the functor
→
I : Gpd → Mod has a right adjoint (M, H) 7→ H nM .

On the other hand, given a module (M,H), the underlying set UM of M (that is, the union of
the (disjoint) sets M(p), p ∈ ObH) has an indexing map β : UM → ObH sending x ∈ M(p) to its
basepoint βx = p. We may therefore form the pull-back (or inverse image) groupoid

P (M,H) = β∗H = {(m,h, n); m,n ∈ UM, h ∈ H(βm, βn)}

with Ob (β∗H) = UM and multiplication

(m,h, n)(n, k, p) = (m,hk, p);

(see Ehresmann [12], p. 245, Mackenzie [22], p. 11). This groupoid, with its canonical morphism to
H, (m,h, n) 7→ h, is universal for morphisms ψ : G → H of groupoids such that Obψ factors through
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β : UM → ObH. Thus groupoid morphisms G → P (M, H) are naturally bijective with pairs (α, ψ)

where α : Ob G → UM is a map, ψ : G → H is a morphism and Obψ = β ◦ α. However, since
→
ZG

is freely generated as G-module by ObG (embedded in
→
ZG as the set of identities of G), such pairs

(α, ψ) are naturally bijective with morphisms of modules (γ, ψ) : (
→
ZG,G) → (M, H).

Proposition 2.1 The functors
→
I and

→
Z from Gpd to Mod have right adjoints (M, H) 7→ H nM and

(M,H) 7→ P (M,H) respectively. Hence both
→
I and

→
Z preserve colimits. The natural transformation

→
I G ↪→

→
ZG is conjugate (see [24], p. 97) to the natural transformation

θ = θ(M,H) : P (M,H) → H nM

given by θ(m,h, n) = (h,mh − n). For each module (M, H), this θ(M,H) is a covering morphism.

Proof The adjointness has been established above. Any commutative triangle

(
→
I G,G)

(α,ψ) %%JJJJJJJJJ

Â Ä // (
→
ZG, G)

(γ,ψ)yyttttttttt

(M, H)

in Mod corresponds to a commutative triangle

H nM P (M, H)θoo

G

ξ

ccGGGGGGGGG η

::uuuuuuuuu

in Gpd, where θ is natural and, if g ∈ G(p, q), then ξg = (ψg, α(g − 1q)) and ηg = (γ1p, ψg, γ1q).
Given (m,h, n) ∈ P (M, H), we may take G = H, ψ = id, and choose γ so that γ1p = m, γ1q = n.
Then

θ(m,h, n) = ξh = (ψh, α(h− 1q))
= (h, γ(h− 1q))
= (h, γ(1ph)− γ1q)
= (h,mh − n).

Finally, let (h, x) ∈ H n M , with h ∈ H(p, q) and x ∈ M(q), and let m ∈ M(p) be an object of
P (M,H) lying over the source p of (h, x). Then there is a unique n ∈ M(q) such that mh − n = x.
Hence there is a unique arrow (m,h, n) over (h, x) with source n. 2

It is perhaps worth commenting that if one restricts attention to groups, and modules over groups,

the restricted functor
→
Z does not have a right adjoint since, for example, it converts the initial object
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1 in the category of groups to the module (Z, 1) which is not initial in the category of modules over

groups. However, the functor
→
I , when restricted to groups does have a right adjoint given by the split

extension as above.

Definition 2.2 The derived module Dφ of a morphism of groupoids φ : H → G is a G-module with a
φ-derivation h : H → Dφ which is universal for φ-derivations, that is, every φ-derivation f : H → M
is uniquely of the form f = f ′h, where f ′ : Dφ → M is a G-morphism.

This definition is an extension to groupoids of Crowell’s definition for groups [11]. The proof of exis-
tence extends easily. One constructs F , the free G-module on the family of sets X = {X(q), q ∈ ObG}
where X(q) is the set of elements x of H such that φ(x) has target q. Then F (q) has an additive basis
of pairs (x, g) such that φ(x)g is defined in G, and the action of G is given by

(x, g)g1 = (x, gg1)

when gg1 is defined in G. There is a natural map i : H → F , i(x) = (x, 1q), where φ(x) has target q,
and if we impose on F the relations

i(xy) = i(x)φ(y) + i(y)

whenever xy is defined in H we obtain a quotient G-module Dφ, a quotient morphism s : F → Dφ

and a universal φ-derivation h = si : H → Dφ.
Alternatively, regarding the category of G-modules as the functor category (Ab)G, any functor

M : H → Ab has a left Kan extension φ∗M : G → Ab along φ : H → G. Then the derived module Dφ

is canonically isomorphic to φ∗(
→
I H), the G-module induced from

→
I H by φ : H → G. In the case of

a group morphism φ, this induced module is just IH ⊗H ZG, where ZG is viewed as a left H-module
via φ and left multiplication; however the construction is a little more subtle in the case of groupoids.

The adjointness property of the derived module is as follows. Let Gpd2 be the category of arrows
in Gpd (see [24], p. 40). Then we have a functor D : Gpd2 → Mod given by D(H

φ−→ G) = (DφG).

Proposition 2.3 The functor D has a right adjoint Mod → Gpd2 given by

(M, K) 7→ (K nM
π1−→ K).

Proof This is an immediate consequence of (2.1) and the formula Dφ = φ∗(
→
I H). 2

We are now able to define ∇ : Crs → Chn. Let C be the crossed complex

· · ·Cn
δn // Cn−1

// · · · // C2
δ2 // C1

//
// C0 .

Then all the Cn (n > 1) have object set C0, which is mapped identically by δn if n > 2. Since
N = δ2C2 is a totally intransitive normal subgroupoid of C1, we may define G = π1(C) = C1/N (with
ObG = C0) and let φ : C1 → G be the quotient morphism. For n > 3, N acts trivially on Cn, so
Cn is a G-module and δn+1 : Cn+1 → Cn is a G-morphism. Similarly, N acts on C2 by conjugation:
aδb = −b+a+ b for a, b ∈ C2(q), so N acts trivially on CAb

2 , the family of Abelianized groups C2(p)Ab.
This makes CAb

2 a G-module, and since δ3 : C3 → C2 is C1-equivariant, we have a G-morphism
∂3 = α2δ3 : C3 → CAb

2 , where α2 is the Abelianization map C2 → CAb
2 .
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Proposition 2.4 There are G-morphisms

CAb
2

∂2−→ Dφ
∂′1−→

→
I G

such that the diagram

Diagram 2.5

· · · // Cn

=

²²

δn // Cn−1

=

²²

// . . . // C3

=

²²

δ3 // C2

α2

²²

δ2 // C1

α1

²²

φ // G

α0
²²

· · · // Cn ∂n

// Cn−1
// · · · // C3 ∂3

// CAb
2 ∂2

// Dφ
∂′1

//
→
I G

commutes and the lower line is a chain complex over G, where α1 is the universal φ-derivation, α0 is
the G-derivation x 7→ x− 1q for x ∈ G(p, q) and ∂n = δn for n > 4.

Proof The functor D : Gpd2 → Mod, applied to the sequence of morphisms

· · · // C3

ε3

²²

δ3 // C2

ε2

²²

δ2 // C1

φ

²²

φ // G

=

²²
. . . // 1 // 1 // G // G

gives a sequence of module morphisms

. . . → (Dε3 , 1) → (Dε2 , 1) → (Dφ, G) → (
→
I G, G).

Since a derivation Cn → M over a null map εn : Cn → 1 is just a morphism to an Abelian group, we
may identify Dεn with CAb

n and its universal derivation with the Abelianization map. Thus we obtain
a commutative diagram (2.5) in which the vertical maps are the corresponding universal derivations.
This establishes all the stated properties except the G-invariance of ∂2 and the relations ∂2∂3 = 0,
∂′1∂2 = 0. Clearly ∂2∂3 = α1δ2δ3 = 0. Also ∂′1∂2α2 = α0φδ2 = 0 and since α2 is surjective, this implies
∂′1∂2 = 0. Finally, if x ∈ CAb

2 , g ∈ G and xg is defined, choose a ∈ C2, b ∈ C1 such that α2a = x,
φb = g. Then

∂2(xg) = α1δ2(ab)
= α1(b−1cb), where c = δ2a,

= [(α1(b−1))φc + α1c]φb + α1b, since α1 is a φ-derivation,
= (α1c)φb, since φc = 1,

= (∂2x)g, as required.

2
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Definition 2.6 For any crossed complex C, ∇′C is the chain complex over G = π1(C) displayed on
the lower line of diagram (2.5), and ∇C is the chain complex

· · · → Cn → Cn−1 → · · · → C3
∂3−→ CAb

2
∂2−→ Dφ

∂1−→
→
ZG

over G in which ∂1 is the composite of ∂′1 : Dφ →
→
I G with the inclusion of

→
I G in

→
ZG.

This definition gives functors ∇, ∇′ : Crs → Chn and it follows easily from Propositions 2.1 and
2.3 that ∇′ has right adjoint Θ′ where, for a chain complex L over a groupoid H, Θ′L = Θ′(L,H) is
the crossed complex

· · · // Ln
∂ // Ln−1

// · · · // L3
∂ // L2

(0,∂)// H n L1
//
// ObH.

Here H n L1 acts on Ln (n > 2) via the projection H n L1 → H, so that L1 acts trivially. We note

that Θ′L is independent of L0; this reflects the fact that, in ∇′C, the boundary map ∂′1 : Dφ →
→
I G

is an epimorphism.
The functor ∇ : Crs → Chn also has a right adjoint Θ, but now ΘL involves L0 in an essential way.

A morphism (β, ψ) : (∇C, G) → (L, H) in Chn is equivalent to a commutative diagram in Mod:

· · · // C3
//

β3

²²

CAb
2

//

β2

²²

Dφ //

β1

²²

→
I G

Â Ä //

β′0
²²

→
ZG

β0
~~}}

}}
}}

}}

· · · // L3 ∂
// L2 ∂

// L1 ∂
// L0

(over some morphism ψ : G → H) and hence, by Propositions 2.1, 2.3, to a commutative diagram in
Gpd:

· · · // C3
//

β3

²²

C2
//

β̄2

²²

C1
φ //

γ1

²²

G

ξ

²² &&MMMMMMMMMMM

· · · // L3 ∂
// L2

(0,∂)
// H n L1

(1,∂)
// H n L0 P (L0,H)

θ
oo

where (. . . β3, β̄2, γ1) is a morphism of crossed complexes, and θ is the canonical covering morphism.
This in turn is equivalent to a commutative diagram

Diagram 2.7

· · · // C3
//

β3

²²

C2
δ //

β̄2

²²

C1
ω //

γ1

²²

P (L0, H)

θ
²²

· · · // L3 ∂
// L2

// H n L1
// H n L0

because, in any such diagram, θωδ = 0 and θ is a covering morphism, so ωδ = 0, that is, ω factorizes
through φ : C1 → G.
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By pulling back θ along the bottom row of (2.7), we obtain a commutative diagram

· · · // E3
//

σ3

²²

E2
//

σ2

²²

E1
//

σ1

²²

P (L0,H)

θ
²²

· · · // L3
// L2

(0,∂)
// H n L1

(1,∂)
// H n L0

in which each En is a groupoid over E0 = UL0, the underlying set of L0 (see p. 6), and each σn is a
covering morphism. For n > 2, the composite map Ln → H n L0 is 0 and , since Ker θ is discrete, it
follows that En is just a family of groups each isomorphic to a group of Ln. There is also an action
of E1 on En (n > 2) induced by the action of H n L1 on Ln; for if e1 ∈ E1(x, y), where x ∈ L0(p),
y ∈ L0(q), and if en ∈ En(x), then σ1e1 acts on σnen to give an element of Ln(q) which lifts uniquely
to an element of En(y). It is now easy to see that E = {En}n>0 is a crossed complex and that the
σi form a morphism σ : E → Θ′L of crossed complexes. Diagram (2.7) is therefore equivalent to a
morphism of crossed complexes C → E. This shows that, if we define Θ(L,H) to be the crossed
complex E, then we obtain a functor Θ : Chn → Crs which is right adjoint to ∇.

An explicit description of E = Θ(L,H) can be extracted from the constructions given above. The
set of objects of E is E0 = UL0. An arrow of E1 from x to y, where x ∈ L0(p), y ∈ L0(q), p, q ∈ ObH,
is a triple (h, a, y), where h ∈ H(p, q), a ∈ L1(q), and xh = y + ∂a. Composition in E1 is given by

(h, a, y)(k, b, z) = (hk, ak + b, z)

whenever hk is defined in H and yk = z + ∂b.
For n > 2, En is a family of groups; the group at the object y ∈ L0(q) has arrows (a, y) where

a ∈ Ln(q), with composition
(a, y) + (b, y) = (a + b, y).

The boundary map δ : E2 → E1 is given by

δ(a, y) = (1q, ∂a, y) for a ∈ L2(q), y ∈ L0(q).

The boundary map δ : En → En−1 (n > 3) is given by δ(a, y) = (∂a, y) and the action of E1 on En

(n > 2) is given by
(a, y)(k,b,z) = (ak, z),

where k ∈ H(q, r), a ∈ Ln(q), y ∈ L0(q) and yk = z + ∂b.

Proposition 2.8 The functors ∇, ∇′ : Crs → Chn have right adjoints Θ, Θ′. Hence both ∇ and ∇′
preserve colimits.

Remark. The construction of the adjoint pair (∇, Θ) has been put together from a variety of
sources. The principal source for ∇ is [31], but Whitehead’s construction requires C1 to be a free
group. (If C1 is free on a set X, then Dφ is just the free G-module on X.) The general construction
of (∇C)1 = Dφ was suggested by [11].

The existence of an adjoint was suggested by results in [25] that the Alexander module preserves
colimits. Special cases of the groupoid E1 = (ΘL)1 appear in [10], [17] and [16].
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The fact that ∇ : Crs → Chn preserves all colimits implies that the Van Kampen theorem proved
in [6] for the fundamental crossed complex ΠX∗ of a filtered space X∗ can be converted into a similar
theorem for the chain complex CX∗ = ∇ΠX∗. The interpretation of this result will be discussed
in Section 5. The following simple example illustrates some of the interesting features that arise in
computing colimits in Crs and Chn. Note that if all the crossed complexes in a diagram {Cλ} are
reduced then the colimit of {Cλ} is reduced provided that the diagram is connected, in which case
the colimit of {∇Cλ} can be computed in the category of chain complexes over groups instead of
groupoids.

Example 2.9 Let M → P , N → P be crossed modules over a group P . Their coproduct in the
category of crossed modules over P is given by the pushout in Crs:

(· · · 0 → M → P → ∗)

++VVVVVVVVVVVVVVVVVVV

(· · · 0 → 0 → P ⇒ ∗)

44iiiiiiiiiiiiiiiii

**UUUUUUUUUUUUUUUUU
(· · · 0 → M ./ N ⇒ P → ∗)

(· · · 0 → N → P ⇒ ∗)

33hhhhhhhhhhhhhhhhhhh

where the group M ./ N is the Peiffer product described in [2], [14]. To find the corresponding chain
complexes let G = P/δM , H = P/δN and write φ, ψ for the quotient maps P → G, P → H. Then
the corresponding derived modules are Dφ = IP ⊗P ZG and Dψ = IP ⊗P ZH and we wish to compute
the pushout in Chn (or in chain complexes over groups) of

(· · · 0 → MAb → IP ⊗P ZG → ZG,G)

(· · · 0 → 0 → IP → ZP, P )

33ffffffffffffffffffffff

++XXXXXXXXXXXXXXXXXXXXXX

(· · · 0 → NAb → IP ⊗P ZH → ZH,H)

To do this, we first form the pushout K of

G

P

>>~~~~~~~~

ÃÃ@
@@

@@
@@

@

H

namely K = P/(δM.δN); this is the group acting on the pushout chain complex. Next we form the
induced modules over K of each module in the diagram and then form pushouts of K-modules in each
dimension. This gives the chain complex

(· · · 0 → (MAb ⊗P ZK)⊕ (NAb ⊗P ZK) → IP ⊗P ZK → ZK, K).

12



Since K = P/δMδN , and δM acts trivially on MAb, we have MAb⊗P ZK = MAb/[MAb, N ]; similarly
NAb ⊗P ZK = NAb/[NAb,M ]. Thus the pushout in dimension 2 is

MAb/[MAb, N ]⊕NAb/[NAb,M ],

which is easily identifiable as (M ./ N)Ab, confirming that ∇ preserves this pushout.

In [8] an internal hom functor CRS(−,−) was defined for crossed complexes similar to that defined
in Section 1 for chain complexes over groupoids. The crossed complex CRS(B,C) has as its objects
all morphisms of crossed complexes B → C, and its elements in dimension n > 1 are suitably defined
n-fold homotopies B → C. This functor, together with the appropriate tensor product, defines a
symmetric monoidal closed structure on the category of crossed complexes. The relationship between
the two monoidal closed structures is best described in terms of the adjoint functors ∇ and Θ.2

Theorem 2.10 For crossed complexes B, C and chain complexes L there are natural isomorphisms

(i) CRS(C, ΘL) ∼= ΘCHN(∇C, L),

(ii) ∇(B ⊗ C) ∼= ∇B ⊗∇C.

Proof The two natural isomorphisms are equivalent because

Chn(∇(B ⊗ C), L) ∼= Crs(B ⊗ C, ΘL)
∼= Crs(B, CRS(C, ΘL)),

while

Chn(∇B ⊗∇C, L) ∼= Chn(∇B, CHN(∇C, L))
∼= Crs(B, ΘCHN(∇C, L)).

The isomorphism (i) is easier to verify than (ii) because we have explicit descriptions of the elements
of both sides, whereas in (ii) we have only presentations.

In dimension 0 we have on the left of (i) the set Crs(C, ΘL) of morphisms f̂ : C → ΘL; on the right
we have the set Chn(∇C, L) of morphisms (f̃ , ψ) : ∇C → L, where ψ is a morphism of groupoids from
G = π1C to H, the operator groupoid for L. These sets are in one-one correspondence, by adjointness,
and their elements are also equivalent to pairs (f, ψ) where ψ : G → H and f is a family

Diagram 2.11

· · · δ // C2
δ //

f2

²²

C1

δ0
//

δ1
//

f1

²²

C0

f0

²²
· · · ∂ // L2

∂ // L1
∂ // L0

2The result (ii) of the following theorem gives a useful description of B ⊗ C in dimensions > 2, complementing that
in dimensions 6 2 in [8].
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such that

(i) f0(p) ∈ L0(ψ(p)) (p ∈ C0),

(ii) f1 is a ψφ-derivation, where φ is the quotient map C1 → G,

(iii) fn is a ψ-morphism for n > 2,

(iv) ∂fn+1 = fnδ (n > 1),

(v) ∂f1(x) = (f0δ
0x)ψφx − (f0δ

1
x) (x ∈ C1).

Such a family will be called a ψ-derivation f : C → L.
We recall from [8] that an element of dimension i in CRS(C, E) is an i-fold homotopy (ĥ, f̂) : C → E,

where f̂ is a morphism C → E and ĥ is a family of maps

Diagram 2.12
· · · // C2

//

ĥ2
²²

C1
//
//

ĥ1
²²

C0

ĥ0

²²
· · · Ei+2 Ei+1 Ei

satisfying

(i) ĥ0(p) ∈ Ei(f̂0(p)) (p ∈ C0);

(ii) ĥ1 is a f̂1-derivation;

(iii) ĥn is a f̂1-morphism for n > 2.

In the case E = ΘL, where L is a chain complex over H, it is easy to see that, if i > 2, such a
homotopy is equivalent to the following data: a morphism of groupoids ψ : G → H; a ψ-derivation
f : C → L as in (2.11); and a family h of maps

· · · // C2
//

h2

²²

C1
//

δ1
//

h1

²²

C0

h0

²²
· · · Li+2 Li+1 Li

satisfying

(i) h0(p) ∈ Li(ψp) (p ∈ C0);

(ii) h1 is a ψφ-derivation;

(iii) hj is a ψ-morphism for j > 2.
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The maps ĥj of (2.12) are then given by

ĥj(x) = (hj(x), f0(q)) if x ∈ Cj(q), j > 2,

ĥ1(x) = (h1(x), f0(q)) if x ∈ C1(p, q),
ĥ0(q) = (h0(x), f0(q)) if q ∈ C0.

In the case i = 1, because of the special form of E1, we also need a map τ : C0 → H satisfying

(iv) τ(q) ∈ H(ψ′(q), ψ(q)) for some ψ′(q) ∈ ObH,

and in this case ĥ0(q) = (τ(q), h0(q), f0(q)).
It is now an easy matter to see that these data are equivalent to an element of dimension i

in ΘCHN(∇C, L). In the case i = 1, the map τ defines a natural transformation τ̃ : ψ′ → ψ, where
ψ′(g) = τ(p)ψ(g)τ(q)−1 for g ∈ G(p, q). This τ̃ is an element of the groupoid GPD(G,H) (the operator
groupoid for CHN(∇C,L)) and provides the first component of the triple (τ̃ , h̃, f̃) which is the required
element of Θ1CHN(∇C,L); the other components are f̃ : ∇C → L, the morphism of chain complexes
induced by f , and h̃, the 1-fold homotopy ∇C → L induced by h. Here h̃0(1p) = h0(p) and h̃nαn = hn

for n > 1, where the αi are as in (2.5). The rest of the proof is straightforward. 2

3 Exactness and lifting properties of ∇
Our first proposition gives an extension of the exact module sequence of Crowell [10, 11]; see also [23],
p. 120.

Proposition 3.1 Let C = {Cr} be a crossed complex and suppose that the sequence of groupoids

C3
δ−→ C2

δ−→ C1
φ−→ G → 1

is exact. Then, in ∇′C, the sequence of G-modules

C3
∂−→ CAb

2
∂−→ Dφ

∂′−→
→
I G → 0

is exact.

Proof The exactness of C2 → C1
φ−→ G → 1 implies that

(C2 → 1) //

²²

(C1
φ−→ G)

²²
(1 → 1) // (G =−→ G)
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is a pushout square in the arrow category Gpd2. Applying D : Gpd2 → Mod, as in the proof of (2.4),
and noting that D preserves colimits by (2.3), we obtain a pushout square

CAb
2

∂ //

²²

Dφ

²²

over 1 //

²²

G

²²
0 //

→
I G 1 // G

in Mod. Since ∂ : CAb
2 → Dφ is in fact a G-morphism, it follows that

CAb
2 → Dφ →

→
I G → 0

is an exact sequence of G-modules.
To prove exactness of C3 → CAb

2 → Dφ, write N = Kerφ = δC2 and note that the exactness of

C3 → C2 → N → 1

implies the exactness of
C3 → CAb

2 → NAb → 1.

It remains, therefore, to show that the map γ : NAb → Dφ induced by ∂ : CAb
2 → Dφ is injective.

Now φ : C1 → G is a quotient morphism of groupoids with totally intransitive kernel N . In these
circumstances the additive groupoid structure of Dφ is given by generators [c] ∈ Dφ(q) for c ∈ C1(p, q),
with defining relations

[cy] = [c] + [y] for c ∈ C1(p, q), y ∈ N(q);

the groupoid C1 acts on this additive groupoid by

[c]x = [cx]− [x]

and N acts trivially, making Dφ a G-module; the canonical φ-derivation α1 : C1 → Dφ is given by
α1(c) = [c].

Choose coset representatives t(c) ∈ cN of N in C1 with t(1q) = 1q. Then for all c ∈ C1, c = t(c)s(c)
where s(c) ∈ N . The map s : C1 → N satisfies s(y) = y for y ∈ N and

s(cy) = s(c)y for all c ∈ C1(p, q), y ∈ N(q).

Consequently, there is an additive map s∗ : Dφ → NAb defined by s∗[c] = αs(c), where α is the
canonical map N → NAb. Since, for any u = αy in NAb,

s∗γu = s∗γαy = s∗α1y = αs(y) = αy = u,

γ is injective, as required. 2

Definition 3.2 The crossed complex C is regular if K ∩ [C2, C2] = 0, where K is the kernel of
δ : C2 → C1.
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Corollary 3.3 If C is regular, then the map C2 → CAb
2 maps the kernel of δ2 isomorphically to the

kernel of ∂ : CAb
2 → Dφ

3.

Proof The exactness result Proposition 3.1 shows the map of kernels is surjective. Regularity is
precisely the condition needed for injectivity. 2

We note in passing a sufficient condition for regularity due in the group case to Whitehead [31]:

Proposition 3.4 If in the crossed complex C, the groupoid C1 is free, then C is regular. In particular,
the fundamental crossed complex π(X) of a CW -complex X is regular.

Proof Since N = δC2 is a subgroupoid of C1, it is a free groupoid (in fact a family of free groups).
Hence the map δ : C2 → N has a homomorphic section s. But the kernel K of δ is in the centre of C2,
since C2 is a crossed module over C1. Hence C2 = K ×C0 s(N) is a groupoid, that is, for each p ∈ C0,
C2(p) = K(p)× sN(p). This implies that [C2, C2] = [sN, sN ] and hence that K ∩ [C2, C2] = 0. 2

We now consider the realisability problem for maps (θ, ψ) : ∇B → ∇C, that is, to find conditions
which ensure that such a map can be realised as ∇f for some f : B → C, and also that chain
homotopies can be realised as homotopies in Crs. The unit adjunction morphism η : C → Θ∇C plays
an important role in such liftings, so we first examine it in detail.

We recall from [30] that a normal crossed subcomplex K of C consists of normal subgroupoids
Kn of Cn for n > 1 such that (i) Kn admits the action of C1 for n > 2, (ii) δ maps Kn into Kn−1

for n > 2, and (iii) the object groups of K1 act trivially on the quotient groupoid Cn/Kn for n > 2.
Kernels of morphisms are of this type. In the case when K1 is totally intransitive, (i.e. a family of
groups), the sequence of quotient groupoids

· · · → Cn/Kn → . . . → C2/K2 → C1/K1 ⇒ C0

is a crossed complex, denoted C/K. In the general case a quotient complex C/K is formed by killing
the action of K1 on each Cn/Kn (n > 2), which involves identifying objects p, q ∈ C0 which are joined
in K1 and identifying the corresponding groups over p, q in each Cn/Kn (n > 2).

Definition 3.5 For any crossed complex C we introduce two auxiliary crossed complexes C ′, C̄ as
follows, where N = δC2:

C ′ : · · · → 0 → · · · → 0 → [C2, C2] → [N,N ] ⇒ C0,

C̄ : · · · → Cn → · · · → C3 → C2/[C2, C2] → C1/[N, N ] ⇒ C0.

Note that N = δC2 acts trivially on Cn for n > 3 and acts by conjugation on C2, so [N,N ], which
is totally intransitive, acts trivially on Cn (n > 3) and on C2/[C2, C2]. Thus C ′ is a normal subcomplex
of C and C̄ is the quotient complex C/C ′. We write ε : C → C̄ for the quotient morphism.

Proposition 3.6 Let C be a crossed complex and let η : C → E = Θ∇C be the unit adjunction
morphism. Then

3This is a correction to the original.
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(i) the image of η is the full subcomplex E† of E on the objects η0(C0) = {1p; p ∈ C0};
(ii) the kernel of η is the crossed complex C ′ above.

Proof We use the notations of Proposition 3.1 and its proof; in particular, N = δC2 and G = C1/N .

According to the description of Θ in Section 2, we have E0 = U(
→
ZG) =

⋃
q∈C0

→
ZG(q). Also,

E†
0 = η0(C0) is the set of identities 1q ∈

→
ZG for q ∈ C0.

The elements of E1 are triples (g, a, y), where g ∈ G(p, q), a ∈ Dφ(q), y ∈
→
ZG(q). The image in E

of c ∈ C1(p, q) is η1(c) = (φ(c), α1(c), 1q) and this is in E†
1(p, q). Conversely, any element of E†

1(p, q)
has source 1p and target 1q and is of the form (g, a, 1q) where g ∈ G(p, q), a ∈ Dφ(q) and 1g

p = 1q +∂a,

that is, ∂a = g − 1q ∈
→
I G. Choose c ∈ C1(p, q) with φ(c) = g. Then ∂α1c = α0φc = g − 1q = ∂a, so

a−α1c is in the kernel of ∂′ : Dφ →
→
I G. By (3.1), this kernel is γNAb = α1N , so there is y ∈ N with

a− α1c = α1y. Putting c′ = cy, we have

η1(c′) = (φ(cy), α1(cy), 1q) = (g, a, 1q)

since α1(cy) = (α1c)φy + α1y = a. Thus η1(C1) = E†
1. If c is in the kernel of η1, then φ(c) = 1 and

α1c = 0, so c ∈ N and γαc = 0. Since γ : NAb → Dφ is an injection we deduce that c ∈ [N, N ] =
δ[C2, C2], and the converse is clear. This proves (i) and (ii) in dimension 1.

In dimension 2, E†
2 is the set of all (b, 1q), b ∈ CAb

2 (q), and for c ∈ C2(q) we have η2(c) = (α2(c), 1q)
where α2 is the canonical map C2 → CAb

2 . For n > 3, E†
n is the set of all (c, 1q), c ∈ Cn(q), and

ηn(c) = (c, 1q). The proposition follows immediately. 2

Corollary 3.7 η(C) ∼= C̄.

Proof The morphism η : C → E satisfies the first isomorphism theorem for crossed complexes
because η0 : C0 → E0 is injective. 2

If C is a crossed complex and ∇C = (K, G), then K0 =
→
ZG and there is an injection G0 → K0,

p 7→ 1p, whose image is a preferred basis for K0 as G-module. A morphism f : B → C of crossed
complexes induces a morphism ∇f = (θ, ψ) : ∇B → ∇C where ∇B = (L,H) and ψ : H → G. The
map θ : L → K respects the preferred basis in the sense that θ0(1p) = 1q where q = ψ0(p). Any
morphism (θ, ψ) : ∇B → ∇C satisfying this condition will be called a preferred morphism. Because
only preferred morphisms∇B → ∇C are candidates for realisation as∇f , we wish to restrict attention
to preferred morphisms. However, we cannot do this at the level of chain complexes without losing
some of the structure: the collection of all morphisms ∇B → ∇C is a module over the groupoid
F = GPD(H, G), but the preferred morphisms do not form a submodule (they admit the action of F
but not the addition).

By Theorem 2.10 there is a natural isomorphism of crossed complexes

Diagram 3.8
CRS(B, Θ∇C) ∼= ΘCHN(∇B,∇C).
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The objects of the right hand side are arbitrary morphisms∇B → ∇C and we write ΘPrCHN(∇B,∇C)
for the full subcomplex of ΘCHN(∇B,∇C) whose objects are all the preferred morphisms.

Theorem 3.9 The isomorphism (3.8) induces an isomorphism of crossed complexes

CRS(B, C̄) ∼= ΘPrCHN(∇B,∇C).

Proof One checks easily that, if E† is a full subcomplex of a crossed complex E, then CRS(B, E†) can
be identified with the full subcomplex of CRS(B, E) whose objects are those morphisms f : B → E
taking values in E†. Putting E = Θ∇C and E† = η(C) as in 3.6, we find that CRS(B, η(C)) is a
full subcomplex of CRS(B, Θ∇C) whose objects are morphisms f : B → Θ∇C such that, for p ∈ B0,

f(p) is of the form 1q ∈ U
→
ZG, where G = π1(C). Under the isomorphism (3.8) these morphisms

correspond precisely to the preferred morphisms ∇B → ∇C. Hence (3.8) induces

CRS(B, η(C)) ∼= ΘPrCHN(∇B,∇C)

and the result follows from Corollary 3.7. 2

The information contained in Theorem 3.9 in dimensions 1 and 0 will be used, by applying the
functor π0, to relate homotopy classes of maps of crossed complexes to homotopy classes of maps of
chain complexes over groupoids.

For crossed complexes B, C, we define [B, C] to be π0CRS(B,C), the set of components of the
groupoid CRS1(B, C) ⇒ CRS0(B, C). Thus [B, C] is the set of equivalence classes of morphisms B → C
under the relation of 1-fold homotopy, which corresponds in the topological context to free homotopy
(see [7]). For convenience we recall from [8] the definition of this equivalence relation (originally due
to J. H. C. Whitehead [31]). A 1-fold (left) homotopy h : f ′ ' f , where f ′, f : B → C, is a family of
maps hn : Bn → Cn+1 (n > 0) such that: βhn(b) = βfn(b) ∈ B0 for all b ∈ Bn; h1 is a derivation over
f1; hn (n > 2) is an operator morphism over f1; and, for b ∈ Bn,

Diagram 3.10

f ′n(b) =





[fn(b) + hn−1δb + δhnb]−h0βb if n > 2,
(h0δ

0b)(f1b)(δh1b)(h0δ
1b)−1 if n = 1,

δh0b if n = 0.

For chain complexes (M, G), (N, H), where G, H are groupoids, CHN(M, N) is a chain complex
over F = GPD(G,H), so

H0CHN(M, N) = coker(∂ : CHN1(M,N) → CHN0(M,N))

is an F -module. We define
[M, N ] = (H0CHN(M, N))/F,

the set of orbits of the F -action. The additive structure of H0CHN(M, N) is not inherited by [M, N ];
all that survives is a fibring over π0F , the set of homotopy classes of morphisms G → H. It is easy
to see that two morphisms (f, ψ), (f ′, ψ′) : (M, G) → (N, H) represent the same element of [M, N ] if
and only if there is a chain homotopy h ∈ CHN1(M,N) and a homotopy α : ψ → ψ′ in F such that
f ′ = fα +∂h, where fα is defined by fα(m) = f(m)α(p) for m ∈ Mi(p). This is the appropriate notion
of free homotopy for chain complexes over groupoids and we write (f, ψ) ' (f ′, ψ′).
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Lemma 3.11 For any chain complex (L,F ) there is a natural bijection

π0Θ(L,F ) ∼= H0(L,F )/F.

In particular, for chain complexes (M, G), (N, H), there is a natural bijection

π0ΘCHN(M, N) ∼= [M,N ].

Proof The objects of Θ(L,F ) are the elements of L0 and there is an arrow in Θ1(L,F ) from x ∈ L0(p)
to y ∈ L0(q) if and only if xα = y + ∂a for some α ∈ F (p, q) and a ∈ L1(q). 2

Let [∇B,∇C]Pr denote the set of those free homotopy classes which can be represented by preferred
morphisms. Combining Theorem 3.9 with Lemma 3.11, we now obtain

Corollary 3.12 Let B, C be arbitrary crossed complexes. Then there is a natural bijection

[B, C̄] ∼= [∇B,∇C]Pr.

Proposition 3.9 and its corollary, 3.12, show what information on morphisms and homotopies is
lost in passing from crossed complexes to the corresponding chain complexes. We now show that, in
special circumstances, [B,C] is actually determined by ∇B and ∇C.

We say that a morphism f : C → D of crossed complexes is a quotient morphism if it induces an
isomorphism C/Ker f → D. Necessary and sufficient conditions for this are that (i) f0 : C0 → D0 is
surjective, (ii) f1 maps C1(p, q) surjectively to D1(f0p, f0q) for all p, q ∈ C0, and (iii) fn maps Cn(p)
surjectively to Dn(f0p) for all p ∈ C0 and n > 2.

A crossed complex B is of free type if B1 is a free groupoid, B2 is a free crossed module over B1

and, for n > 3, Bn is a free module over π1(B).

Proposition 3.13 Let B, C be crossed complexes and suppose that C is regular and B is of free type.
Let C ′, C̄ be as in (3.5). Then the morphism of crossed complexes

ε# : CRS(B, C) → CRS(B, C̄)

induced by the quotient morphism ε : C → C̄ is itself a quotient morphism with kernel CRS(B, C ′).

Proof The quotient morphism ε : C → C̄ is a fibration of crossed complexes [18]. By Proposition
2.2 of [4], it is a trivial fibration (that is, a fibration and a weak equivalence), because criterion (ii) of
that proposition is satisfied when C is regular. We now use the lifting properties for trivial fibrations
established in [4].

We first have to prove that ε# is surjective on objects. This is just the condition that a morphism
B → C̄ lifts to a morphism B → C, which holds since B is of free type and ε is a trivial fibration.

In dimension 1 we have to show that any diagram

B ⊗ {0, 1} //

i
²²

C

ε

²²
B ⊗ J // C
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has a completion B⊗J → C. This follows from the fact that ε is a trivial fibration and i is a cofibration.
Finally, in dimension n > 2 we have to show that any diagram

B ⊗ {1} //

i
²²

C

ε

²²
B ⊗ C(n) // C

has a completion B ⊗ C(n) → C, and this follows for similar reasons. 2

Theorem 3.14 Let B, C be crossed complexes with C regular and B of free type. Then there is a
natural isomorphism of crossed complexes

CRS(B, C)/CRS(B,C ′) ∼= ΘPrCHN(∇B,∇C).

In particular, application of the functor π0 gives a natural bijection

[B, C] ∼= [∇B,∇C]Pr,

induced by the map f 7→ ∇f .

Proof The isomorphism of crossed complexes follows from Proposition 3.13 and Proposition 3.9.
When π0 is applied to this isomorphism we get [∇B,∇C]Pr on the right, by Lemma 3.11. On the left
we get π0 of a quotient, which only depends on the groupoids in dimension 1. However, for a quotient
of groupoids G/H, we have π0(G/H) ∼= π0(G). (Indeed π0(G) can be defined to be the quotient G/G.)
Thus, on the left, we get π0CRS(B, C) = [B, C]. 2

Remarks 3.15 (i) A closer analysis of the conditions which hold on ε when C is regular shows that
Proposition 3.13, and so Theorem 3.14, require of B only that B1 is a free groupoid.

(ii) Theorem 3.14 is essentially the algebraic content of J. H. C. Whitehead’s paper [31], but,
particularly taking account of the last Remark, with weaker assumptions about the freeness of the
complexes.

(iii) Baues in [1] also considers a generalization of Whitehead’s results, to (reduced) crossed com-
plexes of free type, and which are under a fixed group G. He obtains obstruction type conditions
involving the vanishing of certain cohomology groups with coefficients in R = Ker δ2 ∩ [C2, C2]. It
would be interesting to obtain these results from the fact C → C̄ is a fibration whose kernel is up to
weak homotopy equivalence a K(R, 2) (in the category of crossed complexes). Note also that Baues
always works with pointed spaces and pointed homotopies, whereas Whitehead uses free homotopies.
Baues uses his theorem to obtain homotopy classification theorems for cell complexes under a fixed
space D.

A slightly different version of Theorem 3.14, whose proof uses the Remark 3.15(i), can be stated
as follows. Let Crs(1) denote the category of crossed complexes which are free in dimension 1, and
all morphisms between them. Let ChnPr denote the category of preferred chain complexes (that is,
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complexes (M, G) with M0 =
→
ZG) and preferred morphisms. Let Crs(1)/ ' and ChnPr/ ' be the

corresponding homotopy categories, where the homotopies are as previous defined for Crs and Chn.
Then, combining Theorem 3.14 and Proposition 3.4, we obtain

Corollary 3.16 The functor ∇ : Crs → Chn induces a full and faithful functor (Crs(1)/ ') →
(ChnPr/ ').

4 The pointed case

As in [8], a crossed complex is pointed if it has a distinguished object ∗, called the base-point, and a
morphism f : B → C is pointed if f0(∗) = ∗. All pointed crossed complexes and pointed morphisms
form a category Crs∗. An n-fold homotopy (h, f) : B → C is pointed if f is pointed and h0(∗) = 1∗ if
n = 1, or h0(∗) = 0∗ if n > 2. The pointed morphisms and pointed homotopies B → C form a pointed
crossed complex CRS∗(B,C) and the functor CRS∗(−,−) is the internal Hom functor for a monoidal
closed structure on Crs∗.

Similarly, a pointed chain complex is a chain complex over a pointed groupoid and a morphism
(f, ψ) : (L,G) → (M, H) or a homotopy (h, ψ) : (L, G) → (M,H) is pointed if ψ(∗) = ∗ (from which
follows fn(0∗) = 0∗, hn(0∗) = 0∗ for all n > 0). Together, these pointed morphisms and pointed
homotopies L → M make up a pointed complex CHN∗(L,M) which we view as a chain complex over
the groupoid F∗ = GPD∗(G,H) of pointed morphisms G → H and pointed natural transformations
between them. This construction gives an internal Hom functor in Chn∗, the category of pointed chain
complexes.

To obtain a pointed version of Theorem 3.14 in the case when B and C are pointed crossed
complexes, we re-examine the morphisms

CRS(B,C)
η#−→ CRS(B, η(C))

∼=−→ ΘPrCHN(∇B,∇C)

of Section 3 to determine their effect on the sub-crossed complex CRS∗(B, C) of CRS(B,C). The

adjunction morphism η : C → Θ∇C sends ∗ to 1∗ ∈
→
ZH, where H = π1C. We therefore assign 1∗ to

be the base-point of Θ∇C so that η is a pointed morphism and η(C) is a pointed crossed complex.
In dimension 0, and object f : B → C of CRS(B,C) goes to η ◦ f in CRS(B, η(C)) and to ∇f in

ΘPrCHN(∇B,∇C). Clearly η ◦ f and ∇f are pointed morphisms if and only if f is pointed.
In dimension 1, a 1-homotopy (h, f) : B → C goes to (η ◦h, η ◦f) : B → η(C) in CRS(B, η(C)) and

again this is pointed if and only if (h, f) is pointed. As for the image of (h, f) in E = ΘPrCHN(∇B,∇C),
we recall that mathsfCHN(∇B,∇C) is a chain complex over F = GPD(G,H), where G = π1B,
H = π1C, and therefore an element of E1 from λ′ to λ is a triple (τ, u, λ) where:

(i) λ′, λ are morphisms ∇B → ∇C over ψ′, ψ : G → H;

(ii) τ ∈ F (ψ′, ψ);

(iii) u is a 1-homotopy ∇B → ∇C over ψ with (λ′)τ = λ + ∂u.

In this notation, the image of (h, f) in E1 is given by:

(i) λ = ∇f ;
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(ii) τ = φ ◦ h0, where φ is the quotient morphism C1 → H;

(iii) u is the unique homotopy ∇h : ∇B → ∇C over ψ such that the diagram

B
h //

²²

C

²²
∇B ∇h

// ∇C

commutes, where the vertical arrows are the canonical derivations. If (h, f) is a pointed homotopy
then τ , u and λ are all pointed and this means that (τ, u, λ) is an element of (E∗)1, where
E∗ = ΘPrCHN∗(∇B,∇C), provided that we view CHN∗(∇B,∇C) as a chain complex over F∗
rather than over F . Conversely, if (τ, u, λ) ∈ (E∗)1, then (h, f) is pointed.

In dimension n > 2 the argument is similar, except that the natural transformation τ does not now
appear. The images of (h, f) are (η ◦ h, η ◦ f) in CRS(Bη(C)) and (∇h,∇f) in E and the following
are equivalent:

(i) (h, f) is pointed;

(ii) (η ◦ h, η ◦ f) is pointed;

(iii) (∇h,∇f) ∈ (E∗)n.

An immediate consequence of the above is that CRS∗(B, η(C)) ∼= E∗ = ΘPrCHN∗(∇B,∇C). By
(3.7) this implies

Theorem 4.1 Let B, C be pointed crossed complexes. Then the isomorphism (3.8) induces an iso-
morphism

CRS∗(B, C̄) ∼= ΘPrCHN∗(∇B,∇C).

Note. The base-point of CRS∗(B, C̄) is the morphism ∗ : B → C̄ sending all elements to ∗, 1∗ or 0∗.
The image of this base-point in ΘPrCHN∗(∇B,∇C) is the augmentation map ∇B → ∇C which sends

everything to 0∗ in dimensions n > 1 but in dimension 0 maps
→
ZG to

→
ZH by sending all groupoid

elements g to 1∗. In general Θ(L,F ) for a pointed chain complex L over F does not have a natural
base-point except possibly 0∗ ∈ L(∗), which is unsuitable in the above situation.

For pointed crossed complexes B, C we define [B, C]∗ to be the set of pointed homotopy classes
of pointed morphisms B → C, that is

[B, C]∗ = π0CRS∗(B,C).

Similarly, for pointed chain complexes L, M over G, H, we define [L,M ]∗ to be the set of classes of
pointed morphisms L → M under the equivalence relation: f ′ ' f if there exist τ ∈ F∗ = GPD∗(G,H)
and a pointed 1-homotopy u : L → M such that (f ′)τ = f + ∂u. Thus

[L,M ]∗ = (H0CHN∗(L,M))/F∗.

In the case L = ∇B, M = ∇C we denote by [∇B,∇C]Pr∗ the set of such classes which can be
represented by preferred morphisms ∇B → ∇C. Applying the functor π0 to the isomorphism of
Theorem 4.1, and using Lemma 3.11, we obtain
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Corollary 4.2 For arbitrary pointed crossed complexes B, C there is a natural bijection

[B, C̄]∗ ∼= [∇B,∇C]Pr
∗ .

Finally, if B, C are pointed crossed complexes with B of free type and C regular, we know from
Proposition 3.13 that ε# : CRS(B,C) → CRS(B, C̄) is a quotient morphism with kernel CRS(B, C ′).
We have also seen that the inverse image of CRS∗(B, C̄) ∼= CRS∗(B, η(C)) under ε# is precisely
CRS∗(B,C). Under these circumstances we deduce that the induced morphism CRS∗(B, C) → CRS∗(B, C̄)
is a quotient morphism, and its kernel is clearly CRS∗(B, C)∩CRS(B, C ′) = CRS∗(B, C ′). This proves

Theorem 4.3 Let B, C be pointed crossed complexes with B of free type and C regular. Then there
is a natural isomorphism of crossed complexes

CRS∗(B, C)/CRS∗(B, C ′) ∼= ΘPrCHN∗(∇B,∇C)

and hence a natural bijection
[B,C]∗ ∼= [∇B,∇C]Pr

∗

induced the map f 7→ ∇f .

Corollary 4.4 If B and C are reduced crossed complexes with B of free type and C regular, then

[B, C]∗ ∼= H0CHN(∇B,∇C)Pr,

where the right-hand side is the set of homology classes represented by preferred morphisms ∇B → ∇C.

Proof In this special case of Theorem 4.3, all morphisms and homotopies ∇B → ∇C are pointed and
the groupoid F∗ = GPD∗(G,H) is a discrete groupoid. So two preferred morphisms f ′, f : ∇B → ∇C
are in the same class if and only if there exists a 1-homotopy u : ∇B → ∇C with f ′ = f + ∂u. 2

Remark. As in the unpointed case, Theorem 4.3 and Corollary 4.4 are in fact true whenever B1 is
free and C is regular.

5 The chain complex of a filtered space

Our object in this section is to identify the chain complex ∇ΠX∗ in terms of chains of universal covers
for certain filtered spaces X∗. We first need an analysis of connectivity conditions for filtered spaces.
In stating these it is convenient to write X∞ for the space X of a filtered space X∗, so that in the
following conditions, the case r > i will include the case r = ∞.

Proposition 5.1 For a filtered space X∗ the following conditions (i),(ii) and (iii) are equivalent:

(i) (φ)0: The function π0X0 → π0Xr induced by inclusion is surjective for all r > 0; and, for all
i > 1,

(φi) : πi(Xr, Xi, v) = 0 for all r > i and v ∈ X0.
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(ii) (φ′0): The function π0Xs → π0Xr induced by inclusion is surjective for all 0 = s < r and bijective
for all 1 6 s 6 r; and, for all i > 1,

(φ′i) : πj(Xr, Xi, v) = 0 for all v ∈ X0 and all j, r such that 1 6 j 6 i < r.

(iii) (φ′0) and, for all i > 1,

(φ′′i ) : πj(Xi+1, Xi, v) = 0 for all j 6 i, and v ∈ X0.

The proof is a straightforward argument on the exact homotopy sequences of various pairs and
triples and is omitted.

The conditions (i), (ii) and (iii) are also equivalent to the condition called homotopy full in [6],
which was expressed in a form suitable for use in the proof of the Generalized Van Kampen Theorem
(Theorems B and C of [6]). It is convenient here, by analogy with the use of the term in [9], to
call a filtered space satisfying these conditions connected. We note that the skeletal fibration of any
CW -complex is connected in this sense.

All spaces which arise will now be assumed to be Hausdorff and to have universal covers.
Let X∗ be a filtered space. For v ∈ X0, let p : X̃(v) → X denote the universal cover of X and let

X̂(v) denote the filtered space consisting of X̃(v) and the family of subspaces

X̂i(v) = p−1(Xi)

for all i > 0.
Suppose X∗ is a connected filtered space. The connectivity assumption implies that X̂i(v) is the

universal cover of Xi based at v for i > 2.

Proposition 5.2 If X∗ is a connected filtered space, then ∇ΠX∗ has operating groupoid π1(X,X0)
and has chain complex C(v) at v ∈ X0 given by

Ci(v) = Hi(X̂i(v), X̂i−1(v))

for all i > 1.

Proof Let v ∈ X0 and let i > 3. The pair (X̂i(v), X̂i−1(v)) is (i− 1)-connected, and so

πi(Xi(v), Xi−1(v), v) ∼= πi(X̂i(v), X̂i−1(v), v) since p is a covering,
∼= Hi(X̂i(v), X̂i−1(v)) by the relative Hurewicz theorem,

since X̂i(v) and X̂i−1(v) are in fact the universal covers at v of Xi and Xi−1 respectively. If i = 2, a
similar argument applies but in this case π1(X̂1, v) = δπ2(X2, X1, v). So the relative Hurewicz theorem
now gives

H2(X̂2(v), X̂1(v)) ∼= π2(X̂2(v), X̂1(v), v)Ab = C2(v).

The case i = 1 is essentially the result of [11], section 4. 2
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In view of the above we define for a filtered space X∗ the chain complex with operators CX∗ to
have groupoid of operators π1(X,X0) and to have CiX∗(v) = Hi(X̂i(v), X̂i−1(v)). This defines the
functor

C : FTop → Chn.

The result given above is that if X∗ is connected then CX∗ = ∇πX∗.

Corollary 5.3 Let X∗ be a filtered space and suppose that X is the union of a family U = {Uλ}λ∈Λ

of open sets such that U is closed under finite intersection. Let Uλ∗ be the filtered space obtained from
X∗ by intersection with Uλ. Suppose that each Uλ∗ is a connected filtered space. Then X∗ is connected
and the natural morphism in Chn

colimλCUλ
∗ → CX∗

is an isomorphism.

Proof This is a consequence of the Union Theorem (Theorem C) of [6] which gives a similar result
for Π rather than C, and the fact that ∇ has a right adjoint and so preserves colimits. 2

We note that results such as this have been used by various workers ([20, 27]) in the case X∗ is the
skeletal filtration of a CW -complex and the family U is a family of subcomplexes, although usually
in simple cases. The general form of this ‘Van Kampen Theorem’ for CX∗ does not seem to have
been noticed, and this is probably due to the unfamiliar form of colimits in the category Chn of chain
complexes over varying groupoids. Even in the group case these colimits are not quite what might be
expected (see Example 2.9).

The work on this paper has been supported by Visiting Fellowships for P.J. Higgins under SERC
grants GR/B/73796 and GR/E/7112.
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