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Introduction
IN a previous paper (4) I defined ten product topologies o n l x T . In
this paper five of these products are applied to problems on function
spaces. All spaces will be Hausdorff spaces.

The exponential law for function spaces with the compact-open topo-
logy is discussed in § 1. The main result (Theorem 1.6) is that the spaces
XZxY and (XY)Z are homeomorphic for all X, Y, Z (in this paper
ZxY will denote the product ZxsY defined in (4), and ZxY will
denote the usual, cartesian, product). Hence the exponential law holds
for ZxY if Z x 7 = ZxF , and this contains and explains many
known results. We deduce also some new results. For example we
prove that the answer is 'no' to Dr. S. Wylie's question: are the spaces
(XT)Z and (Xz)r naturally homeomorphic?

In § 2 we discuss the law
(XxY)z = XzxYz.

This fails in general for products other than the cartesian.
.§ 3 is the most important section. It advertises the category of

Hausdorff spaces and functions continuous on compact subspaces (here
called k-continuous functions).

In § 4 the exponential law of § 3 is generalized to the category of
.if-ads.

I am indebted to a referee, whose comments stimulated a complete
revision and extension of the original draft, and to Dr. M. G. Barratt
for the inspiration of his conversation and example. I am also indebted
to Dr. W. F. Newns and Professor A. Dold for helpful conversations.

1. The exponential law
In this section X7 will mean the space of continuous functions Y -*• X

with the compact-open topology (8); XT is a Hausdorff space [(8)
Theorem 7.4].

In this paper we write Z x Y for the cartesian product, ZxwY for
the weak product, and ZxY for the product ZxsY of (4). We shall
Qn«rt. J. Math. Oxford (2), 16 (1964), 238-SO.
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use also the products ZxTY and ZxQY of (4). The only properties

of ZxY needed for the proof of Theorem 1.6 are the folio-wing:

[1.1] A function f: ZxY ->• X is continuous if and only if

f\{z}xY, f\ZxB

are continuous for each zof Z and compact subset B of Y.
[1.2] The natural map

(ZxY)xX^Zx(YxX)
is a homeomorphism.

[1.1] is immediate from the definition of the product ZxY [(4) § 3]
and in fact characterizes this product. [1.2], which is a special case of
Theorem 4.7 of (4), allows us to write ZxYxX for either of the spaces
(ZxY)xX, Zx(YxX).

The evaluation map e: XT X Y ->- X is defined by

<f,y)=f(y) {fexr,yeY).

LEMMA 1.3. The evaluation map is continuous as a function

e: XTxY-+X.

Proof. Any / of XT is continuous, and so e | {f}xY is continuous.
If B £ Y is compact, then e | Xr x B is continuous [(8) Theorem 7.5].
Hence e is continuous on X7 xY by [1.1].

We next show that the exponential map

/*: XZXY -+{XY)Z

is well denned. Let / e XZx T and let z e Z\ the formula

defines a function /A(/)(Z): Y -*• X.

LEMMA. 1.4. ^(/)(z) is continuous.

Proof. This function coincides with the composition

Y-U{z}xY^X

where i(y) = (z,y), y eY, and/ ' is the restriction of/. Obviously i is
continuous, and/ ' is continuous by [1.1]. The lemma follows.

By this lemma fi(f):Z~> XT is well denned.

LEMMA 1.5. y.{f) is continuous.

The proof is given at the end of this section. By this last lemma
(i: Xz*r -»- (Xr)z is well defined.
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THEOBEM 1.6. }i is a homeomorphism.

Proof. The proof uses a standard technique.
By Lemma 1.3 the evaluation map

is continuous. Hence, from Lemma 1.5, the maps

are continuous. But it is trivial to verify that ft" = \i. Hence \t is
continuous.

Again, by Lemma 1.3, the composition h = €(exl) is continuous,

where h maps &T)*xZxY-+X'xY-+X.

By Lemma 1.5, v = /x(A): [Xr)z^-XZxr

is continuous. It is trivial to verify that v is an inverse to /x. So fj, is
a homeomorphism.

LEMMA 1.7. The identity maps

ZxwY -+ ZxQY ^ ZxY ^ ZxTY ^ ZxY

are continuous, and induce embeddings

Xz x T -*- Xz x * T -y Xz x F -*• Xz x « T -*• Xz x w 7.

Proof. The first part follows from § 3 of (4). The second part follows
from the first and the fact that all the products have the same compact
subsets [(4) Proposition 3.3].

COBOLLABY 1.8. The exponential map for the cartesian product

fic: Xz*r -+(XY)Z

is well defined and a homeomorphism into. Given Z and Y, fxc is onto for
all X if and only if ZxY = ZxY.

Proof. The first part [which is due to Jackson (7)] follows immediately
from Theorem 1.6 and Lemma 1.7.

Obviously y.c is onto if ZxY = ZxY. Suppose conversely that
ZxY ^ ZxY, i.e. that the identity ZxY ->- ZxY is not continuous.
Let X = ZxY. Then /x(l) 6 (Xv)z cannot he in the image of /xc, and
so fj.c cannot be onto.

COBOLLABY 1.9. fic is onto if (i) Y is locally compact, or (ii) Z and Y
satisfy the first axiom of countabUity, or (iii) Z and Y are CW-complexes
such that ZxY is a CW -complex, or (iv) Z is locally compact and Y is
a k-space.
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Proof. By results of (4), ZxY = ZxY in each of these cases.
Cases (i) and (ii) are due to Fox (5), and (iii) is due to Barcus—Barratt

(3); case (iv) is due to Morita (10), as is the following result, which we
deduce immediately from Theorem 1.6 and [(4) Theorem 4.4].

COBOT.T.ABY 1.10. Let Z and Y be k-spaces. Then the exponential map
for the weak product • Xz**r -y (Xr)z

is defined and is a homeomorphism. Also the spaces (XT)Z and (Xz)r are
naturally homeomorphic.

For our next results we need the following theorem, whose proof is
given in §§ 5, 6 of (4):

THEOBEM 1.11. There are spaces Z, Y such that the natural maps

ZxTY^ZxY, YxZ^ZxY,

YxZ-+YxQZ
are not continuous.

In the example given, Z is the one-point compactification of a
countable discrete space, and Y = RJ, where R is the real line and J
is an uncountable discrete space.f

COBOLLABY 1.12. In the category of all spaces there is no natural map

(XT)Z-+(XZ)T.

Proof. Suppose that there is a natural map <f>: (XT)Z -*• (ZZ)T. Let
X = ZxY, where Z and Y are as in Theorem 1.11. Then

is the natural map, which is however not continuous.

COBOLLABY 1.13. There are spaces X, Y for which the evaluation map
tT: XT XTY -y X is not continuous: that is, there is a compact subset
A s XT such that f | i x 7 w not continuous.

Proof. The second statement is equivalent to the first since Xr X j F
has the weak topology with respect to {AxY, Xr x B) {A, B compact),
and e is always continuous on XT X B [(8) Theorem 7.5].

By Theorem 1.6 and Lemma 1.7, the exponential map

(ij.: XZ**T -+(Xr)z

is well denned. It is easy to see that y.T is onto if eT: XT XT Y -*• X fa
continuous.

t A simpler example is to take Z = I (the unit interval) and Y the unit interval
retopologized as in Lemma 5.5 of (11).

3695.2.15 B
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Let X = ZxY, where Z, Y are as in Theorem 1.11. Then

cannot lie in the image of fj.T- Thus \iT cannot be onto and eT cannot
be continuous.

COROLLARY 1.14. There are spaces Z, Y, X and a function

f: ZxY^X
such thai

(i) / is continuous on {z}xY, Zx {y} for all z of Z, y of Y,
(ii) / is continuous on all compact subsets of ZxY,

(iii) fi(f): Z -> Xr is well-defined but not continuous.

Proof. Since ZXQY has the weak topology with respect to

{C, {z} xY,Zx{y}} (C compact, zeZ.yeY),

(i) and (ii) are together equivalent to the continuity of/: Z X Q Y -> X.
Given tha t / i s continuous, we can prove as in Lemma 1.4 that

is well denned.
Let Z, Y be the Y, Z respectively of Theorem 1.11, so that the identity

ZxY ^ ZXQY ia not continuous. Let X = ZxQY, and let
/ = 1: ZXQY^X.

Then /^~VQ(/) *B n°t continuous, and so fj.Q(f) cannot be continuous.
Remark 1.15. The exponential law is valid also for the product

Z x D Y of (4) and the topology of pointwise convergence on XT

(ZxDY has the weak topology with respect to

{{z}xY, Zx{y}:z<=Z,yeY}).

The proof is similar to, but simpler than that of Theorem 1.6. I do
not know of other function space and product topologies for which the
exponential law is valid.

Proof of Lemma 1.5. The following proof is closely related to the
usual proof that fj.c is well-defined [cf. (5), (2)].

Let g = /*(/): Z -+ XY. Let W = M(B, U) be a sub-basic set for
the compact-open topology on Xr: thus B c Y is compact, U £ X
is open, and W = {heX^: h(B) c U}.

We prove g~1( W) is open in Z.
Since B is compact,

k=f\ZxB:ZxB-+X
is continuous [1.1], and therefore V = k-l(U) is open in Zx B.
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Let zeg-^W). Then {z}xB £ V. By a standard argument on
compact sets [(8) Theorem 5.12] there is an open set V £ Z such that
zeV and F x B s U'. This implies that zeV c g-x(W), and so that

is open.

2. Diagonal maps
For most of this section XT will denote simply the set of continuous

functions Y -+ X.
The diagonal map d: X ->- X x X is denned by d(x) = (x, i ) (x e X).

Then d is continuous, and we are interested in conditions for d to be
continuous when XxX has topologies other than the cartesian. I t is
convenient to give some simple, and probably well-known, facts in full
generality.

By a natural product of spaces is meant for each X, Y & space X x E Y,
with underlying set XxY, and such that:

(i) the projections px: XxzY ->• X, p2: Xx^Y -+ Y are continuous,
(ii) if f:X^>-X', g:Y->-Y' are continuous, then the product map

fX^g: X X-rY ->• X' x LY' is continuous.

For such a product the natural injection

Pz: (XXxY)z-+XzxYz

is denned by
Pz(h) = (Plh, Pth), he(XxzY)z.

PROPOSITION 2.1. Given Z, p% is onto for all X, Y if and only if the
diagonal map dz: Z -*• Zx^Z is continuous.

Proof. If dz is continuous, then the formula

defines a function TZ : Xz X Yz -+ (X x s Y)z.

It is easily seen that TJ. is an inverse to pz; hence p-% is onto.
Conversely, if pz is onto, then it has an inverse TE. Let X = Y = Z

and let 1: Z ->• Z be the identity map. Then

and so d\ is continuous.

PROPOSITION 2.2. Let X, Y be spaces such that XxzY ^ XxY, and
let Z = XxY. The diagonal map dz: Z -> ZXZZ is not continuous.

Proof. The cartesian product has the smallest topology such that the
projections are continuous. Therefore 1: XxzY ^- XxY is con-
tinuous, and so XxzY ^ XxY implies that 1: XxY->• XxzY is
not continuous.
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The map p: (XxY)z-+ XzxTz is a bijection. Let Z = XxY;
then p(l) cannot lie in the image of p^. So p r is not onto, and
&%: Z -»- Zx-^Z is not continuous.

The question now arises: when is d: Z->• ZxZ continuous for the
product topologies defined in (4) ? This seems a difficult question except
for the products xw, X R, XP, XK-, XP., when d is continuous if
and only if Z is a i-space. This fact follows easily from the proposition:

PROPOSITION 2.3. The following statements are equivalent:

(i) Z is a k-space,
(ii) djp-. Z -> Zxw Z is continuous,

(iii) dR: Z -*• ZxRZ is continuous.

Proof. We prove that (i) => (ii) => (iii) => (i).
By § 2 of (4) there is a functor k from spaces to i-spaces such that

XxwY = k(XxY) and Z is a fc-space if and only if Z = kZ. Now
d: Z ->• Zx Z is continuous, and therefore

k(d): kZ-+ZxwZ

is continuous. Hence, if Z is a 4-space, d^: Z -*• Zxw Z is continuous.
Thus (i) => (ii).

The identity ZxwZ-> ZxRZ is continuous; therefore (ii) => (iii).
Let dR: Z -*• ZxRZ be continuous, and let A £ Z be closed in kZ.

Then for each compact subset C g Z, A n C is closed in C, and there-
f o r e (ZxA)n(ZxC) = Zx(AnC)

is closed in Z x C , Hence by definition of ZxRZ, ZxA is closed in
ZxRZ. Therefore A = ^ ' ( Z x 4 ) is closed in Z. So Z = kZ.

Remark 2.4. Let the function spaces be given the compact-open
topology. Then, as is well known, p\ (XxY)z -*• XzxYz is a homeo-
morphism. However

is in general not even continuous.
For example, let X E = X T, let X = Y be a A;-space such that

XxTX =£XxX [cf. (4) Proposition 5.3], and let Z have exactly
two elements. Since Wz is then homeomorphic to W X W for any W,
pT induces a map

p': (XxTX)x(XxTX)-»(XxX)xT(XxX)

such that p'fo. x%, x3, xt) = (xlt x3, xs, xt) (xt e X).
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In the commutative diagram

XxX-^(XxTX)x(XxTX)

dT\T \ P
\
{XxX)XT(XxX)

d' = dj, XcLp. Then d' is continuous [Proposition 2.3 and Lemma 1.7],
but dT is not continuous [Proposition 2.2]. Therefore p, and hence also
pT, is not continuous. These results show that we cannot obtain a con-
venient category of spaces simply by changing the product topology.

The considerations of this section were suggested by remarks of the
referee.

3. ^-continuous functions
The results of §§ 1, 2 show that the category of Hausdorff spaces and

continuous maps does not have all the formal properties one would like.
Specifically, there is no product topology and function-space topology
such that

F X F = (F)Z, (XxY)z = XzxYz

for all X, Y, Z. (Another difficulty, discussed in (4), is that the cartesian
produot of identification maps is not, in general, an identification map.)

In this section we show that these difficulties disappear in the category
JT of Hausdorff spaces and functions continuous on compact subspaces.
These functions have been called 'weakly continuous'; we suggest in-
stead the term 'fc-continuous'. It is possible to argue on intuitive
grounds that these ^-continuous functions are to be preferred to the
continuous functions; in any case, there is no doubt about their ad-
vantages in praotice.

A function / : X -*• Y is fc-continuous if and only if / : kX -*• kY is
continuous (where kX is X with the weak topology with respect to
compact subspaces). So instead of generalizing from continuous func-
tions to ^-continuous functions we could instead replace each space X
by kX. This would entail replacing the usual subspace, product, and
function-space topologies by the corresponding weak topologies. But
it is more convenient to use the category Jf*, and nothing is lost by
this since the functor k sending X to kX defines an equivalence between
JTand the category JT' of fc-spaces and continuous functions.!

•f It may be convenient to replace some spaces X by kX •• for example, to use
the weak product for the product of CW-complexes.



246 R. BROWN

We now define some useful concepts in JT. A map / : X -*• Y in JT
is a k-homeomorphism if/ is an equivalence in XT, which means that
/ i s a ̂ -continuous bijection with i-continuous inverse. A map/: X -*• Y
is a Jc-identification map if for all Z and all functions g: Y -*• Z, g is
^-continuous if gfie ^-continuous. It is easily proved that / : X -> Y is
a ^-identification map if and only if k(f): kX -*• kY is an identification
map.

The ten products defined in (4) are all equivalent in the category X',
and so it does not matter which one we use. We therefore make the
obvious choice, and use the cartesian product. This product is a functor
in Jf since if / , g are ̂ -continuous, then k(fxg) = (kf)xw(kg) [(4)
Proposition 2.8] is continuous, and so fxg is ^-continuous.

PROPOSITION 3.1. If f, g are k-identification maps, then fxg is a k-
identificaiion map.

Proof. Since kf, kg are identification maps, so is kfxwkg [(4) Corol-
lary 4.9]. But kfxwkg = k(fxg) [(4) Proposition 2.8]. Hence fxg
is a ^-identification map.

In this and the next section Xr will denote the space of ^-continuous
functions Y -> X with the compact-open topology. The usual function
space of continuous functions Y -> X will be denoted by F(Y, X); since
Y and kY have the same compact subspaces, we have the equality of
8 p a c e s Xr = F(kY, X). (3.2)

THEOKEM 3.3. The exponential map

M: xZxr -+(XY)Z

is defined and is a homeomorphism.

Proof. By Corollary 1.10 the exponential map

HW: F(kZ X w kY, X) -+ F(kZ, F(kY, X))

is a homeomorphism. The theorem follows from (3.2) and the fact that
kZxwkY = k{ZxY).

We now show that Xr is a functor in X and in Y. Let / : W -*• X,
g: Y -> Z be A-continuous functions. By composition, these functions
induce functions

/ F . jpr -+XT, X°:Xz-+Xr.

PROPOSITION 3.4. fT is k-continuous, and X° is continuous.

Proof. Let / ' be the composition

WY X Y - ^ W -^U X.
Then/ ' is ̂ -continuous, and hence so i s / 7 = yn(/'): Wr -y Xr.
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A similar argument shows that X" is fc-continuous. But the stronger
result that X° is continuous is eaeily proved using the definition of the
compact-open topology.

We now suppose that g: Y -*• Z is fe-continuous and onto. Then
Xe: Xz -*• Xr is continuous and one-to-one.

PROPOSITION 3.5. If g is a proper map, then X" is a homeomorphism
into.f If g is a k-identificaiion map, then X" is a k-homeomorphism into.

Proof. Let H be the image of h = X", and let j : H -*• Xz be the
inverse of h.

We suppose first that g is a proper map, i.e. that
^(compact) = compact.

Let M(C,U) = {ueXz:u(C) £ U)
be a sub-basic set for the compact-open topology on Xz. Then

rl{M{C, U)) = {ugeX7:us Xz, u(C) c U}

= {ugeXT:ueXz, ugg-^C) £ U}
= {veH:vg-HC) £ U},

which is a sub-basic set for the compact-open topology on H. Thus j
is continuous, and A is a homeomorphism into.

We now suppose that g is a fc-identification map. In the following
diagram, 1 xg is a ^-identification map (Proposition 3.1),

1X0

HxZ
e is ^-continuous and e(l X g)~x is single-valued. Hence there is a unique
map f: HxZ -*• X such that j ' ( l xg) = e, a n d / is fc-continuous. But
j = ix(j'); so j is fc-oontinuous, and h is a fc-homeomorphism into.

The following useful propositions are easily proved using (3.2):

PROPOSITION 3.6. The natural map

P: (XxY)z-+XzxYz

is a homeomorphism.

PROPOSITION 3.7. Let Z u Y be the disjoint union of spaces Z and Y

The natural map ^. x z v r _+xzxXr

is a homeomorphism.
(It is clear that k(Z u Y) = kZ U kY.)

f W. F. Newna las pointed out that this holds if g satisfies the condition : for
each compact set C £ Z there is a compact set B £ Y such that g{B) = C.
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We now discuss homotopies in CfT. Let /, g: Y -*• X be maps in Jf";
a homotopy F:f~g is defined as usual except that F: YxI-*-X
need only be ^-continuous. From this definition of homotopy we obtain
notions of domination, homotopy equivalence, deformation retract, etc.

PROPOSITION 3.8. Ltt F be a homotopy f ~ g: Y -> X. For any space
Z, F induces homotopies fz ~ gz: Yz -> Xz and Z'~Z<>:ZX^ ZY.

Proof. The composition F'

is ^-continuous (T is the twisting map), and it is easily checked that
/x(F') :YzxI^Xzis& homotopy fz ~ gz.

The composition F"

Z^xIxY——+ ZxxYxI . F x l — + Z
is i-continuous, and it is easily checked that

is a homotopy Zf ci Ze.

COBOLLAEY 3.9. In the category Jf" the homotopy type of XY is a
homotopy invariant of X, and of Y.

For other applications of this kind of technique, we refer the reader
to (11). It is also possible to generalize many theorems in homotopy
theory from locally compact spaces to arbitrary spaces, or from
countable CW-complexes to arbitrary CW-complexes, by use of these
methods.

4. .if-ads
In this section we generalize the theorem and propositions 3.3, 3.6,

3.7 to the category of 3f-ads (9), where M is an arbitrary indexing set.
The theory of .if-ads has something in common with carrier theory
(12).

The motivation of the definitions which follow is in part obtained
from the theory of spaces with base point. L, M, N will denote index-
ing sets, possibly empty. An 'M-aA' X = (X; M) will consist of a space
X and a family {Xm}mtM of snbspaces of X; (X;<f>) will mean the same
as X. If m is an integer, then an ra-ad will mean an Jlf-ad in which
M = {1,2, . . . ,TO-1}.

The Jlf-ads are the objects of the category of 3f-ads, in which a map
/: X -*• Y of M-ads X, Y will be a ^-continuous function /: X -*• Y such
that/(Xm) <=Ym(meM).
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The restriction X | A of an M-ad X to a subspace A c X is the M-ad
consisting of I f l i and the family {Xm n A}ni£SJ. The disjoint union
XuY of if-ads X, Y is the .if-ad consisting of the disjoint union X U F
and the family {Xm U Tm}nteM. The product X#Y of two if-ads is the
if-ad consisting of X X Y and the family {Xm x F ^ ^ ^ . The smashed
product X^c Y of two if-ads is the if-ad consisting of X X F and the
family {XmxYuXxYm}m£M. If if = <£ then X * F = X # F = X x F .

The category of spaces with base point is a subcategory of the
category of 2-ads. However, the smashed product as defined here of
spaces with base point X, Y is a 2-ad but is not a space with base point.
The usual smashed product is of course obtained by shrinking the in-
dexed subspace of X^cY to a point.

The function space XY, where X, Y are if-ads, is the space of maps
of if-ads Y -»• X with the compact-open topology. The if -ad of maps
Y ->• X is the if-ad YAX whose total space is XY and whose family
of subspaces is

Let X, Y, Z be if-ads.
THEOREM 4.1. The exponential map induces an isomorphism of M-ads

p: (Z* Y) fa X -> Z fa (Y h X).
Proof. From the formula

/*(/)(*)(») =f(z,y) ( / e I Z x F , zeZ.yeY),
it is easily seen that the exponential map XZxY -> (XT)Z induces a
homeomorphism ^. XZXY _+^ fa X)z. (4.2)

The space XZXY has indexed subspaces
( X | X J « Y (meM)

and (Y fa X)r has indexed subspaces

{(Y * X) | (X | X m H z = {Y fa (X | XJ} Z (m e if).

So (4.2) implies that /x maps the indexed subspaces of XZXY onto the
correct images. This completes the proof.

We now use the natural homeomorphisms p, a of Propositions 3.6,
3.7. Let X, Y, Z be if-ads.

THEOREM 4.3. p and a induce isomorphisms of M-ads
p-.Zfa (X#Y) -» (Z fa X)#(Z * Y),
a : ( Z u Y ) * X ^ ( Z r h X)#(Y fa X).

The proof is simple and is left to the reader.
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