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Abstract

Part of the title of this article is taken from writings of Einstein. which argues that we need to exercise
our ability to analyse familiar concepts in science, and to demonstrate the conditions on which their justi-
fication and usefulness depend, and the way in which these developed, little by little . . .. The aim is to do
this for the concepts of (i) the fundamental group of a pointed space, due to Poincaré; (ii) the fundamental
groupoid of a space; (iii) the fundamental groupoid of a space with a set of base points, introduced by the
author in 1967; and (iv) the search for higher dimensional versions of the fundamental group.

The history goes back at least to the ICM meeting in Zürich in 1932; the initial negative reactions to the
seminar by E. Čech on higher homotopy groups; then the subsequent work of Hurewicz on these groups;
the influence of this and subsequent work on the notion of space in topology; and also generalisations of
the theorem of Van Kampen.

Introduction

Part of the title of this article is taken from writings of Einstein1 (1879-1955) in the correspondence published
in [24]:

. . . the following questions must burningly interest me as a disciple of science: What goal will
be reached by the science to which I am dedicating myself? What is essential and what is based
only on the accidents of development? . . . Concepts which have proved useful for ordering things
easily assume so great an authority over us, that we forget their terrestrial origin and accept them
as unalterable facts. . . . It is therefore not just an idle game to exercise our ability to analyse
familiar concepts, and to demonstrate the conditions on which their justification and usefulness
depend, and the way in which these developed, little by little . . .

This quotation is about science, rather than mathematics, and it is well known for example in physics that
there are still fundamental questions, such as the nature of dark matter, to answer. There should be awareness
in mathematics that there are still some basic questions which have failed to be pursued for decades; thus we
need to think also of educational methods of encouraging their pursuit.

1More information on most of the people mentioned in this article may be found in the web site https://mathshistory.
st-andrews.ac.uk/Biographies/.
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1 Homotopy groups at the ICM Zürich, 1932

Why am I considering this ancient meeting? Surely we have advanced since then? And the basic ideas have
surely long been totally sorted?

Many mathematicians, especially Alexander Grothendieck (1928-2014), have shown us that basic ideas
can be looked at again and in some cases renewed.

The main theme with which I am concerned in this paper is little discussed today, but is stated in [32,
p.98]: it involves the introduction by the well respected topologist E. Čech (1893-1960) of homotopy groups
πn(X, x) of a pointed space (X, x), and which were proved by him to be abelian for n > 1.

But it was argued that these groups were inappropriate for what was a key theme at the time, the develop-
ment of higher dimensional versions of the fundamental group π1(X, x) of a pointed space as defined by H.
Poincaré (1854-1912). In many of the known applications of the fundamental group in complex analysis and
differential equations, the largely nonabelian nature of the fundamental group was a key factor.

Because of this abelian property of higher homotopy groups, Čech was persuaded by Heinz Hopf (1894-
1971) to withdraw his paper, so that only a small paragraph appeared in the Proceeding [20]: However, the
abelian homology groups Hn(X) were known at the time to be well defined for any space X , and that if X
was path connected, then H1(X) was isomorphic to the fundamental group π1(X, x) made abelian. Indeed P.
Alexandrov (1896-1998) was reported to have exclaimed: ”But my dear Čech, how can they be anything but
the homology groups?” 2

Remark 1.1 It is useful to give for n = 2 and in a modern form the argument for the abelian nature of the
homotopy groups π2(X, x).

Proof We write I2 for the unit square [0.1]2, and define G = π2(X, x) as the set of homotopy classes rel the
boundary of I2 of maps I2 → X which take all of the boundary ∂I2 of I2 to the base point x. It is then easy
to define, analogously to the fundamental group, two compositions in “directions” 1 and 2 which we write
as a ◦1 b, a ◦2 b. Both compositions have the structure of a group. We also have for these classes a property
called the “interchange law”, that each of these compositions is a morphism for the other: that is, for any
a, b, c, d ∈ G

(a ◦1 b) ◦2 (c ◦1 d) = (a ◦2 c) ◦1 (b ◦2 d) (1)

which, by writing [
a
b

]
= a ◦1 b,

[
a c

]
= a ◦2 c

can be interpreted in matrix notation as that there is only one interpretation of the matrix of compositions[
a c
b d

]
.

1

2

��
//

In this way a “2-dimensional formula” is easier to interpret than the “1-dimensional formula” (1).

Now let e1, e2 be the identities for ◦1, ◦2. Considering the matrix of compositions[
e1 e2
e2 e1

]
2I heard of this comment in Tbilisi in 1987 from G. Chogoshvili (1914-1998) whose doctoral supervisor was Alexandrov.

Compare also [1].It should also be said that Alexandrov and Hopf were two of the most respected topologists: their standing is
shown by their invitation by S. Lefschetz (1884-1972) to spend the academic year 1926 in Princeton.
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gives immediately that e1 = e2. So we write e for either. Now interpreting in turn the matrices[
a e
e b

] [
e a
b e

]
gives first that a ◦1 b = a ◦2 b, so each are written ab, and second that ab = ba. This can be interpreted as
“higher dimensional groups are abelian groups”.3

Remark 1.2 Note however that this argument fails if the composition e1 ◦2 e2 is not defined. This is relevant
to Section 3.

W. Hurewicz (1906-1956) was at this ICM. With the publication of two notes [31] which shed light on
the relation of the homotopy groups to homology groups, the interest in these homotopy groups started;
with the growing study of the complications of the homotopy groups of spheres4, which became seen as a
major problem in algebraic topology, the idea of generalisations of the nonabelian fundamental group became
disregarded, and it became easier to think of “space” and the “space with base point” necessary to define the
homotopy groups, as in substance synonymous.

In 1968, Eldon Dyer (1934-1997), a topologist at CUNY, told me that Hopf told him in 1966 that the
history of homotopy theory showed the danger of people being regarded as “the kings” of a subject and so
key in deciding directions. There is a lot in this point, cf [1].

However it seems to be true that Aleksandrov and Hopf were correct in suggesting that the abelian ho-
motopy groups are not what one would really like for a higher dimensional generalisation of the fundamental
group! That does not mean that the higher homotopy groups are without interest; nor does it mean that the
search for such higher dimensional generalisations should be completely abandoned.

2 Determining fundamental groups

One reason for this interest in fundamental groups was their known use in important questions relating com-
plex analysis, covering spaces, integration and group theory. H.Seifert (1907-1996) proved useful relations
between simplicial complexes and fundamental groups, [38], and a paper by E. H. Van Kampen (1908-1942)
[33] gave a general result applied to the complement in a 3-manifold of an algebraic curve. However a modern
proof was given by R.H. Crowell (1928-2006) in [22] following lectures of R.H. Fox (1913-1973). The result
is often called the Van Kampen Theorem (VKT) and there are many excellent examples of applications of it
in expositions of algebraic topology.

The usual statement of the VKT for the fundamental group is as follows.

Theorem 2.1 Let the space X be the union of open sets U, V with intersection W ad assume U, V,W are
path connected. Let x ∈ W . Then the following diagram of fundamental groups and morphisms induced by
inclusions:

π1(W,x)

i
��

j // π1(V, x)

k
��

π1(U, x) h
// π1(X, x),

(2)

is a pushout diagram of groups.
3Thus the title of the article [5] is an inrtended misnomer.
4This can be seen by a web search on this topic.
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The term “pushout of groups” is defined entirely in terms of the notion of morphisms of groups; in terms of
the diagram (2) it says that if G is a group and f : π1(U, x)→ G, g : π1(V, x)→ G are morphisms of groups
such that fi = gj, then there is a unique morphism of groups φ : π1(X, x) → G such that φh = f, φg = k.
This property is called the “universal property” of a pushout, and proving it is called “verifying the universal
property”. In particular, such a verification need not involve a particular construction of the pushout, nor a
proof that all pushouts of morphisms of groups exist.

The limitation to path connected spaces and intersections in Theorem 2.1 is also very restrictive.5. Because
of the connectivity condition on W , this standard version of the Van Kampen Theorem for the fundamental
group of a pointed space did not compute the fundamental group of the circle, which is after all the basic
example in topology; the standard treatments instead make a detour into a small part of covering space theory
by introducing the “winding number” of the map p : R → S1, t 7→ e2πit from the reals to the circle, which
goes back to Poincaré in the 1890s.

3 From groups to groupoids

This is a theme with which I became involved in the years since 1965.

A groupoid is defined in modern terms as a small category in which every morphism is an isomorphism.
It can be considered as a “group with many identities”, or more formally as an algebraic structure with partial
algebraic operations, [28]. I like to define “higher dimensional algebra” as the study of partial algebraic
structures where the domains of the algebraic operations are defined by geometric conditions.

The simplest non trivial example of a groupoid is the groupoid say I which has two objects 0, 1 and only
one nontrivial arrow ι : 0 → 1. and hence also ι−1 : 1 → 0. This groupoid looks “trivial”, but it is in fact
the basic “transition operator”. Groupoids had been defined by Brandt (1886-1954) in 1926, [2], in extending
work of Gauss (1777-1815) on compositions of binary quadratic forms to the quaternionic case; their use in
topology had been initiated by K. Reidemeister (1893-1971) in his 1932 book, [37].

The use of the fundamental groupoid π1(X) of a space X , defined in terms of homotopy classes rel end
points of paths x→ y in X was a commonplace by the 1960s. Students find it quite easy to see the idea of a
path as a journey, not necessarily a return journey.

I was led to Philip Higgins’ (1924-2015) paper on groupoids, [29]. I noticed that he utilised pushouts of
groupoids, and so decided to insert in the book I was writing in 1965 an exercise on the Van Kampen Theorem
for the fundamental groupoid π1(X). Then I thought I had better write out a proof; when I had done so it
seemed so much better than my previous attempts that I decided to explore the relevance of groupoids.

It was still annoying that I could not deduce the fundamental group of the circle! I then realised we were
in a “Goldilocks situation”: one base point was too small; taking the whole space was too large; but for the
circle taking two base points was just right! So, we needed a definition of the fundamental groupoid π1(X,S)
for a set S of base points chosen according to the geometry of the situation: see the paper [3] and all editions
of [4], as well as [30]6

An inspiring conversation with G.W. Mackey (1916-2006) in 1967 at a Swansea BMC, where I gave an
invited talk on the fundamental groupoid, informed me of the notion of “virtual groups”, cf [35, 36] and their
relation to groupoids; then led me to extensive work of C. Ehresmann (1905-1979) and his school, all showing
that the idea of groupoid had much wider significance than I had suspected, cf [8]. See also more recent work

5Comments by Grothendieck on this restriction are quoted extensively in [6], see also [27, Section 2].
6For a discssion on this issue of many base poiits, see https://mathoverflow.net/questions/40945/.
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on for example ‘Lie groupoids, Conway groupoids, groupoids and physics’.

4 From groupoids to higher groupoids

As we have shown, “higher dimensional groups” are just abelian groups.

However this is no longer so for “higher dimensional groupoids”, [18].

It seemed to me in 1965 that some of the arguments for the VKT generalised to higher dimensions and
this was prematurely claimed as a theorem in [3].7

One of these arguments comes under the theme or slogan of “algebraic inverses to subdivision”.

↔

From left to right gives subdivision. From right to left should give composition. What we need for higher
dimensional, nonabelian, local-to-global problems is:

Algebraic Inverses to Subdivision.

This aspect is clearly more easily treated by cubical methods than the standard simplicial or globular ones.

One part of the proof of the VKT for the fundamental group, namely the uniqueness of a universal mor-
phism, is more easily expressed in terms of the double groupoid �G of commutative squares in a group or
groupoid G, which I first saw defined in [23]. The essence of its use is as follows: consider a diagram of
morphisms in a groupoid:

b

1 1

a

(3)

Suppose each individual square is commutative, and the two vertical outside edges are identities. Then we
easily deduce that a = b.

For the next dimension we therefore expect to need to know what is a “commutative cube”, and this is
expected to be in a double groupoid8

� //

��

�

��

�

??

//

��

�

??

��

� // �

� //

??

�

??

(4)

We want the “composed faces” to commute! What can this mean?

7It could be more correctly called “ ideas for a proof in search of a theorem”.
8More explanation is given in [9] of the way this may be given in a “double groupoid” of squares G in which the horizontal

edges Gh and vertical edges Gv come from the same groupoid: i.e. Gh = Gv .
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We might say the top face is the “composite” of the other faces: so fold them flat to give the left hand
diagram of Fig. 1, where the dotted lines show adjacent edges of a “cut”. We indicate how to glue these edges
back together in the right hand diagram of this Figure by means of extra squares which are a new kind of
“degeneracy”.

a b

a b−1

c−1

c d

d

a b

a b−1

c−1

c d

d

Figure 1: “Composing” five faces of a cube

Thus if we write the standard double groupoid identities in dimension 2 as

where a solid line indicates a constant edge, then the new types of square with commutative boundaries are
written

.

These new kinds of “degeneracies” were called connections in [18], because of a relation to path connections
in differential geometry. In a formal sense, and in all dimensions, they are constructed from the two functions
max,min : {0, 1} → {0, 1}.

It is explained in Section 8 of [9] how the introduction of these “connections” to the traditional theory
of cubical sets remedied some main perceived deficiences of the cubical as against the standard simplicial
theory, deficiences which had been known since 1955; yet the change allowed better control of homotopies
and higher homotopies (because of the rule Im × In ∼= Im+n). It crucially allowed “algebraic inverses to
subdivision”, and so possibilities for Higher Van Kampen Theorems, starting in dimensions 1, 2 in [12, Part
1], and continuing there in all dimensions, so giving what amounts to a rewrite of much traditional singular
and cellular algebraic topology.

We explain briefly the basic definition of π2(X,A, a). the second relative homotopy group of a based
pair; it is defined as the homotopy classes relative to a base point say 0 of I2, of maps I2 → X which take
{0} × I ∪ {0, 1} × I to a. The composition of such classes is in the direction 2:

a

a X X X X

a

X a

A A A A A

(5)

Whitehead proved that the boundary ∂ : π2(X,A, a) → π1(A, a) and an operation of the group π1(A, a) on
π2(X,A, a) have the structure of what he called a crossed module; these structures have proved important
in studying higher groupoids. He proved in [39, Section 16] what we call Whitehead’s free crossed module
theorem that in the case X is formed from A by attaching 2-cells, then this crossed module is free on the
characteristic maps of the 2-cells.

The definition of this crossed module involves choosing which vertex should be the base point of the
square and which edges of the square should map to the base point a, so that the remaining edge maps into
A. However it is a good principle to reduce, preferably completely, the number of choices used in basic
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definitions (though such choices are likely in developing consequences of the definitions). The paper [11],
submitted in 1975, defined for a triple of spacesX∗ = (X2, X1, X0) of spaces a structure %(X∗): this consisted
in dimension 0 ofX0 (as a set); in dimension 1 of π1(X1, X0); and in dimension 2 of homotopy classes relative
to the vertices of maps (I2, E, V ) → (X2, X1, X0), where E, V are the spaces of edges and vertices of the
standard square.9

This definition makes no choice of preferred direction. It is fairly easy and direct to prove that %(X∗) may
be given the structure of double groupoid with connection containing the crossed module over a groupoid
π2(X∗). That is, the proofs of the required properties of % to make it a 2-dimensional version of the fun-
damental group as sought in the 1930s are fairly easy but not entirely trivial. The longer task, 1965-1974,
was formulating the “correct” concepts, in the face of prejudice from some referees and editors. The proof
of the corresponding Van Kampen Theorem allows a nonabelian result in dimension 2 which substantially
generalises the work of Whitehead on free crossed modules: for example, it gives a result when X is formed
from A by attaching a cone on B, Whitehead’s case being B is a wedge of circles.

The paper [9] argues that one difficulty of obtaining such strict higher structures, and so colimits rather
than homotopy colimits, is the difficulty of working with “bare” topological spaces. In order to calculate an
invariant of a space one needs some information on that space; that information will have a certain structure
which needs to be used. Because of the variety of convex sets in dimensions higher than 1, there is a vari-
ety also of potentially relevant higher algebraic structures. It turns out that some of these are non trivially
equivalent, and can be described as “broad” and “narrow”. The broad ones are elegant and symmetric, and
useful for conjecturing and proving theorems; the narrow ones are useful for calculating and relating to clas-
sical methods; their non trivial equivalence allows one to get the best use of both. An example in [12] is the
treatment of cellular methods, using filtered spaces and the related algebraic structures of crossed complexes
and cubical ω-groupoids.

This is one explanation why the account in [12] can use and calculate with, strict rather than lax, i.e. up
to homotopy, algebraic structures. In comparison, the paper [14] gives a result for all Hausdorff spaces, but
so far has given no useful consequences.

To get nearer to a fully nonabelian theory we so far have only the use of n-cubes of pointed spaces as in
[15, 16, 7]. It is this restriction to pointed spaces that is a kind of anomaly, and has been strongly criticised
by Grothendieck as not suitable for modelling in algebraic geometry. However, the paper [25] gives an
application to a well known problem in homotopy theory, the first non-vanishing homotopy group of an n-ad;
also the nonabelian tensor poduct of groups from [15] has become a flourishing topic in group theory (and
analogously for Lie algebras); a bibliography10 1952-2009 has 175 items.

See also [5].

It is now a commonplace that the further development of related higher structures are important for math-
ematics and particularly for applications in physics11. Note that the mathematical notion of group is deemed
fundamental to the idea of symmetry, whose implications range far and wide. The bijections of a set S form
a group Aut(S). The automorphisms Aut(G) of a group G form part of a crossed module χ : G→ Aut(G).
The automorphisms of a crossed module form part of a “crossed square” [10]. These structures of set, group,
crossed module, crossed square, are related to homotopy n-types for n = 0, 1, 2, 3.

The use in texts in English on algebraic topology of sets of base points for fundamental groupoids seems

9In that paper it was assumed that each loop in X0 is contractible in X1 but this later proved inconvenient and so the use of
homotopies fixed on the vertices of I2 and in general In was used in [12].

10See http://www.groupoids.org.uk/nonabtens.html
11This assertion is supported by a web search on “Institute of higher structures in maths”.
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currently restricted to [4, 12].

The argument over Čech’s seminar to the 1932 ICM seems now able to be resolved through this develop-
ment of groupoid and higher groupoid work, and he surely deserves credit for the first presentation on higher
homotopy groups, as reported in [1, 20, 32]12.

Another way of putting Einstein’s quote is that one should be wary of “received wisdom”.
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