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Higher homotopy groups
are abelian

Theorem
If G is a set with two monoid structures ◦1, ◦2 satisfying
(*): each is a morphism for the other,
then the structures coincide and are abelian.

Proof Condition (*) can be phrased as: for all x , y , z ,w ∈ G

(x ◦1 y) ◦2 (z ◦1 w) = (x ◦2 z) ◦1 (y ◦1 w). (1)

or that there is only one way of reading[
x z
y w

]
1

2

��
//

(2)
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Higher homotopy groups
are abelian

Now we check in turn:
e1 = e2 = e, say. [

e1 e2
e2 e1

]
1

2

��
//

◦1 = ◦2 = ◦, say [
x e
e y

]
1

2

��
//

◦ is abelian [
e x
y e

]
1

2

��
//
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Boundary of a simplex

Classic formula for the boundary of a simplex:
If x has dimension n, ∂ix is its ith face, then

dnx =
n∑

i=0

(−1)i∂ix ,

This replaces older formulae involving orientation. It works in
abelian situations, chain complexes, is related to integration
theory, and it is easy to prove

dn−1dn = 0.

So you get homology groups

Hn = Ker dn/Im dn+1.
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Homotopy addition lemma

This also gives ‘the boundary of a simplex’, but it takes
account also of:
• a set of base points (the vertices of the simplex);
• operators of dimension 1 on dimensions > 2;
• nonabelian structures in dimensions 1 and 2.
In dimension 1, we have end points:

0
x // 1 (HAL1-diagram)

0 = ∂1x , 1 = ∂0x .
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Homotopy addition lemma

In dimension 2 we have a groupoid rule:

δ2x = −∂1x + ∂2x + ∂0x , (HAL2)

which is represented by the diagram

2

0

c

@@

a
//

x

1

b

^^

(HAL2-diagram)

and the easy to understand formula (HAL2) says that

δ2x = −c + a + b
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Homotopy addition lemma

In dimension 3 we have the nonabelian rule:

δ3x = (∂3x)u3 − ∂0x − ∂2x + ∂1x . (HAL3)

Note that in HAL3 we have an exponent u3: this is given by
f = ∂20x .The necessity for this is that our convention is that
each n-simplex x has as base point its last vertex ∂n0x . Thus
the base point of the above 3-simplex x is 3, while the base
point of ∂0x is 2. The exponent f relocates ∂0x to have base
point at 3, and so obtains a well defined formula.
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Homotopy addition lemma
Understanding of this is helped by considering the diagram

x :=

3

2

f

OO

0

d

GG

c

@@

a
// 1

b

^^
e

WW

(HAL3-diagram)

We have the groupoid formula

−f +(−c+a+b)+f−(−e+b+f )−(−d+a+e)+(−d+c+f ) = 0.

This is a translation of the rule δ2δ3 = 0, provided we assume

δ2(y f ) = −f + δ2y + f ,

which is the first rule for a crossed module.
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Homotopy addition lemma

In dimension n > 4 we have the abelian rule, but still with
operators:

δnx = (∂nx)un +
n−1∑
i=0

(−1)n−i∂ix , (HAL> 4)

where unx = ∂n−1
0 x . These, or analogous, formulae underly

much nonabelian cohomology theory.
The rule δn−1δn = 0 is straightforward to verify for n > 4,
through working in abelian groups,but for n = 4 we require the
second crossed module rule, that for x , y of dimension 2

−y + x + y = xδ2y .
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Homotopy addition lemma

In the right context, the HAL is an inductive cone formula.

δnx = (∂nx)un − formula in dimension n − 1.

The context for these formulae is the notion of crossed
complex.
These are due to Blakers (1948), Whitehead (1949), and PJH
and I set up a rich algebraic theory of these so that they can be
used for calculation expression.
The HAL is then proved purely algebraically, and one also
proves they model the topology.
That is the hard bit!
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Commutative squares

The notion of commutative square is easy:

c //

a

��

d

��
b

//

is easily translated to
ab = cd .

One can easily prove:
Any composition of commutative squares is commutative.
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Commutative cubes?

What does it mean for the faces of a cube to commute?

//

��

��

��

��

��

//

��

//

�� ��//

2

1

3��
//
%%
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Commutative cube

A cube has six faces. We cannot equate:

∂−2 ∂+3

∂+1

?
=

∂−1

∂−3 ∂+2

We have to fill in and expand out

∂−2 ∂+3

∂+1

=
∂−1

∂−3 ∂+2
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Connections

Need some special squares called thin:(
1 1

1
1

) (
a 1

1
a

) (
1 b

b
1

)
or ε2a or ε1b

(
a a

1
1

) (
1 1

a
a
)

These are
connections
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Laws for Connections

With these one can prove:
Any composition of commutative 3-cubes is commutative.
Generalisations and broader context by Philip Higgins TAC,
2005.
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2-dimensional rewriting

Assuming ab = cd we want to prove the following:

c d

a b
=

a c

b d
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2-dimensional rewriting

To prove this we construct a common ‘subdivision’. One that is
appropriate for this case is:

c

d

a c

b d

a

b
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2-dimensional rewriting

From this diagram, we may compose parts of the second and
third rows using the transport law and then rearrange things
once more, getting the left hand side of the above as indicated
below

c

d

ab
c

cd
d

a

a

b

b

=

c

d

c d

a

a

b

b

.
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Higher dimensional algebra

Algebraic systems of an hierarchical nature, with operations
whose domains are defined under geometric conditions.
Applications to higher dimensional, nonabelian, local-to-global
problems.
Able to express algebraic inverses to subdivision.
Applications to computer science, e.g. concurrency.
Higher order rewriting, including logged rewriting.
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