Categorical hierarchical models for cell systems?
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Abstract

The aim is to explain and explore some of the current ideas from category theory that
enable various mathematical descriptions of hierarchical structures.

Introduction

This chapter seeks to explore some of the current ideas that provide abstract models for hier-
archical systems in general and cell systems in particular. The models are based on category
theory and as that theory is to a large extent relatively unknown to workers in (mathematical
and computational) biology, the chapter will have to introduce some of the elementary language
and concepts of that theory. We will attempt to do this through fairly ‘common or garden’
mathematical situations which themselves have aspects of hierarchical structures about them.
Our aim is to present enough of the ideas to make it possible for the enterprising reader to start
delving further into the way in which others (Rosen, [20], Ehresmann and Vanbremersch, see for
instance, [8]) have seen category theory as a potentially useful language and toolkit of concepts
for use in this area.

Discrete or network models for complex systems are commonplace in the literature. Such
models can be enriched using simple concepts from category theory. Essentially the additional
feature is to consider not just links between ‘nodes’ but also sequences of ‘composable’ such
links. This adds just enough algebraic structure into the combinatorial network model to allow
a whole range of useful new ideas to become available. Certain features can be investigated
using a ‘toy model’ which does not assume anything more than basic arithmetic, yet shows up
some of the hidden assumptions in more complex models. Of course a ‘toy model’ can not reveal
deep structure, it is little more than a thought experiment, so our aims are deliberately limited.

1 Category Theory : History and Motivation.

The first paper in category theory was by Eilenberg and Mac Lane in 1945 [9]. It aimed initially
to describe (i) interaction and comparison within a given context (Topological spaces, Groups,
other algebraic structures, etc.) and (ii) interactions between different contexts, for instance
within the area of pure mathematics known as algebraic topology, problems in the theory of
spaces are attacked by assigning various types of algebraic gadgetry to spaces, thus translating
the topological problem to a, hopefully more tractable, algebraic one. A category consists of
objects and ‘morphisms’ between them, thought of as ‘structure preserving mappings’.

Even as early as the 1950s and 1960s, category theory had become a highly successful lan-
guage providing general tools for revealing common structure between different contexts. New
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concepts (limits, colimits, products, coproducts, etc.) were defined abstractly and these defini-
tions highlighted the properties that had been there in the examples but had often been hidden
by context specific details. Already in 1958 Rosen had tried using elementary categorical lan-
guage to help with the modelling of biological systems. In the 1960s, Lawvere’s thesis and other
related work by Benabou and others at about the same time, shed new light on what it meant
for a structure to be ‘algebraic’. This linked up with the semantics of formal languages and thus
with logic. Lambek and Lawvere (1968-1970s) showed that there was an interpretation of the
typed A-calculus, which was a rich model for some aspects of the logical theory of sets, within
category theory. Here formulae are interpreted as the objects, and proofs as the morphisms. (For
us one important point is that the morphisms are no longer structure preserving ‘mappings’,
they are just ‘morphisms’!) This gave:

a) Models for Set theory, but something much richer is true, the ‘sets’ are ‘variable sets’; and
they can be applied in many more contexts and have their own internal categorical logic, and
b) links to the newly emerging discipline of Theoretical Computer Science. (For instance the
semantics of programming languages has been greatly enriched by the work of Lambek and
Scott on Cartesian Closed Categories,[15], Scott, Plotkin and Smyth on Domain Theory, using
categorical and topological insights, and Arbib and Manes [1] using partially additive categories.)

More recently Girard (1987) has introduced Linear Logic. This is a ‘resource sensitive logic’
or ‘logic of actions’ and is, once again, firmly based on a categorical semantics. The corre-
spondence here is more nearly ‘Formulas’ with ‘States’, and ‘Proofs’ with ‘Transitions’. Within
Control Engineering for some time a network model (Petri nets) had been used as an analytic
tool for developing concurrent control systems. In 1991, Meseguer and Montanari linked Petri
nets, and thus concurrency, with models of Linear Logic. This linked ‘States’ with ‘Objects’ and
“Transitions’ with ‘Morphisms’. This work of Meseguer led onto work on a rewriting language,
MAUDE, providing a semantics of object systems and so a ‘logical theory of concurrent objects’
[16]. (The links of this work with the modelling of biological systems is briefly explored in [10].)

For us these developments present the seductive suggestion that by adapting and extending
some hypothetical model of (part of) a cell system one might get not only a model but also
some corresponding logical framework, possibly even a rich programming language based on
that logical language. That is a long way in the future. Suffice it to say that Petri nets are also
widely used in modelling manufacturing systems, and they exist in fuzzy, stochastic and timed
variants, but as yet no categorical description exists for these rich variants. Can one hope for
a Petri net/ Linear Logic like description of some of the metabolic systems in the body? Who
knows?

With these hints of what might be possible in our wildest dreams, let us summarise some of
the characteristics of a formal language in a categorical context. (i) It will be many sorted with a
collection of states/ objects. (ii) Between the states there will be transitions or morphisms that
may be thought of a ‘proofs’. The constructions within the logic will give us new constructions
of objects from collections of old ones, so we might have a category with some extra structure -
but what structure?

2 Categorical models for hierarchical systems.

Later we will be looking at some aspects of the theory of hierarchical systems as developed by
Ehresmann and Vanbremersch (1985 to the present), but to start with we should examine the
motivation for such a theory. The idea is that a categorical formal language, that is rich enough
to describe and allow analysis of aspects of complex hierarchical systems, should be applicable
to cell systems and to other situations such as manufacturing systems. We should start with a
categorical model of a hierarchical system and analyse its logical structure both for its own sake
and from the modelling aspect (is the model robust enough to experimental situations?)



Simple Illustrative Example of a Hierarchical System assuming very little mathe-
matical background.
The divisors of 45 form, in the first instance, a set

Div(45) = {1,3,5,9, 15,45}

Of course there are relationships between the elements : 7 is related to j if ¢ exactly divides j:
Diagram of the structure:

Level

\/\
N\

This is an example of a partially ordered set. N.B. only the essential ‘generating’ arrows are
shown here. If we include the ‘composite’ arrows, we get a more complicated diagram.

0

N,
VOV
AN/

together with a loop at each vertex since for any i, 7 exactly divides itself! Each level of the
‘hierarchy’ measures in some sense the ‘complexity’ of the objects at that level.

In going from simple diagram of the partially ordered set (poset) to that including the
composite arrows we are starting the transition from posets to categories. What is a category
in this sense?

A category consists of

e a collection of objects C = {1, j,k, ..., etc.};

e collections of arrows or links or morphisms (alternative terms depending on taste, context
etc.);

e each arrow has a source and target and C(i, j) will denote the set of arrows from source 4

to target j, if f € C(4,j) we might also write f :i — j or i EN 7



e composition of arrows, when this makes sense
C(i,3) x C(j, k) = C(i, k)
iLi iS5k iy
e identities : for each object i, there is an special ‘identity arrow’ 1; € C(i,1)

such that
(i) associativity : (fg)h = f(gh) if either makes sense;
(ii) identities: if f :4 — 7, then 1,f = f = f1;.

Examples
(Based on Div(45))
1. Dy  Objects — divisors of 45

one element if ¢ divides j
empty otherwise

Dy (i, 5) :{

Composition : - only one choice really!!
Identities : ¢ always divides itself!

In fact any poset (X, <) gives a category with objects the elements of X, and with

. one element ifi<y
X = ~J
(i,7) { empty otherwise
(Small) categories generalise partially ordered sets by allowing multiple arrows between o0b-
jects.

2. D1 Objects — divisors of 45
D1 (i,7) = set of paths from 7 to j in the diagram of Div(45).
Thus, for instance,
1—+5—=+15—=45
Dy(1,45) =< 1 —-53—>15—45
1-+3—=29—45

Note that all paths (following the arrows) are used and are considered to be distinct. This
category Dy is the free category on the Hasse diagram of Div(45). That diagram is a directed
graph and given any directed graph, I', define

C := FCat(I)

by

Objects (C) = V(I'), the set of nodes or vertices of T';

C(u,v) = the set of directed paths in I" from vertex u to vertex v.

Composition — concatenation of paths;

Identity — ‘empty path’ at a vertex.

As the notation suggests, this category is called the free category on T.

3. D9 will not simply be a category.

In a category, C, each C(i,j) is a set; in an enriched category, it will have more structure
— in our example, each Dy(%,j) will itself be a category (in fact a poset):

As before,

Dy Objects — divisors of 45

but )
Div(4) if 4 divides j
empty otherwise

Ds(i,5) = {



so for example Dy(3,45) = Div(15) so looks like :
N
~|
If 4, j and k are in Dy, there is an obvious mapping

DQ(ZLY) X DQ(Jak) — DQ(Z’k)
a b ab

given by the product . of numbers - it preserves the order, it is an ‘enriched composition’.
D, is an ‘order enriched’ category. (Uses of order enriched categories relevant to the subject
matter of this chapter include the book by Arbib and Manes already mentioned [1] and Goguen’s
book [13] in which a special form there called a %—category is used to provide structure for sign
systems within Algebraic Semiotics.)

Further examples: (‘Big’ categories)
The generic form of these is:
- All objects with some similar structure;
- All morphisms i.e. mappings that preserve that structure.

Name Objects Morphisms/ Arrows

Sets sets functions
Posets | partially ordered sets | monotone functions
Spaces topological spaces continuous functions

Groups groups homomorphisms

Cat small categories functors

Colimits

e.g. LCMs

Yes, LCM does equal least common multiple, so it is the least of the common multiples. Thus
lem(9,15) = 45, lem(3,5) = 15, and so on.

We do need a bit more precision, of course. In the natural numbers, 1,2, ..., we say c is a
common multiple of a and b if ¢ is a multiple of a (so there is some d with ¢ = da), and ¢ is a
multiple of b (so there is some e with ¢ = eb). We note that in the diagram for Div(n) for any
n, we would have

a b

This diagram is a (co)cone on the pair a, b. It says c is a common multiple of a and b.



Now bring ‘least’ into play:

This type of situation can be abstracted and generalised to give the notion of ‘colimit’. The
‘input data’ for a colimit is a diagram D, that is a collection of some objects in a category C and
some morphisms between them. The output will be an object ColimD in C. Any (co)cone with
base the diagram D and vertex C say. Any such cocone factors through the colimiting cocone:

RVAVAN
\/

Cocone with base D and vertex C:
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The next step is where the colimit sits in this picture as ¢ = colimit D and the dotted arrows
represent new morphisms:




and stripping away the ‘old’ cocone gives the factorisation of the cocone via the colimit:

Intuitions:

From beyond (or above in our diagrams) D, an object ‘sees’ the diagram D ‘mediated’
through its colimit, i.e. if it tries to interact with the whole of D, it has to do it via colim D.

Example The lcm is the colimit of the diagram

a b

N

ged(a, b)

The ged, from a lower level of the hierarchy, ‘measures’ the interaction of a and b.
Some people have viewed biological organs as colimits of the diagrams of interacting cells
within them.

WARNING. Often colimits do not exist (in C) for some diagrams. However, one can add
colimits in a completion process, i.e. freely for a class of diagrams, and then compare these
‘virtual colimits’ with any that happen to exist. An example of this process would seem to
be the introduction in Neural Net Theory in the 1980s of the notion of ‘virtual neurons’ or
‘assemblages’ where an interacting subnet of ‘neurons’ exhibited behaviour as if it was a (more
powerful) single neuron. Perhaps the superstates considered by Bell and Holcombe [3] are
similarly ‘formal’ colimits. Instances of biological situations that lead to diagrams of this sort
and hence to colimits occur in the work of of Ehresmann and Vanbremersch, mentioned below in
a bit more detail, in Dioguardi [7] where they are used to model ‘the hepatone’, which is a model
of the inter-action of certain major cell types in the liver, and, generically, in the discussion of
‘glue’ in the study of integrative biology by the second author ([18, 19]).

It is important to note that a colimit has more structure than merely the sum of its individual
parts, since it depends on the arrows of the diagram D as well as the objects. Thus the
specification for a colimit object of the arrows which define it can be thought of as a ‘subdivision’
of the colimit object.

Much of this has been leading up to an introduction to the notion of a (categorical model
for a) hierarchical system as formulated by Ehresmann and Vanbremersch, [8].

They consider a basic category H with specified objects and arrows. A partition of Obj(H),
the set of objects of H into p + 1 classes (levels) labelled 0,1,... ,p such that each object A" at
level n + 1 (with n < p) is the colimit in H of a diagram A of linked objects at level n.

We refer the reader to the papers of Ehresmann and Vanbremersch and their web page
http://perso.wanadoo.fr/vbm-ehr/



and also to related pages such as that of Amiguet
http://iiun.unine.ch/people/mamiguet/index.html

Queries

(i) Why is A only made up of objects and links at level n? In ‘cell systems’, does one need
shared objects of lower levels within the diagram?

(ii) How can one handle computationally, or even mathematically, the properties of A’, given
knowledge of A?

Parting thoughts

a) To model manufacturing control systems, models such as Petri nets, timed event graphs,
etc. exist in numerous flavours, stochastic, fuzzy, etc. These seem ‘enriched versions’. Is there a
way of handling hierarchical systems in which these ‘enrichments’ play a significant role. Some
small progress has been made in this direction - but so far it is inconclusive. For a model of
computation using enriched categories see [11].

b) E-V hierarchical systems try to model cell systems and do consider weighted arrows.
Would a variant of their theory, but using (poset or lattice) enriched categories enable an amal-
gam of their rich conceptual basis with the rich computational machinery already developed
from a) above. Would that be useful?

c) Are there ‘formal language’ aspects of the hierarchical systems, capable of providing
models for cell systems?

There is a good practical interpretation of Linear Logic for manufacturing systems (Girault,
Thesis: LAAS, Toulouse 1997,[12]) Can such a logic be found for Biological Systems? What
should it entail?

d) What might be a feasible successful biological model in the above context? Recall that
fractals have been considered successful because they showed that complex variation could result
from a very simple model. However, many fractals are very simple, since they are defined by
iterated function systems, based on iterates of a single map. Examples need to be develop of
the next level of complexity, where also some actual computation, rather than experimentation,
is feasible because of the algebraic conditions imposed by the structure of the system. Thus
a research programme would be to combine the algebra of rewriting [2], which considers the
consequences of rules, with some continuous variation as in fractals, to see how a range of
‘colimit structures’ can develop. A generalisation of rewriting to categories and to actions of
categories is given in [4].

e) We should also note the work of Dampney and Johnson on information systems, [6],
which showed that simple commutative diagram considerations could have useful consequences
in simplifying a complex system (and so saving money). Since efficiency is of importance for
biological systems, we would hope to find examples of analogous considerations.

f) Another potential area for development is that of ‘Higher Dimensional Algebra’, see the
Introduction given in [5]. This shows that one of the contributions of category theory is not
only to give a useful general language for describing structures but also, in a self reference
mode, that in order to describe the array of structures which have arisen in mathematics new
mathematical structures have been found needed, and that these structures have proved of
independent interest. Not only that, a crucial step in developing category theory is to have
an algebraic operation, composition of arrows, which is defined under a geometric condition,
that the source of one arrow is the target of the other. So one is led to envisage more general
kinds of compositions. An overall slogan in one aspect of the applications of these more general
structures was

Algebraic inverses to subdivision.

That is, we may know how to cut things up, subdivide them, but do we have an adequate algebra
which encodes the structure and rules which govern the behaviour of the result of putting them



together again? It was found, as is described with references to the literature in [5], that there
are forms of what are called multiple categories which do have convenient properties in some
situations in this regard. These ideas have led to new mathematics which has enabled new
descriptions and new computations not available by other means. The enriched categories to
which we referred earlier can also be regarded as forms of multiple categories.

The situation is even more elegant in that we generally think that composition is described
mathematically by forms of algebra. There is a growing body of mathematics called ‘co-algebra’
(see for example [14]) which seems to give a possible language for subdivision. The combina-
tion of these two strands of composition and subdivision could well be important for broader
applications in the future.

Another theme related to ‘algebraic inverses to subdivision’ is ‘non commutative methods for
local-to-global problems’. See [5] for an example of how a two-dimensional structure proposed
in 1932 for geometric purposes, and in which the operations were always defined, was found to
reduce to a commutative one. It is well known that one aspect of the foundation of quantum
mechanics was the introduction of non commutative operations: doing an observation A and
then an observation B will not necessarily give the same result as in the other order: in symbols,
we may have AB # BA. Higher dimensional algebra gives almost an embarasse de richesse of
such non commutative structures, through the use of operations which are defined only under
geometric conditions. It is still early days, but intuition suggests that we require a rich form of
mathematics, and one in which algebra is partly controlled by geometry, for new descriptions of
the richness of complication of life forms.

g) Finally, we mention that the idea of structures evolving over time can be incorporated in
categorical models by considering categories varying over time, so that the colimits evolve within
the categories. Further, forms of multiple categories have generalised notions of colimits, and so
of ways of building a ‘structure’ out of parts. Again, we can consider adding a time parameter
on such a multiple category, so that it and its internal structures are evolving with time.

Conclusion

We hope that pointing out the existence of this categorical mathematics will help the for-
mulation of applications and also suggest ways to new forms of mathematics required for the
biological applications.
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