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Introduction

The aim of this paper is to show one more facet of the role of crossed complexes
as generalisations of both groups (or groupoids) and of chain complexes. We do this
by defining and establishing the main properties of a classifying space functor
B:%10— T o4 from the category of crossed complexes to the category of spaces.

The basic example of a crossed complex is the fundamental crossed complex 7X of
a filtered space X. Here 7, X is the fundamental groupoid 7,(X,,X,) and 7, X for
n = 2 is the family of relative homotopy groups #,(X,,X,_,,p) for all pe X,. These
come equipped with the standard operations of 77, X on 7, X and boundary maps §:
7, X—>,_, X. The axioms for crossed complexes are those universally satisfied for
this example. Every crossed complex is of this form for a suitable filtered space X
([17], corollary 9-3, see also Section 2 below).

Thus a crossed complex C is like a chain complex of modules with a groupoid & as
operators, but with non-Abelian features in dimensions 1 and 2, in the sense that the
part C,—C, is a crossed module with cokernel G. So crossed complexes have the
virtues of chain complexes, in the sense of having a familiar homological algebra, at
the same time as being able to carry non-Abelian information, such as that involved
in a presentation of a group . Their convenience is also shown by results of [2],
which give them as the first level or linear approximation to combinatorial homotopy
theory. Further details of the history of their use are given in [18].

Our main result is the following classification theorem.

TrEOREM A. If X s a CW-complex with skeletal filtration X then there is a natural

bijection of homotopy classes
[X,BC]—[#X,C].

This generalises a classical result on maps to an Eilenberg-Mac Lane space, and
includes also the case of local coefficients (see Proposition 4-9 and Section 7). The
special case when C'is a reduced crossed module, and with a different definition of BC,
is proved by simplicial group methods in [23]. However, these methods do not allow
for the determination given below of the weak homotopy type of the function space
TOP (X, BC).

A Corollary of Theorem A is that if X is a reduced CW-complex then there is map
[:X—>BaX (where X is the skeletal filtration of X) such that if #,(X) =0 for
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1 < i < n then finduces an isomorphism of 7,(X) for 1 <7 < n. Thus, under these
assumptions, BrX models the n-type of X. In the case n = 2, this in effect recovers
the result of [38] that crossed modules are algebraic models of 2-types (called ‘3-
types’ in [38]). In view of the Van Kampen Theorem for the fundamental crossed
complex proved in [17], this result also allows for the computation of the n-types of
certain colimits, a result difficult to express in the traditional cohomological language
of Postnikov invariants.

Another property of the classifying space is that if p: £ — D is a fibration of crossed
complexes ([31] and Section 6) then the induced map Bp:BE —BD is a (Serre)
fibration of spaces. This is convenient for relating BC with Postnikov invariants.

For the proof of these properties we use in an essential way the Van Kampen
Theorem for the fundamental crossed complex of a CW-complex which is the union
of subcomplexes ([17], corollary 5-2). We also use the monoidal closed structure on
the category %24 of crossed complexes, with tensor product - ® - and internal hom
CRS(-,-), established in [20]. This enables us to enrich the category of filtered
spaces over the category of crossed complexes. ’

The closed structure on €zs can also be used to generalise a result of Thom ([47],
see also [29]) on the function space TOP (X, K(G, n)), where TOP (-, -) is the internal
hom in the (convenient) category of compactly generated spaces. We prove that if C
is a crossed complex and X is the skeletal filtered space of a CW-complex X, then
there is a weak equivalence

B(CRS (7X, €)) > TOP (X, BC)

whose homotopy class is natural.
A key role in this work is played by an Eilenberg-Zilber type theorem, namely an
associative and commutative natural transformation

. 7X@rY->n(X®Y)

for all filtered spaces X and Y. Further, 6 is an isomorphism if X and Y are the
skeletal filtrations of CW-complexes. The proof of the existence of # is given in the
final Section 8, since the proof requires the explanation of some results on -
groupoids. The further result that 6 is an isomorphism if X and Y are cofibred
connected filtered spaces is proved in [5].

The structure of the paper is as follows. Section 1 sets out our conventions for the
closed monoidal category of filtered spaces, and relates this to the category of
simplicial sets. Section 2 recalls basic facts on the fundamental crossed complex
functor 7 from filtered spaces to crossed complexes. In order to obtain the
enrichment of # .7 o4 over ¥2s we make a minor change to the conventions of [17].
It is in this section that we define the classifying space BC of a crossed complex C.
Section 3 uses the tensor product of crossed complexes defined in [20] and proves the
above mentioned enrichment. This gives sufficient information on homotopies to
prove Theorem A. In Section 4 we give applications. In Section 5 we prove that the
tensor product of crossed complexes of relative free type is of relative free type. The
proof uses crucially the monoidal closed structure to verify that the functor 4 ® -
preserves colimits. In Section 6 we give applications to fibrations of crossed
complexes, in particular proving that a fibration £ — D of crossed complexes induces
a fibration BE - BD of classifying spaces. In Section 7 we show that crossed
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complexes give a convenient expression for local systems. Section 8 proves Theorem
31.

The homotopy classification of Theorem A was announced in [10]. The paper [21]
explains the relation of these results to work of Whitehead [49] on chain complexes
with operators.

For R. Brown, this paper returns to the spirit of work in his thesis, written under
the direction of Michael Barratt, and which used techniques of chain complexes and
simplicial abelian groups to study Postnikov invariants of function spaces [8, 9].

1. The monoidal closed category F T o4 of filtered spaces

By a space is meant a compactly generated topological space X, i.e. one which has
the final topology with respect to all continuous functions €+ X for all compact
Hausdorff spaces C. The category of spaces and continuous maps will be written
T o#. This category is well-known to be cartesian closed, and the space of continuous
maps Y- Z will be written TOP (Y, Z). (See for example [12].)

A filtered space X is a space X and a sequence X, c X, c...cX,<... of
subspaces of X. A filtered map f: X - Y of filtered spaces is a map f: X - Y such that
fiX,) €Y, for all n. So we have a category 7 o4 of filtered spaces and filtered
maps.

If X,Y are filtered spaces, their fensor product X ® Y is the filtered space
consisting of X x ¥ and the family of subspaces

X®Y),= U X, x¥,
p+g=n
where the union is simply the union of subspaces of X x Y.
If Y, Z are filtered spaces, we denote by FTOP (Y, Z) the filtered space with total
space TOP (Y, Z) and family of subspaces

FTOP (Y,Z), = {fe T op(Y, Z): f(Y,) S Z,,, for all g = 0}.

ProposiTION 1-1. Let X, Y, Z be filtered spaces. Then there is a natural isomorphism

of filtered spaces
e: FTOP(X®Y,Z)—~FTOP (X,FTOP (Y, Z))

given by the usual exponential rule
(f)@)@) = fw.y), [ XxY->Z, zeX, yeV. |

Thus we conclude that @ and FTOP give the category &7 o4 the structure of
symmetric, monoidal, closed category.

We denote the standard n-simplex by A", and the same space with its skeletal
filtration by A™. In particular, we write / for A, and I for the corresponding filtered
space. We write I” for the n-fold tensor product of I with itself — then I" is the CW-
filtered space of the standard n-cube.

The category 7 o4 is a natural home for the realization functor || from the
category of simplicial sets to 7 0. That is, any simplicial set K has a filtration by
skeleta, and this induces the skeletal filtration of the realization |K|. This filtered
space is written |K].

For a filtered space X there is a filtered singular complex RX which in dimension
4 PSP 110
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n consists of the filtered maps A" -»X. This RX has the structure of simplical set,
and it is easily verified that if #cses is the category of simplicial sets, then

R FTofp—Fimpe
is right adjoint to [|: S imp—>F T op.

The category Fems is also cartesian closed. However, for simplicial sets K and L
the standard homeomorphism
|KxL| = |K|x|L|

is not cellular. We will return to this later.

The internal hom functor in the category S¢mes is written SIMP (-, -).

We now discuss homotopies in I of. If f,, f;:X—>Y are filtered maps, a
komotopy f, ~ f, is a homotopy f, with f,(X,) € Y, for all =; that is, a homotopy
is a map I ® X —-Y, which may be viewed as an element k of B, (FTOP (X,Y)) with
0% = f,,0*h = f,. Similarly, the elements of R,(FTOP (X,Y)) may also be viewed as
maps A"@X—->Y.

There are four possible definitions of n-fold homotopy in &% 7 ¢4, corresponding to
four enrichments of this category, two of which will be used in later sections.

Firstly, let E™ be the filtered space of the skeletal filtration of the n-ball so that
E'=1={0,1}Ue!, and for n > 2

E* ={1}Ue® 1| e".

Then an n-fold homotopy could be defined as a map E* @ X Y. This definition is
relevant to the enrichment of the category &7 ¢4 over the category %20 of crossed
complexes, and it is this enrichment which will be our primary concern in this paper.
However, in establishing this enrichment we will use at one point of the proof the
equivalence of the categories of crossed complexes and w-groupoids established in
[16], together with the monoidal closed structures established in [20].

Secondly, one could take an n-fold homotopy to be a map I" ® X Y. This is
relevant to the enrichment of the category # .7 o4 over the category of w-groupoids.
Since the latter objects are also Kan cubical sets, this enrichment allows the abstract
homotopy theory of Kamps [33] to be applied.

The other two possibilities are to use homotopies A"@ X ->Y or G"®@ XY,
where G” is the unit ball with its equatorial cell decomposition. These homotopies
are relevant to enrichments of %7 o4 over the categories of simplicial 7-complexes
[1], and of co-groupoids [19], respectively. They will not concern us here.

2. The nerve and classifying space of a crossed complex

We assume as known the definition of the category %zs of crossed complexes (see
for example [16], [20], {21]). In the Introduction, we explained the fundamental
crossed complex functor

7. FT ofp—~ Cto.

Remark 2:1. The functor 7 is defined in [17] on J, filtered spaces, and the

convention there makes 7, X = 7, X,. However, the modified definition above with

7y X = X, not only concurs with standard usage, but also is essential in the present
context. We wish to form the crossed complex 7(FTOP (Y, Z)) -~ but FTOP (Y,Z) is



Classifying space of a crossed complex 99

rarely a J, filtered space. In any case, we do want 7FTOP (Y, Z) to be in dimension
0 simply the set #7 0£(Y,Z) of filtered maps Y > Z.

The functor 7 composes with the realisation functor ||: £ emef—F T o4 to give a
functor, also written m: Fimf— Gro.

ProrposiTioN 2-2. The fundamental crossed complex nK of a simplicial set K is given
as a coend

nK = J K, xnmA®.

Proof. This follows from the Van Kampen Theorem for the fundamental crossed
complex of a CW-complex covered by a family of subcomplexes (Corollary 52 of

7). |
Definition 2-3. The nerve functor N:€rs — Fimp is defined by
(NC),, = Gra(mA™, ()

where A", as in Section 1, is the standard n-simplex with its standard cell structure
and cellular filtration, and NC has the simplicial structure induced by the usual maps
of A®,n = 0.

The crossed complex wA"™ is a free crossed complex on the cells of A*, and the
boundaries are determined by the universal example, namely é: 7, A" —#,_, A", which
is itself given by the homotopy addition lemma ([48], p. 175).

For n = 2, the crossed complex 7A” involves non-Abelian groups in dimension 2,
and a groupoid in dimension 1 which acts on the crossed complex. The homotopy
addition lemma (which says, intuitively, that the boundary of a simplex is the sum
of its faces) therefore needs to be stated with care.

If o is an r-simplex with r > 4, then, analogously to the purely additive theory of
homology, we have the formula

do = (0,0)%+ Z
=1
where a = 0,0, ...0, 0. Here the action of —a transports the base point of d, 0 to the
common basepoint of the other faces so as to make addition possible. For a 3-simplex
o, we have the non-Abelian formula

00 = (0,0) %+ 0,0—0,0—0,0
and for a 2-simplex o, we have the groupoid formula
b0 = 0,0+0,0—~0,0.

One easily verifies that 6o = 0 for an r-simplex ¢ with r > 3 and that 6,00 = §,do
for a 2-simplex ¢. Cubical versions of such formulae are also well known (see, for
example, [16]).

A morphism f:7A™ - C for a crossed complex C can now be described as given by
a family of elements in varying dimensions of C, indexed by the cells of A", and
related by the homotopy addition lemma. Blakers in [7] uses such families to
construct for a reduced crossed complex C (there called a group system) a simplicial
set associated to (' which is essentially our nerve of C, and this construction is also
used in [1].

42
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One of our main results is the following. The proof involves standard manipulations
with ends and coends.

THEOREM 2:4. The functor m: L imp—>%ECro is left adjoint to the merve functor N:
Cro— Fimp.

Proof. Let K be a simplicial set and let C' be a crossed complex. Then we have
natural bijections

FLemp (K,NC) ’;J S et (K, €ro(mA™,C))
~ f €1 (K, xnA"*,C)

> G0 ( Jn (K, xmA"™), C’)

> %0 (1K, C). |

Remark 2:5. The fact that the functor 7: ¥ ¢ — €20 is a left adjoint implies that
it preserves all colimits. However, the generalised Van Kampen Theorem of [17]
(Theorem C) is not an immediate consequence of this fact since it is a theorem about
the functor 7 from filtered spaces to crossed complexes, and one of the conditions for
7 colim, U* = colim, 7U* is that each filtered space U? should be homotopy full, in
the sense of [17]. (A better term, following the usage of [22], would be ‘connected ’.)
It would be interesting to know whether this generalised Van Kampen Theorem can
be deduced from the fact that 7:%¢mf — @10 preserves all colimits.

It is useful to know that NC is a Kan complex, so that homotopy of simplicial maps
K — NC'is an equivalence relation. This follows from a more general result in Section
6 on Kan fibrations. We mention here that NC has the structure of Kan complex in
a strong way. Define an element f:7A" - C of (NC), to be thin if f maps the top
dimensional element of 7A™ to zero in C. The thin elements satisfy Dakin’s axioms:
degenerate elements are thin; any horn has a unique thin filler; if all faces but one
of a thin element are thin, then so also is the last face. Thus NC has the structure of
a T-complex [24], and in fact NV yields an equivalence between crossed complexes and
simplicial 7-complexes ([1], reproved in [41, 42]).

We define the classifying space BC of the crossed complex C by

BC = |NC|,
the geometric realization of the nerve of C. This defines the classifying space functor
B:Cw—>T op.

Note that a crossed complex C'is filtered by its skeleta C1™, n > 0, where C™™! agrees
with C in dimensions <n, and is trivial in dimensions >#n. This filtered crossed
complex is written C. Then BC is a filtered space. It is proven in [1] (following the
analogous cubical result from [17]) that there is a natural isomorphism

aBC = (.

In order to describe the homotopy groups of BC, we recall some facts on crossed
complexes ([16], p. 258). Let C' be a crossed complex. Then #,C is the set of



Classifying space of a crossed complex 101

components of C'. The fundamental groupoid m, C of C is the quotient of the groupoid
C, by the normal, totally intransitive subgroupoid §(C,). For n > 2, and for pe (|,
the homology group H,(C,p) is the quotient group

Ker [8:Cp(p) = Cry(p))/Im [§: Cy,(p) = Cr(P)].

This group is Abelian, and the action of C, on C, induces an action of 7, C' on the
family H, C. In other words, H, C is naturally a module over the groupoid =, C.
Clearly, n,C, m, C and H, C are functors of C.

ProposITION 2:6. For any crossed complex C, there are natural isomorphisms
m,BC =n,C, m(BC,Cy)=mC, n,(BC,p)=H,(C,p),
and the two latter isomorphisms preserve the actions.

Proof. These isomorphisms follow from Remark 2 on p. 258 of [16], which is easily
extended to include the facts about the actions.

This result shows that the spaces BC' should be regarded as generalising the
classical Eilenberg-Mac Lane spaces. If C is a crossed complex which is trivial except
in dimension n, where it is a group G (Abelian if n > 2), then NC is isomorphic to the
classical K(G, n).

3. Tensor products and homotopies

In order to obtain the homotopy classification theorem from Theorem 2-4, we need
to use tensor products and homotopies of crossed complexes.

The tensor product 4 ® B of crossed complexes 4 and B is defined in [20], and
shown in proposition 3:10 of that paper to be generated by elements a®b in
dimension m+n, where ae 4,,, be B, with a number of defining relations determined
by those in the universal examples 7E™ @ 7E”. We omit further details. Some
calculations of A ® B are given in section 6 of [20], and in particular it is proved in
corollary 66 that the canonical morphism 4 ® B,~A ® B is an injection.

It follows from the definition of 4 ® B that

T(AQB)x2n,Axn,B, m(AQ@B)=nm AxmB.
In order to construct the enrichment of 9 ¢/ over 20 we need the first part of
the following basic result.
THEOREM 3'1. If X and Y are filtered spaces, then there is a natural morphism
0:17XQ@7Y ->m(X®Y)
such that:
(i) @ is associative;

(ii) if * denotes a singleton space or crossed complex, then the following diagrams
are commutative

~ ~

X X

#TX)® =* * @ X

(X ® *) m(* ® X)
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(ii1) 8 is commutative in the sensethat if T,. C @ D — D ® C is the natural isomorphism
of crossed complexes described in [20],and T,: X ® Y - Y ® X is the twisting map, then
the following diagram is commutative

"X @Y 1X®Y)
T, =(T,)
7Y ® nX (Y ® X);

(iv) if X,Y are the skeletal filtrations of CW-complexes, then 0 is an tsomorphism.

The proof is deferred to Section 8 since it uses the techniques of w-groupoids. Note
that the construction of the natural transformation 6 could in principle be proved
directly, but this would be technically difficult because of the complications of the
relations for the tensor product of crossed complexes.

It is shown in [20] that - ® B has right adjoint an internal hom functor CRS (B, -),
so that for any crossed complexes 4, B, C there is a natural isomorphism

%19 (A ® B, 0) = %15 (4, CRS (B, 0)).

An element of CRS (B, C) in dimension 0 is simply a morphism B— C. Let .# be the
crossed complex 1. An element of CRS (B, C) in dimension 1 may be identified with
a morphism # - CRS (B, C) and so with a morphism # ® B C. Such morphisms
are called (left) homotopies B— C. They may be identified with pairs (&,f) where
f:B—Cis a morphism and k: B, —~C,, ,,m >0, is a family of functions satisfying
conditions which are given in (3-1) of [20].

THEOREM 3-2. The category F T o /e may be enriched over the monoidal closed category
®1s of crossed complexes.

Proof If Y, Z are filtered spaces then we form the crossed complex 7¥FTOP (Y, Z).
This gives the factorisation required for an enrichment

T o0 f°? X FT op

NS

where u(C) = C,. The required composition functor c,,, is defined by the following
commutative diagram

7FTOP(Y,Z) ® nFTOPX,Y)—— aFTOP(X, Z)

\\ /(;ffp W)

nFTOP(Y, Z) ® m(FTOP(X, Y))

where ¢z, . is the composition in the monoidal closed category #J o4. The
properties required for an enrichment, as given in [34], are clearly satisfied.
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In a similar spirit, we now prove that the functor 7: #J o4 — %29 is a homotopy
functor.

Prorositiox 3-3. There is a natural morphism of crossed complexes
Y :m(FTOP(Y,Z))~CRS (nY,nZ)

which is the identity in dimension 0. In particular, a homotopy f, . fo = fi: Y —=>2Z in
F T o induces a (left) homotopy nf,:nf, ~ nf 7Y —nZ in Grs.

Proof. It is sufficient to construct the morphism lﬁ as the composition in the
following commutative diagram

n(FTOP(Y,Z)) ® nY nZ

g m(e)

7(FTOP(Y,Z)®Y)
where ¢: FTOP(Y,Z) ® Y—Z is the evaluation morphism, i.e. the adjoint to the
identity on FTOP (Y,Z).
The last statement of the proposition is the information given by ¥ in
dimension 1.

Similar statements hold for right homotopies of crossed complexes. A right
homotopy C—D is a morphism C® # D, or, equivalently, a morphism (-
CRS (4, D). We may also define a right homotopy in #9 o4 tobe amapY @ I - Z.
By Theorem 3-1, such a map gives rise to a right homotopy 7Y ® S - nZ.

We can now show that the classifying space functor B: %25+ o4 is also a
homotopy functor. For this we need the crossed complex version of the Eilenberg-
Zilber Theorem.

ProrosiTioN 3-4. Let K and L be simplicial sets. Then there is a natural homotopy
equivalence of crossed complexes

7K @nL—»nm(KxL)
extending the inclusions nK @ Ly—>n(K x L), K,@ nL—n(K x L).
Proof. This follows by the methods of acyclic models. I
CoroLLARY 3'5. The nerve functor N: Gro - F im fo and the classifying space functor
B:%v3— T o4 are homotopy functors. More precisely, a homotopy f, ~ f,: C - D in G1s
induces homotopies Nf, ~ Nf, in Scmp and Bfy ~ Bf,: BC—>BD in T o .
Proof. Let K and L be simplicial sets. Then we have natural maps
Limp (K, SIMP (L,NC)) = Fimf (K x L,NC)
= Grs(m(K x L), C)
SErw(nK@nL, ()
~ Guo (nK,CRS (7L, ()
= Pimp (K. N(CRS (nL, ())).
We deduce that the adjunction of Theorem 2-4 extends to simplicial maps
SIMP (L, NC)s N(CRS (L, ).
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Now let f,~f :C—D. Because the tensor product of crossed complexes
is symmetric ([20]), we may view such a 1-fold homotopy either as a left
homotopy # ® C—D or as a right homotopy C ® #—D. Choosing the latter
form, we obtain a morphism C->CRS(#,D) and hence simplicial maps
NC - N(CRS (4, D)) - SIMP (I, ND). This gives a homotopy (NC) x I+ ND with end
maps Nf,, Nf,, and so a homotopy Bf, ~ Bf,: BC -~ BD.

Remark. This last result is one place where cubical methods are more efficient, since

for cubical sets K and L we have a cellular isomorphism [K ® L| = |K| x |L].

We are now able to prove our main result, giving the weak homotopy type of the
function space TOP (X, BC). In the case BC is an Eilenberg-Mac Lane space K(G, n)
for Abelian @, this result is essentially a theorem of Thom[47] (see also [9, 29]). It
also includes a result of Gottlieb [28] for the case BC is a space K(G, 1) for any group
G (see Proposition 4:7).

THEOREM A. If X is a CW-complex, and C is a crossed complex, then there is a weak
homotopy equivalence »:BCRS (X, C)) > TOP (X, BC),
and a bijection of sets of homotopy classes

[X,BC] = [#nX, (]
which ts natural with respect to morphisms of C' and cellular maps of X.

Proof. By the previous corollary, it is sufficient to assume that X is the realisation
|L] of a simplicial set L. The argument of Corollary 3-5 yields a homotopy equivalence

of simplicial sets N(CRS (7L, C)) - SIMP (L, NC).
The result now follows from the well-known weak equivalence
|SIMP (L,M)|—TOP (L], |M})
for any simplicial sets L and M.
Since . TOP(X,BC) = [X,BC], and m,N(CRS (#X, () = (71X, C],

this gives the bijection of homotopy classes, whose naturality follows from the fact
that the homotopy class of 7 is natural. |

We denote by [X, Y], the set of pointed homotopy classes of pointed maps X > Y
of pointed spaces X, Y. Similarly, for pointed crossed complexes D, U, we denote by
{D,C)y the set of pointed homotopy classes of pointed morphisms D—C. The
definition is given in detail in section 5 of [20]. If C is a pointed crossed complex, then
BC is naturally a pointed space.

THEOREM A,,. If X is a pointed CW-complex and C s a pointed crossed complex, there
is a bijection of sets of pointed homotopy classes which is natural with respect to pointed
morphisms of C and pointed, cellular maps of X, and which fits into a commulative
diagram ~

(X, BC), [7X, (),

N/

Hom (7,(X, %), m,(C, %)),

tn which we identify mw (BC,*) with m (C, *), m (X, *) with m,(X, *).
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Proof. The proof of the existence of the isomorphism of sets of pointed homotopy
classes is similar to the proof of Theorem A, but using the pointed constructions &),
and CRS, described in [20]. We omit further details.

The slanting maps are induced by the functor 7, (-, *) and the given identifications.
To prove commutativity, it is sufficient to assume that X =|L| for some Kan
simplicial set L. One then has to check that maps transformed by the following
arrows induce the same map of fundamental groups:

T of (IL|, BC) < Lcmp (L, NC) - brs (nL, C).

But this is clear on checking the values of these maps on 1-dimensional elements. |

4. Applications
We first apply Theorem A to show how to realise some homotopy n-types as BC for
some crossed complex C.

THEOREM 4'1. Let n>1, and let X be a reduced CW-complex with m;X =0,
1 < ¢ < n. (This condition is vacuous if n = 1,2.) Then there is a crossed complex C with
C; = 0,7 > n, together with a map f:X - BC inducing an isomorphism of homotopy
groups m; X —m,BC for 1 £i < n.

Proof. Let X be the CW-filtration of X, and let p be the vertex of X. Let D = #X
and let C be the crossed complex such that

D, if 0<i<n,
C, = D,/éD,,, if i=n,
0 if i>n.

Then there is a unique morphism g: D - C which is the identity in dimensions <n
and is the quotient morphism in dimension n. This morphism g induces an
isomorphism of fundamental groupoids, and of homology groups H,(D, p)— H(C, p)
for2<i<n.

By Theorem A, there is a pointed morphism f:X > BC whose homotopy class
corresponds to g:7X — C. Without loss of generality we may assume f is cellular.
Then for all ¢ > 1, the following diagram is commutative, where S* = ¢° U ¢! is the
t-sphere:

(8% X, — (st BCY,
@f)s
[»S', nX], [#S!, nBC], = [#8%,C,
Hl(ﬂx7p) — H!(Cip)
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The assumptions on X imply that the map [S% X], — [#S?, 7X], is bijective for
1 <7 < n. So the result on 7, follows.

Remarks 4-2. (i) This Corollary shows that if 7, X = 0,1 < ¢ < n, then the n-type of
X is described completely by a crossed complex. For n = 1, this is well known, and
for n = 2 it is essentially due to Mac Lane and Whitehead [38]. Indeed, they prove
that the 2-type (for which they use the term 3-type) of a reduced CW-complex X is
described by the crossed module 7,(X, X') >, X, which is the same crossed module
as arises for n = 2 in the proof of Theorem 4-1.

(ii) The crossed complex C constructed in the proof of Theorem 4-1 has the
property that H,(C) = 0,1 < ¢ <n; H(C) = m(X),j = 1,n;C; = 0,7 > n. Itis known
that H**Y(m X, n, X) can be represented by equivalence classes of such complexes
([30], [32], [36], [37]). In particular, the equivalence class of C' can be regarded as
giving the first k-invariant of X.

The following result is sometimes useful for giving an explicit presentation of a
crossed module representing the 2-type of a space. It is due to Loday[35], with a
different proof.

ProposSITION 4:3. Let X be a reduced CW-complex and let P be a group such that there
is a map f: BP — X which is surjective on fundamental groups. Let F(f) be the homotopy
fibre of f and let M = m, F(f), so that we have a crossed module M — P. Then there is a
map X - BM — P) inducing an isomorphism of m, and m,.

Proof. Let f: BP - X be a cellular map which is surjective on fundamental groups.
Let Y be the reduced mapping cylinder M(f) of f, and let j: BP — Y be the inclusion.
Then the crossed module m,(Y,BP)—m BP is isomorphic to pg:M—P. Also j is
surjective on fundamental groups, and it follows that the inclusion X'—>Y is
deformable by a homotopy to a map ¢’, say, with image in BP. This homotopy
extends to a homotopy of the inclusion X Y to a map ¢g: X > Y extending ¢'. Let
Y be the filtered space in which ¥ is the base point of Y, ¥, = BP, Y, = Y for i = 2.
Then C = #Y is the trivial extension by zeros of the crossed module M — P. The
map ¢:X—Y induces a morphism ¢,:7X—>#Y which is realised by a map
X - B(M - P) inducing an isomorphism of 7, and m,.

Example 44. Here is an application of the last proposition which uses the
Generalised Van Kampen Theorem for crossed modules. Let X be a CW-complex
which is the union of connected subcomplexes ¥ and Z such that W=YNnZ is a
K(P,1), i.e. is a space BP. Suppose that the inclusions of W into Y and Z induce
isomorphisms of fundamental groups. Then, as in Proposition 4-3, the 2-types of ¥
and Z may be described by crossed modules M - P and N— P respectively, say. By
results of [17] which are applied in [11] to this situation, the crossed module
describing the 2-type of X is the coproduct M oN— P of the crossed P-modules M
and N. In fact M o N is a quotient of the semidirect product M >a N, where N acts on M
via P. Note also that if M and N are finite, so also is M o N. For more information on this
construction, see [26]. Thus crossed module methods do yield explicit computations
of 2-types.

We now give another application to the homotopy classification of maps, using the
following result which is essentially the remark on p. 37 of [17].

ProrositionN 4'5. If Y is a CW-complex with skeletal filtration Y, then there is a
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homotopy fibration F—Y —BrnY whose homotopy exact sequence at a base point y is
isomorphic to Whitehead’s exact sequence

...—>Fn(Y,y)—>7rn(Y,y)—>H,L(f’y)——>...

where Yy denotes the universal cover of Y based at y. Further, if n(Y,y)=0 for
1 <i < n, then the fibre F is n-connected.

Proof. Results of [1] (compare the cubical results in [17]) give a Kan fibration
RY - NrY (since in the terminology of [1], N7Y is the underlying simplicial set of the
simplicial T-complex pY). One shows that for a CW-complex Y the inclusion of RY
into the singular complex of ¥ is a homotopy equivalence. The identification of the
homotopy groups of the fibres with Whitehead’s I'-groups is carried out in Theorem
85 of [17] for the cubical case, and the simplicial case is analogous.

CoRrROLLARY 4°6. If Y is a connected CW-complex such that m;Y = 0 for 1 <i <n,and
X is a CW-complex with dim X < n, then there is a natural bijection of homotopy classes

(X, Y] = [#X, 7Y].

Proof. The assumptions imply that the fibration Y- BnY induces a bijection
[X,Y]—[X,BnY]. The bijection [X, BrY]— [#X,nY] follows from Theorem A.

This Corollary may also be obtained as a concatenation of results proved in [49].
It is also proved in general circumstances in [2].

There is one particular case when we can identify CRS (C, 4). For a groupoid H let
X(H, 1) denote the crossed complex which consists of H in dimension 1 and which is
trivial elsewhere. If G and H are groupoids, then GPD (G, H) denotes the internal
hom object in the category of groupoids, and [G, H] denotes the set 7, GPD (G, H) of
components of GPD (G, H). If G is connected, x€ G, and f: G — H is a morphism, then
the vertex group GPD (G, H)(f) is isomorphic to the centraliser of f(G(x)) in H( fx).
So the following result with Theorem A yields a result of Gottlieb [28] on the
fundamental group of spaces of maps into an Eilenberg-Mac Lane space K(H,1).

ProrosiTioN 4-7. If B is a crossed complex and H is a groupoid, then there is a
homotopy equivalence of crossed complexes

CRS(B,X(H,1)) ~ X(GPD (m, B, H),1).
Proof. Let Z be a crossed complex. Then there are natural bijections
[Z,CRS (B, X(H,1))] = [Z®B,X(H,1)]
= [m(Z® B), H]
~([m ZxmB H)
~ [m, Z,GPD (m, B, H)]
=~ [Z,X(GPD (m, B, H), 1)].
The result follows. |
In the pointed case we get an even simpler result.

ProrositioN 4-8. If B is a pointed, connected crossed complex and H is a pointed
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groupoid, then the crossed complex CRS, (B, X(H, 1)) has set of components bijective with
the set G4 (m, (B, *), H(*)) of morphisms of groups m,(B, *) - H(*), and all components
of CRS, (B,X(H, 1)) have trivial m, and H, for ¢ = 2.

Proof. An argument similar to that in the proof of the previous proposition yields
[+,CRS, (B, X(H, 1))] = [+, GPD, (m, B, H)],

which gives the first result. The second result follows since for any pointed crossed
complex Z and morphism f: B X(H.1) we have

[(Z,»),( CRS, (B, XH. 1) =[ZQB.XH. NH1®f:*dB—->X(H, 1),
*»:Z®*—>X(H,1)]
=[mZxm B H|LXf:xxmB—>H %7, Zx%—>H]
~[mBH|f]=x* |

There is another interesting special case of the homotopy classification. Let n > 2.
Let M be an abelian group and let AutM be the group of automorphisms of M. Let
x(M.,n) be the pointed crossed complex which is: AutM in dimension 1; M in
dimension n; which has the given action of AutM on M; and has trivial boundaries.
Let C be a crossed complex; in useful cases, C' will be of free type. We suppose C
reduced and pointed. Let o:7,(C, *)> AutM be a morphism. The set of pointed
homotopy classes of morphisms C — y(M, n) which induce a on fundamental groups
is written [C, y(M,n)]%. This set is easily seen to have an Abelian group structure,
induced by the addition on operator morphisms C, ~M over a. So we obtain the
homotopy classification:

ProrosiTioN 4:9. If X is a pointed reduced CW-complex, and a:m (X, *)-> AutM,
then there is a natural bijection

[X, Bx(M,n)J3 = [7X, x(M,n)]%,

where the former set of homotopy classes denotes the set of pointed homotopy classes of
maps inducing a on fundamental groups.

The proof is immediate from Theorem A,.

This result is related in Section 7 to the case of local coefficients, so that
Proposition 49 is essentially a result of [27]. (See also [40, 45].)

We remark that another application of the classifying space of a crossed complex
is given in [5], where it is shown that for a natural filtration on the James
construction JBC of the classifying space of a crossed complex C, there is an
isomorphism #JBC = JC, where JC is the James construction (i.e. free monoid with
respect to the tensor product) of the pointed crossed complex C.

5. Tensor products and free crossed complexes

The results of this section will be used in discussing fibrations of crossed complexes
in Section 6.

The category %20 is complete and cocomplete. So we may specify a crossed
complex by a presentation, that is, by giving a set of generators in each dimension
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and a set of defining relations of the form u = v, where u, v are well-formed formulae
of the same dimension made from the generators and the additions, negatives,
actions, and boundary maps.

Write C(n) for the crossed complex freely generated by one generator c, in
dimension n. So C(0) is {1}; C(1) is essentially the groupoid .# which has two objects
0,1 and non-identity elements ¢,:0—1 and ¢;':1-0; and for n > 2 C(n) is in
dimensions 7 and n—1 an infinite cyclic group with generators ¢, and dc,
respectively, and is otherwise trivial. Let S(n—1) be the subcomplex of C(n) which
agrees with C(n) up to dimension n— 1 and is trivial otherwise. If E” and S"! denote
the skeletal filtrations of the standard n-ball and (n—1)-sphere, where E° = {0},
St=( E'=1={0,1}Ue!, 8*={0,1}, and for n =22, E* ={1}Ue™tye™, §" 1 =
{1} Ue™™!, then it is clear that for all » > 0, C(n) = 7E" and S(n—1) = #S*".

We now follow [13] and define a particular kind of morphism j: 4 - C called a
crossed complex morphism of relative free type. Let A be any crossed complex. A
sequence of morphisms j,:C* ! - C" may be defined with C® = 4 by choosing any
family of morphisms f%:S(m,—1)-C""! for A€ A, and any m,, and forming the
pushout

)
I S(m,—1)————(Cn1
AeA,
Jn
H Cm,) cn.
AeA,

Let C = colim,, C*, and let j: A — C be the canonical morphism. We call j:4—-C a
crossed complex morphism of relative free type. The images 2™ of the elements ¢,
in C are called basis elements of C relative to A. We can conveniently write

C=A4AU{E™hen, nso

and may abbreviate this in some cases, for example to €' = A U 2" U 2™, analogously
to standard notation for CW-complexes. Also we may without loss of generality
assume that the basis elements are added in order of increasing dimension, so that
in forming C® from C"™! as above, all the m, are n. In this case C has the following
structure.

C, is the disjoint union of 4, and Ag;

C, is the coproduct of C,-groupoids AF and F(A,), where AF is the groupoid
obtained from A, by adjoining the objects of C not already in 4, and F(A,) is the free
groupoid on A, considered as a graph over C, via the maps f?;

C, is the coproduct of crossed C',-modules AF and F(A,), where A¥ is the C,-crossed
module induced from the A4,-crossed module 4, by the morphism of groupoids
A4,—C,, and F(A,) is the free crossed C,-module on A, via the maps f3;

C,, for n > 3, is the direct sum of (C,/6C,)-modules A} and F(A,), where A}
is the module induced from the (4,/64,)-module 4, by the morphism of groups
(4,/84,) > (C,/3C,), and F(A,) is the free (C,/6C,)-module on A,,.
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The boundary maps are in all cases induced by the boundary maps in 4 and by the
maps f5.

We remark that for 4 = & we get by this construction the crossed complexes of
free type which were considered in [18} under the name ‘free crossed complexes’. If
X is the skeletal filtration of a CW-complex, then the crossed complex #X is of free
type; if Y is a subcomplex of X then the induced morphism 7Y - 7X is of relative
free type. (The reason for avoiding the term free crossed complex is that such crossed
complexes do not seem to arise from adjoints of a forgetful functor.) Reduced crossed
complexes of free type are called homotopy systems in [49], and free crossed chain
complexes in [2], [3].

The exponential law in %20 and the symmetry of the tensor product have the
following consequence of which special cases are dealt with in [13] and are used in
[4] (lemma IT1-9-2).

ProvrositioN 5°1. If A - C and U— W are morphisms of relative free type then so also
SARWUCRU—-CQW, where AQ@ W UC ® U denotes the pushout of the pair of
morphisms

ARW-ARU-CRU.

Proof. Since the tensor product - @ - is symmetric and - ® B has a right adjoint, the
functors - ® B and 4 ® - preserve colimits. Using this fact and standard properties
of pushouts, one easily proves the following four statements:

(i) If in a pushout square

A B

¢ ——D

the morphism 4 — (' is of relative free type, so is the morphism B— D.
(ii) If in a sequence of morphisms of crossed complexes

A’ A'> . . A" .
each morphism is of relative free type, so are the composites 4°— 4™ and the induced
morphism A4°- colim, 4™
(iii) If in a commutative diagram
Ao_hfl_y.._)[fn_)...
sl (O e

each vertical morphism is of relative free type, so is the induced morphism
colim, A™ - colim, C".
(iv) If the following squares are pushouts

A
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then so is the induced square

A®W]JC®U BRIXUD®V
CRW DR®X.

These four facts are the basis for an inductive proof. One starts by verifying the
proposition when 4 -, U~ W are of the type S(n—1) > C(n) and S(m—1) - C(m).
Using the fact that Y ® - and - ® Y preserve coproducts, one deduces the result
in the case when A—C, U—W are of the type ||,S(n—1)—|],C(n) and
LxS(tm—1)—>][,C(m). Putting morphisms of this type in (iv), and using (i)
one finds that the proposition is true for morphisms of simple relative free type,
that is for morphisms B— D, V— X obtained as pushouts

U,\T(n—l) B U, S(m—1)——v
U, C(n) D U,‘C(m) X.

Next, using (i), (ii), (iv) one proves the result for composites of morphisms of simple
relative free type. A general morphism of relative free type is a colimit of simple
ones, as in (ii), and the full result now follows from (ii) and (iii). |

CoroLLARY 52. If A—C is a morphism of relative free type and W is a crossed
complex of free type, then A @ W—C @ W is of relative free type.

6. Fibrations of crossed complexes
We recall a definition due to Howie in [31].

Definition 6:1. A morphism p: E — D of crossed complexes is a fibration if
(i) the morphism p,: £, —» D, is a fibration of groupoids;

(it) for each n > 2 and z€k,, the morphism of groups p,:E, (x)—> D,(px) is
surjective.

The morphism p is a trivial fibration if it is a fibration, and also a weak equiv-
alence, by which is meant that p induces a bijection on n, and isomorphisms
m(E,x)—»m(D, px), H,(E,x)~> H,(D, px) for all xze £, and n > 2.

Howie shows in [31] that a fibration of crossed complexes leads to a family of exact
sequences involving the H,,, 7, and 7.

We now consider cofibrations, following methods of [43] which were developed for
crossed complexes in [13].

Consider the following diagram:

e
Ve

C D.

If given i the dotted completion exists for all morphisms p in a class &, then we say
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that ¢ has the left lifting property (LLP) with respect to . We say a morphism
t: A — Cis a cofibration if it has the LLP with respect to all trivial fibrations. We say
a crossed complex C is cofibrant if the inclusion ¢ — C is a cofibration. We shall also
need the definition that p has the right lifting property (RLP) with respect to a class
% if in the above diagram, given p, then the dotted completion exists for all 7 in the
class €.

ProposiTioN 6:2. Let p: E — D be a morphism of crossed complexes. Then the following
conditions are equivalent :

(i) p is a fibration;

(if) (covering homotopy property) p has the RLP with respect to the inclusion
C®1->C®C(m) for all cofibrant crossed complexes C and m = 1;

(i1) the covering property (i) holds for m = 1;

(iii) ¢f C s a cofibrant crossed complex then the induced morphism
24 :CRS (C, E)—>CRS (C, D) is a fibration;

(iv) the induced map of nerves Np:NE — ND is a Kan fibration.

Proof. (i) = (ii) We follow the method of [43]. We verify the covering property by

constructing a lifting in the left hand of the following diagrams, where 1> C(m) is
the inclusion. Let p” in the right hand

C®1 E (%] CRS(C(m), E)
P 4
C ® C(m) D C CRS(1, E) x , CRS(C(m), D)

diagram be induced by p and the inclusion 1 — C(m). Then a lifting in the left hand
diagram is equivalent to a lifting in the right hand diagram. Since C is cofibrant, such
a lifting exists if p’ is a trivial fibration. But by the exponential law, for this it is
sufficient to show that p has the RLP with respect to the inclusion

S(n) @ Cim) UC(n+1)® 1->C(n+1) ® C(m).

For n = —1, this corresponds precisely to the fibration property of p. In general, a
lifting of the image of the top basis element of C(n+ 1) ® C(m) is chosen, and the
value of the lifting on the remaining basis element of C(n+ 1) ® C(m), namely
a1 ®6c, if m=2 ¢,®0 if m=1, is determined by the boundary formula for
¢, ®c,, and the values on d¢,,,, ®c, ifn=1and 0®c,, and 1 ®c,, if n=0.

(ii)" = (i) This is easily proved on taking C to be the crossed complex of free type
on one generator of dimension n.

(ii) = (iii) This is clear.

(iii) = (ii) Again, one takes C as in (ii)’ = (i).

(i) <> (iv) Let A7 for ¢ = 1,...,n be the simplicial subset of A™*! generated by all
faces 0;¢™*! except for j = 1. To say that Np: NE - ND is a Kan fibration is equivalent
[39] to saying that any diagram

: NE
/'1
J /,/ Np (**)
Am+ ND
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has a regular completion given by the dotted arrow. By adjointness, this is
equivalent to the existence of a regular completion in €25 of the following diagram:

m(A}) E
//
J i P
7T( A n+, 1 ) D

If n = 0, this last condition is equivalent to £, - D, being a fibration of groupoids.
If n = 1, this last condition is equivalent to each £, (x) - D, ,,(px) being surjective.
To see this, note that if these maps are surjective, and v is the usual base point
of A" then we can choose a€E, ,(kv) such that pa = k'c¢**'. If we now define
g(c"*') = a and g(zx) = k{z) for each non-degenerate element x of A}, then there is a
unique value for g{d,¢**!), determined by the homotopy addition lemma, which
defines a morphism g:m(A"*!) > E. This ¢ is a regular completion of (¥x).

On the other hand, suppose each diagram (**) has a regular completion. Let
beD,  (px). Define k:m(A})—> E to be the trivial morphism with value 0,. Define
kK :m(A™)—>D by k'(c*™')=b, k'(A})=0,, and k'(0,c"*') = éb. Then pk=Fk’j.
Let g be a regular completion. Then pg(c™*') = b.

COROLLARY 6°3. Let p: E— D be a fibration of crossed complexes and let x€D,. Let
F = pY(x). Then the sequence of classifying spaces BF —BE - BD is a fibration
sequence.

Proof. By a fibration of spaces we will mean a map which has the covering
homotopy property with respect to all maps of compactly generated spaces. It is
known that the realisation of a simplicial Kan fibration is a Serre fibration [44], and
in fact has the covering homotopy property with respect to maps of all compactly
generated spaces [46]. Thus all we have to check is that the fibre of NE — ND over
z is precisely NF. This follows from the formula (NF'), = €20 (7A™, F) given in
Section 2.

We now give some applications of BC to the case where the crossed complex C is
essentially a crossed module. Similar results are proved in [35] using a classifying
space of a crossed module defined using the equivalence of crossed modules and 1-cat-
groups.

We use the same notation u:M—P for a crossed module and for the crossed
complex obtained from it by trivial extension. Hence the above crossed module has
a classifying space which we write B(M — P). We will use the fact that the identity
crossed module M -~M has contractible classifying space B(M — M). This can be
proved either by noting that it has all homotopy groups zero, or by realising a
contracting homotopy of the crossed complex extending M > M.

Example 64. Let y: M — P be an inclusion of a normal subgroup. Then we have an
exact sequence of crossed modules
M M 1

N
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It follows from the fibration sequence of classifying spaces that the induced map
B(M — P)y— B(P/M) is a homotopy equivalence.

Ezxample 6:5. Let p:M—>P be a crossed module. Then we have a short exact
sequence of crossed modules

w

Keru M Imgu
N
1 P P

in which g’ is the restriction of x and the unlabelled maps are inclusions. This exact
sequence yields a fibration sequence which up to homotopy is

K(Ker u,2) - B(M - P)— B(Coker u).
Example 6:6. [35] Again let u: M~ P be a crossed module. Then we have short

exact sequences of crossed modules
1 1

1 M M M M 1
M——M>aP——P M——>M>aP—P
j g 7

in which ¢:mw (m, 1), j:mi— (m™, (um) p), a: (m, p)— p, 7: (m, p) > (um) p. 1t follows
that we have a homotopy fibration

BM)—B(P)—~ B(M— P).
This shows as in [35] that a morphism x: M — P of groups can arise from a homotopy

fibration B(M)—~ B(P)— X if and only if # can be given the structure of a crossed
module.

Example 6:7. Let A be a crossed complex, and let n = 1. We write 4™ for the
crossed complex D where

A, if << mn,
D, = 8A,.,) if t=n+1,
0 if i>n+1,

with the boundary D, , — D, being inclusion, and other structures induced by that
of 4. The natural map 4 — A is a fibration and induces isomorphisms of 7, and =,
and of H; for ¢ < n. Further H,(4") = 0 for ¢ > n. Thus the induced map B4 -~ BA™
is a Postnikov fibration. Let 4" = Ker (4 - A4A™). Suppose 4 is reduced. Then
A'™ may be regarded as a chain complex. It is clear that NA'™ is a simplicial Abelian
group and so BA™ may be given the structure of a topological Abelian group. If
n = 1, then BA™ is a K(m, 1) space. Thus, as first pointed out by Loday (private
communication), the homotopy types of the form BA for A a crossed complex are
restricted. In particular, all Whitehead products in B4 are zero. One should think of
these homotopy types as giving a first approximation to homotopy theory. This idea
is developed in the tower of homotopy theories due to H.J. Baues [2], in which
crossed complexes (reduced, of free type) give the first level of the tower, and in a
sense represent the linear approximation to homotopy theory.



Classifying space of a crossed complex 115

However, the use of classifying spaces in conjunction with crossed complexes 4
with some kind of algebra structure A ® A -~ A does allow some deeper levels of
homotopy information to be obtained (see [S, 6]). Such objects could be called
crossed differential graded algebras.

7. Local systems

The homotopy classification result of Theorem A suggests that if 4 is a crossed
complex, and X is a space, with singular complex SX, then the set [#|SX]|, 4] may be
thought of as singular cohomology of X with coefficients in 4, and written H°(X, 4),
[18]. With our present machinery, it is easy to see that this cohomology is a
homotopy functor of both X and of A. We show in this section that H°(X, 4) is (non-
naturally) a union of Abelian groups, each of which is a kind of cohomology with
coefficients in a generalised local system.

Let C' and 4 be crossed complexes. In examples, C is to be thought of as 7X for
some CW-complex X. By a local system & of type A on C we mean the crossed
complex 4 together with a morphism of groupoids &:C,—A4, such that
& (8C,) = 64,. This last condition ensures that o/ induces a morphism of groupoids
m C—-m A. It is also a necessary condition for there to exist a morphism C— 4
extending /. The morphism & induces an operation of C; on all the groupoids 4,
for n = 2. By a cocycle of C with coefficients in &/ we mean a morphism f:C— 4 of
crossed complexes such that f, = &/. By a homology of such cocycles f,g we mean a
homotopy (%, g9):f ~ g of morphisms of crossed complexes such that A,z is a zero for
all ze €y, and 8k, = 0. The set of homology classes of cocycles of C with coefficients
in & is written [C, 4],.

ProrosiTioN 7-1. Let C, 4 be crossed complexes and let of be a local system of type A
on C. Let H=m, A and let A’ be the crossed complex which is H in dimension 1 and agrees
with A™) in higher dimensions, with H as groupoid of operators and with trivial boundary
Sfrom dimension 2 to dimension 1. Let of ' be the composite

4
C,—-4,~H.
Then a choice of cocycle f with coefficients in o determines a bijection
[C, 4]~ [C, 4"],,
and hence an abelian group structure on [C,A],,.

Proof. We are given f extending /. Let g be another morphism C - A4 extending
& . Then g, = f, and &g, = &f,. For such a g we define rg,, = g, —f,., n = 2. Clearly rg,
is a morphism of abelian groups for » > 3. We prove that it is also a morphism for
n = 2. Let ¢c,deC,. Then

rgs(c+d) = gy(c+d)—fi(c+d)
=gyc+g,d—fod—fyc
=g,c—(f0)7 "D +g,d—f,d
=g, c—fyc+g,d—f,d since 8g, = df,
=rg,c+rg,d.
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Clearly rg, is a C,-operator morphism where C, acts on A™ via /. Also 8rg, = 0 and
for n = 3, érg,, = rdg,_,. So we may regard rg as a morphism C > A’ extending &/’ It
is clear that r defines a bijection between the morphisms ¢: C - 4 extending &/ and
the morphisms g': C— A4’ extending <&/ ".

Next suppose that (&, g) is a homology § ~ ¢ as defined above. Then é4, = 0. Hence
h, defines uniquely k,:C, > Kerd,. Further we have for n > 2

In = gnt hn—1 0, + Spi1by

For n>=2 let &k, =h,. Then k, is a C,-operator morphism. Now for xe(, and
n = 3,wehaveh,_, 8, x+38,,,h, xliesin an abelian group, while for » = 2 it lies in the
centre of 4, and so commutes with f,z. It follows that (k, rg) is a homology r§ =~ rg.
Conversely, a homology 7 ~ rg of &/ ’-cocycles determines uniquely a homology
g ~ g of &7 -cocycles. It follows that r defines a bijection [C, 4], - [C, A"],, as required.

Notice also that the set [C, 4'],,. obtains an Abelian group structure, by addition
of values, and with the class of rf as zero. |

Let C be a reduced cofibrant crossed complex, and let 4 be a reduced crossed
complex. We are interested in analysing the fibres of the function

7:[C,A)y—Hom (7, C,m, A4).

We write [C, A]% for 37 («). This set may be empty. We will elsewhere analyse the
first obstruction to an element « lying in the image of . Here our aim is to show that
if f:C— A is a morphism realising a:7, C —>m, A then f determines an Abelian group
structure on 77 '(a).

We recall from [21] the relations between crossed complexes and chain complexes
with operators.

There is a category €4 of chain complexes with groupoids as operators and two
functors

AN CroSChn. 0

such that A is left adjoint to ©. Hence if D is a chain complex with a trivial group
of operators, then
(NOD), = €1s (mA",0D)

= @hn (AmAT, D).

In this last formula, A7A” consists of the chain complex C, A" of cellular chains of the
universal covers of A” based at the vertices of A", with the action of the groupoid
m, A". Since D has trivial group acting, it follows that

G (ATAT, D) = €hn (Cy A7, D),

where C, A7 is the usual chain complex of cellular chains of A”. This shows that ND
coincides with the simplicial Abelian group of the Dold-Kan Theorem [25].

Let H = 7, A. In the last example we defined A!). We consider the pair (4", H) to
be a chain complex with H as groupoid of operators.

ProrosriTioN 72. Let C, A be reduced crossed complexes such that C s cofibrant. Let
f:C—>A4 be a morphism inducing a:m C—>m A on fundamental groups. Then f
determines a bijection

[C. 415 = [AC, (A, H)P,
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where the latter term is the set of pointed homotopy classes of morphisms which are
morphisms of chain complexes with operators and which induce a on operator groups.

Proof. Let p: A - A® denote the fibration of the last example, so that 4™ is the
kernel of p. Let G = 7, C. Recall that X(H, 1) denotes the crossed complex which is H
in dimension 1 and is zero elsewhere. The projection 4V - X(H, 1) is a trivial fibra-
tion. Since C is cofibrant, the induced morphism CRS,(C,4™)—CRS,(C,X(H, 1))
is also a trivial fibration. It follows from Proposition 4-8 that CRS,(C,A4Y) has
component set Hom (G, H) and has trivial fundamental and homology groups.

Suppose that f:C— A induces a: G~ H on fundamental groups. Let F(f) be the
fibre of CRS,(C, 4) -~ CRS,(C, A™) over pf. Then the exact sequence of this fibration
yields an exact sequence

1->m, F(f) > [C,A]*—Z»Hom (G, H)

such that the first map is an inclusion with image 77'(«).

Let o = f,. Then n, F(f) = [C, 4],,. So by Proposition 7-1, m, F'( f) is bijective with
[C,A'], . But in terms of the functors relating crossed complexes and chain complexes
with operators given in [21] recalled above, we have A" = ©(4A™, H). The proposition
follows immediately from the adjointness of A and ©.

CoroLLARY 7-3. If ou: 7, C—m, A is realisable by a morphism f:C— A, then a choice
of such morphism determines an Abelian group structure on [C, A%. |

This result gives the expected Abelian group structure on this generalised
cohomology with local coefficients.

8. Proof of Theorem 3:1

In view of the equivalence y:w-%f4d —%20 of symmetric, monoidal closed
categories, established in [20], it is sufficient to prove similar results for w-groupoids.
For this we need the fundamental w-groupoid pX of a filtered space X. For current
purposes, it is convenient to depart from the conventions of [17] as follows, and so
to give a definition which makes p a functor on # 7 o4 itself.

We write RUX for the relative cubical singular complex of the filtered space X.
Thus (RUX), consists of the filtered maps I"—>X. We now factor this cubical
complex to give a quotient map of cubical sets

p:ROX s pX.

We recall the definitions.

Let X,Y be filtered spaces. A filter-homotopy f,:f, = f, of filtered maps f,, f;:
Y - X is a homotopy f, such that each f,: Y - X is a filtered map.

We define p, X to be the quotient of (RZX),, the set of filtered maps I" - X, by
the relation of filter-homotopy rel vertices (the condition ‘rel vertices’ was not used
in [17], and this is the change in definition). The family {p, X}, ., clearly inherits
from RUX the structure of cubical complex. We also recall from [14, 16] that ROX
has an extra structure of connections I';: (RPX), > (RUX), ., 1 <17 < n, induced by
the maps

U s m (t, .t (s omax {t, 6, ), .- ty)-



118 RoxaLDp Browx anxp Puivip J. HiccIiNs

Also RPX has a structure of compositions, written additively as +,, partially defined
on (REX), for 1 < < n, and given by the usual gluing of singular cubes in direction
1. It is the use of this simple and intuitive composition structure which gives cubical
methods a strong advantage over simplicial methods. A list of laws for the I';, +, is
given in [14, 16], but the details will not concern us much in this paper.

It is clear that the structure of connections on the cubical complex EX is inherited
by pX.

THEOREM 8-1. The compositions on RBX are inherited by pX to give pX the structure
of w-groupoid. |

Remark 82. Let us write p, X for the quotient of R, X by the relation of filter-
homotopy, so that p;, X is also a quotient of p, X. Theorem A of [17] states that if
X is J,, then the compositions +, on (RPX), are inherited by p, X, so that p’X
becomes an w-groupoid. The J; condition is that each loop in X is contractible in X,
and this condition was used in the proof of corollary 1-2 in [17] to ensure that any
map {v} x [2— X which is a filter double homotopy (i.e. has image in X,) extends to
a filter double homotopy {v} x I*— X (i.e. with image in X,). This corollary 1-2, or a
deduction from it, is applied in all later theorems of [17] which use the o, condition.
In our new definition of pX, any required filter double homotopy {v} x /2> X, is a
constant map, and so automatically extends to a constant map {v} x I - X,. This
gives theorem 21, and also the results of section 3 of [17], without the J, condition,
and applied to the new pX. In a similar spirit we have the following analogue of
theorem 5-1 of [17], for which we recall that y:w-% 4« — %o is an equivalence of
categories.

THEOREM 8:3. If X is a filtered space, then vpX is naturally isomorphic to the
Sfundamental crossed complex nX of X.

We remark that the Van Kampen type theorems for pX and #X (theorems B and
C of [17]) are true with our new definition, again without the .J, assumptions which
only tend to confuse the issue. The proofs need only minor changes in the proof of
lemma 4-2 and lemma 45 of [17] to ensure that constant homotopies on elements
of X, are not altered during the deformations used there.

Proof of Theorem 31

In view of the above results, it is sufficient to prove a similar result to Theorem 3-1
for w-groupoids. That is, we construct a natural morphism

6 :pXR@pY >pX®Y).
For this, it is sufficient to construct a bimorphism of w-groupoids ([20], p. 9)
0" (pX,pY)»p(X ®Y).
Let f:I? > X,g:1?—Y be representatives of elements of p, X, p, Y respectively. We
define 8”([f1,[g]) to be the class of the composite
= I®g
I IPRIN—XK®Y.

It is easy to check that 6”([ ], [g]) is independent of the choice of representatives. The
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conditions that 6” be a bimorphism are essentially a translation of conditions
(2:1) (i)—(v) of [20]. Their validity is almost automatic.

The proofs of associativity of 8 and of the relations corresponding to (ii) are clear.

The proof of symmetry follows from the description in [20], p. 24 of the
isomorphism G ® H - H ® G of w-groupoids as given by x ® y+ (y* ® x*)* where, in
the geometric case G = pX, x+>2z* is induced by the map (¢,,....¢,)~ (¢, ..., ¢) of
the unit cube.

To prove (iv), recall that X ® Y is a CW-filtration, and so the crossed complex
X ®Y) is of free type, with basis the characteristic maps of the product cells
e’ xe? of X® Y. So the theorem follows from Corollary 5-2. (It is clear that the
results of Section 5 do not in any way use Theorem 3-1.)
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