
The Equivalence of ω-Groupoids and Cubical

T -Complexes

Ronald Brown and Philip J. Higgins∗

Introduction

The Seifert-van Kampen Theorem involves the category Top∗ of spaces
with base-point, the category Group of groups and the fundamental
group functor π1 : Top∗ → Group; the theorem asserts that the func-
tor π1 preserves certain special colimits.

The generalisation of this theorem to all dimensions thus requires
answers to three immediate questions, namely, what are the appropriate
generalisations of the category Top∗, the category Group and the functor
π1?

In [4, 5], where such a generalised Seifert-van Kampen Theorem is
proved, the answer given to the first question is simple: a space with
base-point is replaced by a filtered space

X∗ : X0 ⊆ X1 ⊆ · · · ⊆ Xn ⊆ · · · ⊆ X

such that each loop in X0 is contractible in X1.
However, the second question has a surprisingly rich and varied an-

swer, even embarrassingly so. The situation is summarised in the dia-
gram

(cubical T -complexes) // (ω-groupoids)oo

**VVVVVVVVVVV

²²

(∞-groupoids)

tthhhhhhhhhhh

(simplicial T -complexes) // (crossed complexes)oo

OO

44hhhhhhhhhhh

∗This is a LATEX version of the paper published in Cahiers de topologie et géometrie
différentielle, XXII (1981) 349-370.
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which shows the known explicit equivalences between five algebraic cat-
egories generalising the category of groups.

The category of crossed complexes plays a special rôle. A homotopy
functor π : (filtered spaces) → (crossed complexes) is easily defined and
is a fairly well known construction in homotopy theory (see [2, 5, 12]).
This functor replaces π1 in one version of our generalised Seifert-van
Kampen Theorem. Since colimits of crossed complexes can be com-
pletely described in terms of group presentations (see [5]), this is the
natural computational form of the theorem.

By contrast, the proof of this theorem (see [3] for a sketch exposition)
is carried out mainly in the category of ω-groupoids and uses in an
essential way the equivalence of categories

(ω-groupoids) ↔ (crossed complexes)

and also the transition

τ : (ω-groupoids) → (cubical T -complexes),

both of which were established in [4]. The object of the present paper
is to show that the transition τ is part of an equivalence (in fact an
isomorphism) of categories.

For the topologist, the interest of this purely algebraic result lies in
its relation to some familiar ideas. The proofs in [5] use the homotopy
ω-groupoid ρX∗ of the filtered space X∗. Here ρX∗ is related to the
singular cubical complex KX, and the fact that ρX∗ is also a T -complex
highlights an intriguing feature of singular complexes.

It is well known that the singular complex KX of a space X is
a Kan complex — a property that is usually expressed succinctly as
“every box in KX has a filler”. However, this property of KX is based
on the existence of retractions r : In → Jn

α,i where Jn
α,i is a box in In,

and so is a property of the models rather than the particular space X.
In particular, the fillers can be chosen simultaneously for all X so that
they are natural with respect to maps of X. Further, the retraction
r : In → Jn

α,i is unique up to homotopy rel Jn
α,i. This suggests the

potential usefulness of Kan complexes in which boxes have canonical
fillers satisfying suitable conditions.

Such an idea is realised in the notion of a T -complex in which certain
elements are designated “thin” and are required to satisfy Keith Dakin’s
axioms:

T1) Degenerate elements are thin;
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T2) Every box has a unique thin filler;

T3) If every face but one of a thin element is thin, then so is the
remaining face.

We prove here that every cubical T -complex admits the structure
of an ω-groupoid; this shows that the simple axioms for a T -complex
contain a wealth of algebraic information. Our proof uses a refinement
of the notion of collapsing which we call reduction, and the methods
formalise techniques implicit in Kan’s fundamental paper [10].

Keith Dakin’s original definition of a T -complex [7] was in terms of
simplicial sets, and was conceived as an abstraction of properties of the
nerve of a groupoid. Nicholas Ashley proved in [1] that the category
of simplicial T -complexes is also equivalent to the category of crossed
complexes. (At present, this seems to be the most difficult to prove of
the equivalences in the diagram above. It generalises the equivalence
between simplicial Abelian groups and chain complexes proved by Dold
and Kan [8, 10].) A fifth algebraic category, of ∞-groupoids, will be
defined in [6], and proved also equivalent to the category of crossed
complexes. (This seems to be the easiest of the equivalences.)

Thus we have an example, possibly unique, of five equationally de-
fined categories of (many-sorted) algebras which are non-trivially equiv-
alent. From an algebraic point of view the equivalences provide a useful
method of transferring concepts and constructions from crossed com-
plexes, where they are easily formulated, to the other four types of
structure, which are less well understood. (See, for example, [9].)

It is particularly appropriate that this paper, and its sequel [6],
should appear in the Proceedings of a conference in memory of Charles
Ehresmann, as he initiated the study of double and multiple categories
and felt clearly that these notions should have important applications
in Geometry and Algebra.

1 T -Complexes

Our methods involve complicated filling processes in special kinds of
Kan complexes, that is, cubical complexes satisfying Kan’s extension
condition [10]. We adopt the following conventions.

A cubical set ( = semi-cubical complex) K is a graded set (Kn)n>0

with face maps

∂α
i : Kn → Kn−1 (i = 1, 2, . . . , n; α = 0, 1)
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and degeneracy maps

εj : Kn−1 → Kn (i = 1, 2, . . . , n)

satisfying the usual cubical relations. But we shall also use cubical sets
without degeneracies and, in particular, In will denote the free cubical
set without degeneracies generated by a single cube cn of dimension n.
Subcomplexes A of In will again be without degeneracies and a (cubical)
map f : A → K, where K is a cubical set, will be a graded map pre-
serving face operators. If A, B are subcomplexes of Im, In, respectively,
then A×B will denote the cubical set (without degeneracies) such that
(A × B)n is the disjoint union of Ap × Bq for p + q = n, and the face
operators on Ap ×Bq are given by

∂α
i × 1 for i 6 p, and 1× ∂α

i−p for p < i 6 p + q.

Then Im×In is isomorphic to Im+n and we shall identify these whenever
convenient.

Let Jn
α,i be the subcomplex of In generated by all faces ∂β

j cn (β =
0, 1; j = 1, 2, . . . , n) of cn except ∂α

i cn. For any cubical set K, a cubical
map b : Jn

α,i → K is called a box in K, and an extension f : In → K of
b is called a filler of the box b. Equivalently, the box b is determined by
a set of 2n− 1 elements

xβ
j of Kn−1 (β = 0, 1; j = 1, 2, . . . , n; (β, j) 6= (α, i))

satisfying

∂γ
kxβ

j = ∂β
j−1x

γ
k for 1 6 k < j 6 n and (β, j), (γ, k) 6= (α, i).

A filler f of b is then determined by an element x (= f(cn)) of Kn

satisfying ∂β
j x = xβ

j for (β, j) 6= (α, i).
The following axioms (in a simplicial context) are due to Keith Dakin

[7].

Definition A T -complex is a cubical set K having in each dimension
n > 1 a set Tn ⊂ Kn of elements called thin and satisfying the axioms:

T1) Every degenerate element of K is thin;

T2) Every box in K has a unique thin filler;

T3) If t is a thin element of K and all its faces ∂β
j t except one are

thin, then this last face is also thin.
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Recall that a Kan complex is a cubical set in which every box has a
filler. Kan showed in [10] how one can define, for such a complex K, the
n-th homotopy group πn(K, x) for n > 1 and x ∈ Kn−1. We here extend
his methods to show that if K is a T -complex then it carries the structure
of an ω-groupoid as defined in [4]. We shall give the full definition of an
ω-groupoid later; for the present it is enough to say that the definition
requires that K admit groupoid structures +

1
, +

2
, . . . , +

n
in dimension n

and also “connections” Γ1,Γ2, . . . , Γn : Kn → Kn+1 satisfying a number
of laws. Our first aim is to construct the operations +

j
and prove their

basic properties.
As motivation for the construction, let x, y ∈ K1 satisfy ∂1

1x = ∂0
1y

and let e = ε1∂
1
1y. Let t ∈ T2 be the unique thin filler of the box

x

e

y

2

1

If we now define x +
1

y = ∂0
2t, it is not hard to see that K1 becomes a

groupoid with K0 as its set of vertices. (The proof of the associative law
requires the use of thin elements in dimension 3.) The laws for +

1
are

more conveniently proved if one also considers arbitrary quadruples of
elements x, y, z, w of K1 which fit together as in the diagram

x
2

w

1y

z

and for which there is a thin element t ∈ T with x, y, z, w as faces. (Such
quadruples are, in fact, precisely those for which x +

1
w = z +

1
y.) It is

this idea which we generalise to dimension n.
Let Sn

j be the subcomplex Ij−1 × İ2 × In−j of In+1. Thus Sn
j is

generated by four cubes of dimension n, namely ∂α
i cn+1 for α = 0, 1,

and i = j, j + 1. By a socket in a cubical set K is meant a cubical
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map s : Sn
j → K for some n, j. Such a socket is specified by j and four

elements x, y, z, w of Kn satisfying

(1) ∂0
j x = ∂0

j z, ∂1
j x = ∂0

j w, ∂1
j z = ∂0

j y, ∂1
j w = ∂1

1y,

as expressed in the picture

x

jy

z
w

j+1

and is written s = sj(x, y; z, w). For any cubical operator φ (i.e., any
composite of ∂α

i ’s and εj ’s) we abbreviate

(φx, φy; φz, φw) to φ(x, y; z, w).

An element u of Kn+1 is said to span the socket s = sj(x, y; z, w)
(where x, y, z, w ∈ Kn

satisfy (1)) if

(2) ∂0
j u = x, ∂1

j u = y, ∂0
j+1u = z, ∂1

j+1u = w.

The cubical laws imply that in this case

∂α
i u spans

{
sj−1∂

α
i (x, y; z, w) if i < j

sj∂
α
i−1(x, y; z, w) if i > j + 1

and

εiu spans

{
sj+1εi(x, y; z, w) if i 6 j

sjεi−1(x, y; z, w) if i > j.

Note also that u spans s if and only if the unique map û : In+1 → K
such that û(cn+1) = u is an extension of s : Sn

j → K.
Let s = sj(x, y; z, w) be a socket in Kn. A plug for s is an element t

of Kn+1 such that

(3) (i) t spans s, and

(ii) if ∆ is any cubical operator corresponding to a cube of
In+1 \ Sn

j then ∆t is thin.
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A more intuitive way of expressing (3)(ii) is that t and all its faces,
except possibly those which are x, y, z, w and their faces, are thin.

Not every socket admits a plug, but when it does the plug is unique,
as we shall show. Furthermore any socket which admits a plug is
uniquely determined by any three of the faces x, y, z, w. This crucial
result is most easily proved by refining the notion of collapse for sub-
complexes of In to that of “reduction” for pairs of subcomplexes. This
we do in the next section.

We note here that a cubical operator of In can be written uniquely
in standard form as

∆ = ∂α1
i1

∂α2
i2

. . . ∂αr
ir

where

αk = 0 or 1, 1 6 i1 < i2 < · · · < ir 6 n + 1 and 0 6 r 6 n + 1,

and that ∆ corresponds to a cube of In+1 \ Sn
j iff no ik is j or j + 1.

2 Reduction

By a pair of subcomplexes of In we mean an ordered pair (A,B) of sub-
complexes such that A ⊃ B. We say that a pair (A,B) is an elementary
reduction of (A′, B′), written (A′, B′) ↘e (A,B), if there is a p-cube x
in A′ (p > 1) and a (p− 1)-face y of x such that

(i) A ∪ x = A′, A ∩ x = ẋ and

(ii) B ∪ x = B′, B ∩ x = ẋ \ {y},
where x denotes the subcomplex generated by x, and ẋ = x \ {x}. Thus
for an elementary reduction, B is an elementary collapse of B′ with free
face y, but A “remembers” the free face.

We say that (A,B) is a reduction of (A′, B′) if (A,B) is obtainable
from (A′, B′) by a finite number (possibly 0) of elementary reductions.
Then B′ collapses to B while A “remembers” all the free faces of this
collapsing. We write (A′, B′) ↘ (A,B).

Before explaining the relevance of this to T -complexes, we give a
crucial example.

Proposition 1 If (A′, B′) reduces to (A,B), then (A′×I, B′×I) reduces
to (A× I, B × I) and (I ×A′, I ×B′) reduces to (I ×A, I ×B).
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Proof: It is sufficient to prove that if (A′, B′) ↘e (A,B), then

(A′ × I, B′ × I) ↘ (A× I,B × I).

So let

A′ = A ∪ x, A ∩ x = ẋ, B′ = B ∪ x, B ∩ x = ẋ \ {y}.

Then X = (x, c1) is a cube of B′ × I with Y = (y, c1) as a face. If we
delete X and Y from B′ × I (and X from A′ × I) we obtain

(A′ × I, B′ × I) ↘e (A× I ∪ x× İ , B × I ∪ x× İ).

Clearly this last pair can be reduced to (A× I, B× I) in two steps, first
by deletion of (x, 0) and (y, 0), then by deletion of (x, 1) and (y, 1). 2

Corollary 2 If 1 6 j 6 n, α = 0, 1, i = 1, 2, then

(In+1, In+1) ↘ (Ij−1 × I2 × In−j , Ij−1 × J2
α,i × In−j).

Proof: This is immediate from Proposition 1 since (I2, I2) ↘e (I2, J2
α,i).

2

Definition Given a pair (A,B) of subcomplexes of In, we say that
B supports A in dimension n if, given any T -complex K and any cubical
map g : B → K, there is a unique extension ḡ : In → K of g whose
values on In \A are all thin.

Proposition 3 If (In, In) ↘ (A,B), then B supports A in dimension
n.

Proof: Since In supports In, it is enough to show that B supports
A in dimension n whenever (A′, B′) ↘e (A,B) and B′ supports A′ in
dimension n. In this case we have

A′ = A ∪ x, A ∩ x = ẋ, B′ = B ∪ x, B ∩ x = ẋ \ {y}.

for some cube x and face y. If g : B → K is a given cubical map, then
g is defined on the box ẋ \ {y} but not on x or on y. Any extension ḡ of
g which takes thin values outside A must map x to a thin element and,
by axiom (T2), this determines ḡ(x) uniquely, giving a unique extension
ḡ : B′ → K. Since B′ supports A′, ḡ has a unique extension h : In → K
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which is thin outside A′. Since h(x) = ḡ(x) is thin, h is thin outside A,
as required. 2

It follows from Corollary 2 and Proposition 3 that the subcomplex Sn
j

of In+1 is supported in dimension n+1 by any of the four subcomplexes
Ij−1 × J2

α,i × In−j (α = 0, 1, i = 1, 2). We restate this fact in terms of
sockets and plugs.

Proposition 4 Let K be a T -complex and suppose that we are given any
three of x, y, z, w ∈ Kn satisfying two of the conditions (1) of Section 1
(namely the two which are meaningful). Then there is a unique fourth
element such that:

(i) x, y, z, w form a socket s = sj(x, y; z, w), and

(ii) there is a plug t = tj(x, y; z, w) spanning s.

Furthermore this plug t is uniquely determined by the three given ele-
ments.

3 The compositions +
j

The following proposition, which defines compositions +
j

in any T -complex

K, is an immediate consequence of Proposition 4.

Proposition 5 Let K be a T -complex and let x, y ∈ Kn satisfy

∂1
j x = ∂0

j y for some j, 1 6 j 6 n.

Then there is a unique element z = x +
j

y of Kn such that

(i) there is a socket s = sj(x, e; z, y) with e = εj∂
1
j y = εj∂

1
j z, and

(ii) this socket has a plug.

Further, the (partial) operation +
j

satisfies left and right cancellation

laws, that is, if x, y, z are related by z = x +
j

y, then any two of x, y, z

determine the third uniquely. 2
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x

j

j+1

j

yx+y

e

Further properties of these compositions depend on some elementary
properties of plugs in K. We assume that x, y, z, w ∈ Kn.

Proposition 6 If t = tj(x, y; z, w) is a plug, then ∂α
i t is a plug for

{
sj−1∂

α
i (x, y; z, w) if i < j

sj∂
α
i−1(x, y; z, w) if i > j + 1.

Proof: Certainly ∂α
i t spans the given socket. Suppose that i < j and

∆ = ∂α1
i1

∂α2
i2

. . . ∂αr
ir

is a cubical operator in standard form corresponding
to a cube of In+1 \ Sn

j−1, so that no ik is j − 1 or j. Then the standard
form of ∆∂α

i contains no ∂β
j or ∂β

j+1. Hence ∆∂α
i t is thin as required.

The case i > j + 1 is similar. 2

Proposition 7 If t = tj(x, y; z, w) is a plug, then εit is a plug for
{

sj+1εi(x, y; z, w) if i 6 j

sjεi−1(x, y; z, w) if i > j + 1.

Proof: Certainly εit spans the given socket. Suppose that i 6 j and
∆ = ∂α1

i1
∂α2

i2
. . . ∂αr

ir
is a cubical operator of In+2\Sn+1

j+1 in standard form,
so that no ik is j + 1 or j + 2. If no ik is i, then ∆εi is degenerate and
therefore ∆εit is thin by axiom (T1). If is = i then

∆εi = ∂α1
i1

. . . ∂
αs−1

is−1
∂

αs+1

is+1−1 . . . ∂αr
ir−1

and since i 6 j and is−1 < i < is+1 and no ik is j+1 or j+2, we see that
∆εi is a cubical operator of In+1 \ Sn

j . Thus ∆εit is thin, as required.
The case i > j + 1 is similar. (When i = j + 1, the form of εit is slightly
different and need not concern us.) 2

Applying Propositions 6 and 7 to the definition of +
j

in Proposition

5, we obtain immediately:
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Proposition 8 Let x, y ∈ Kn satisfy ∂1
j x = ∂0

j y. Then

∂0
j (x +

j
y) = ∂0

j x, ∂1
j (x +

j
y) = ∂1

j y,

∂α
i (x +

j
y) =





∂α
i x +

j−1
∂α

i y if i < j

∂α
i x +

j
∂α

i y if i > j

εi(x +
j

y) =





εix +
j+1

εiy if i 6 j

εix +
j

εiy if i > j

2

At this stage we can also prove that +
j

has appropriate left identities.

Proposition 9 Let y ∈ Kn and let f = εj∂
0
j y, e = εj∂

1
j y. Then

f +
j

y = y and tj(f, e; y, y) = εj+1y.

Also f +
j

f = f for any f of the form f = εjz.

Proof: The thin element t = εj+1y spans the socket sj(f, e; y, y). The
faces of t in all dimensions are degenerate (and therefore thin), except
those which are faces of ∂α

j+1t = y Therefore t = tj(f, e; y, y) and so
f +

j
y = y. In particular f +

f
f = f for any element f of the form

f = εjz. 2

We now make our first and crucial use of axiom (T3).

Proposition 10 Composites under +
j

of thin elements are thin.

Proof: Let z = x +
j

y in dimension n, where x and y are thin. Let

t = tj(x, e; z, y), where e = εj∂jy. Then all the n dimensional faces of t,
except possibly z, are thin. Since t is thin, axiom (T3) implies that z is
thin. 2

We use this result in the next proposition, which gives rules for
composing plugs and is vital for the rest of the proof.
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Proposition 11 (for illustrations, see the next page). (i) If

t = tj(x, y; z, w), t′ = tj(u, v; w, p)

are plugs, then t +
j+1

t′ is a plug for s = sj(x +
j

u, y +
j

v; z, p).

(ii) If
t = tj(x, y; z, w), t′ = tj(y, s; q, r)

are plugs, then t +
j

t′ is a plug for s = sj(x, s; z +
j

q, w +
j

r).

(iii) Let
t = tj(x, y; z, w), t′ = tj(x′, y′; z′, w′)

be plugs and let i 6= j. If the four composite elements in

s = sj(x +
i

x′, y +
i

y′; z +
i

z′, w +
i

w′)

are defined, then s is a socket and has as plug

t +
i

t′ (if i < j) or t +
i+1

t′ (if i > j).

Proof: (i) By Proposition 8, t′′ = t +
j+1

t′ spans the socket s. Also t′′

is thin, by Proposition 10. Repeated applications of Proposition 8 show
that for any composite ∆ of face operators ∆t′′ has one of the forms

∆t, ∆t′ or ∆t +
k

∆t′ for suitable k;

so if ∆ corresponds to a cube of In+1 \ Sn
j then ∆t′′ is thin. Hence t′′ is

a plug for s.
(ii), (iii): The proofs are similar. 2
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x

x

x’

x

y

w

j+1

j

i or i+1

(iii)

j

j+1

j

j+1

z

z’ w’

y

z
w

u

p

v

(i)

(ii)

y’

y

z w

q r

s

Proposition 12 (i) Each composition +
j

(j = 1, 2, . . . , n) in dimen-

sion n gives a groupoid structure on (Kn,Kn−1) with ∂0
j , ∂1

j and εj as
initial, final and identity maps respectively.

(ii) The interchange law holds, that is, if i 6= j, then

(x +
i

y) +
j

(z +
i

w) = (x +
j

z) +
i

(y +
j

w)

whenever both sides are defined.
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Proof: (i) There is a graph structure on (Kn,Kn−1) with ∂0
j , ∂1

j as
initial and final maps, and the composition x +

j
y is defined if and only

if ∂1
j x = ∂0

j y. To prove the associative law suppose also that ∂1
j y = ∂0

j z
and write

u = y +
j

z, v = x +
j

u, e = εj∂
1
j z.

Then by Proposition 10(i) there is a plug tj(x +
j

y, e +
j

e; v, z).

x

j

y j+1

v zu

e e

Since e +
j

e = e (by Proposition 9), this implies that

(x +
j

y) +
j

z = v = x +
j

(y +
j

z).

We now have associativity, left and right cancellation (Proposition 5)
and existence of left identities (Proposition 9). It follows easily that +

j

is a groupoid structure and that εj is its identity map.
(ii) In proving the interchange law we may suppose that i < j. Let

x, y, z, w ∈ Kn satisfy

∂1
i x = ∂0

i y, ∂1
i z = ∂0

i w, ∂1
j x = ∂0

j z, ∂1
j y = ∂0

j w.

Write
a = (x +

j
z), b = (y +

j
w), e = εj∂

1
j zandf = εj∂

1
j w.

y

x

a

j+1

j

i

e

z

w

f

b
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Proposition 11 gives us a plug

tj(x +
i

y, e +
i

f ; a +
i

b, z +
i

w).

But e +
i

f = εj∂
0
j (z +

i
w) by Proposition 8. So

a +
i

b = (x +
i

y) +
j

(z +
i

w),

as required. 2

Remark It is easy to see that an arbitrary socket s = sj(x, y; z, w)
has a plug if and only if x +

j
w = z +

j
y.

x

w

y

j+1

j

z

4 ω-Groupoids

We recall from [4] that an ω-groupoid K is a cubical set with the follow-
ing extra algebraic structure. Firstly, for each n > 1, the pair (Kn, Kn−1)
has n groupoid structures each with objects Kn−1 and arrows Kn. For
j = 1, 2, . . . , n the groupoid “in the j-th direction” has operations writ-
ten +

j
,−

j
; it has initial and final maps ∂0

j , ∂1
j and its identity elements

are the degenerate cubes εjy (y ∈ Kn−1). Here −
j

is the inverse oper-

ation for +
j
. The laws satisfied by these operations are the ones which

have already been established for the operations +
j

of a T -complex in

the previous section.
Secondly, an ω-groupoid has connections

Γj : Kn → Kn+1 (j = 1, 2, . . . , n)

such that Γjx has the following faces:

(4) (i) ∂0
j Γjx = ∂0

j+1Γjx = x,

(ii) ∂1
j Γjx = ∂1

j+1Γjx = εj∂
1
j x,
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(iii) ∂α
i Γjx =

{
Γj−1∂

α
i x if i < j

Γj∂
α
i−1x if i > j + 1,

and the following rules hold:

(5) ΓiΓj =

{
Γj+1Γi if i 6 j

ΓjΓi−1 if i > j,

(6) each of the connections satisfies the transport laws, namely, if x, y ∈
Kn and ∂1

j x = ∂0
j y, then (see illustrations below)

(i) Γj(x +
j

y) = (Γjx +
j+1

εjy) +
j

Γjy = (Γjx +
j

εj+1y) +
j+1

Γjy,

(ii) Γi(x +
j

y) =





Γix +
j+1

Γiy if i < j

Γix +
j

Γiy if i > j.

(It is curious that the ∂0
j , Γj together satisfy the rules for the face and

degeneracy operators of a simplicial set; this was pointed out by R.
Fritsch.)

j+1

j

i
Γ y

jΓ y

j xΓ ε
j

y

ε
j+1

j

y

(6)(ii)

or j+1

i+1

i

x

x

y

yx

y

x

y

(6)(i)
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Suppose now that K is a T -complex. For any

x ∈ Kn and j = 1, 2, . . . n,

we have a relation

x +
j

e = e, where e = εj∂jx.

So we have a plug tj(x, e;x, e). We write Γjx = tj(x, e; x, e) and call
Γj : Kn → Kn+1 the j-th connection in dimension n + 1.

j+1

j
e j

e

xΓ

x

x

Theorem A With the definitions of +
j
, Γj given above, the T -complex

K is an ω-groupoid.

Proof: We have already verified the laws for +
j

alone, and we have to

prove (4), (5) and (6).
Now (4)(i) and (ii) follow from the definitions, while (4)(iii) follows

from Proposition 6.
To prove (6)(i), suppose that x +

j
y is defined. We have

Γjx = tj(x, e; x, e), where e = εj∂
1
j x = εj∂

0
j y;

Γjy = tj(y, f ; y, f), where f = εj∂
1
j y;

and εj+1y = tj(e, f ; y, y) by Proposition 9. Application of Proposition
11, parts (i) and (ii) gives immediately

(Γjx +
j

εj+1y) +
j+1

Γjy = tj(x +
j

y, f +
j

f ; x +
j

y, f +
j

f) = Γj(x +
j

y).

The other equality in (6)(i) follows by applying the interchange law
(Proposition 12(ii)) to

(Γjx +
j

εj+1y) +
j+1

(εjy +
j

Γjy),
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using the fact that εjy is an identity for the operation +
j
. Similarly

(6)(ii) is obtained by a single application of Proposition 11(ii).
To prove (5) we need the following

Lemma

Γpεq∂
1
q =

{
εq+1∂

1
q+1Γp if p 6 q,

εq∂
1
qΓp if p > q.

Proof: If p < q, then Proposition 7 (with i = q + 1, j = p) gives:
Γpεq = εq+1Γp, and the result follows from equations (4)(iii). The case
p > q is similar. If p = q we let x ∈ Kn and write e = εp∂

1
px. Then we

have εp∂
1
pe = e, so

Γpεp∂
1
px = tp(e, e; e, e) = εp+1e

by Proposition 9. However, εp+1e = εpe and also, by (4)(ii),

e = εp∂
1
px = ∂1

pΓpx = ∂1
p+1Γpx.

The result is therefore true when p = q. 2

Now, consider the rule (5). It is enough to prove that

ΓiΓjx = Γj+1Γix when x ∈ Kn and 1 6 i 6 j 6 n.

Write u = ΓiΓjx. To show that u = Γj+1Γix is by definition to show
that

u = tj+1(Γix, f ; Γix, f), where f = εj+1∂
1
j+1Γix.

So we must prove:

(a) ∂0
j+1u = ∂0

j+2u = Γix;

(b) ∂1
j+1u = ∂1

j+2u = f ; and

(c) the faces of u in all dimensions are thin, except possibly those
which are faces of some ∂α

j+1u or ∂α
j+2u.

The equations (a) follow directly from (4)(i) and (4)(iii). Also by
(4)(ii) and (4)(iii),

∂1
j+2u = Γi∂

1
j+1Γjx = Γiεj∂

1
j x,

and this is equal to f by the Lemma. When i < j the same argument
gives ∂1

j+1u = f , while for i = j we have

∂1
j+1u = ∂1

j+1ΓjΓjx = εj∂
1
j Γjx = ε2j∂

1
j x
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and
f = εj+1∂

1
j+1Γjx = εj+1εj∂

1
j x = ε2j∂

1
j x.

This proves (b).
Finally, to prove (c), we observe that since

u = ti(Γjx, e; Γjx, e), where e = εi∂
1
i Γix,

all faces of u are thin except possibly those which are faces of some ∂α
i u

or ∂α
i+1u. Each of these four faces is either Γjx or e and is therefore of

the form tj( , ; , ). (Note that e = εi∂
1
i Γjx is of the form Γjεk∂

1
kx by

the Lemma.) It follows that any face of u which is not thin is a face of
one of the special faces

∂α
p ∂β

q u (α = 0, 1; β = 0, 1; p = j, j + 1; q = i, i + 1).

However, it is easy to verify that each of these special faces is a face of
∂0

j+1u, ∂1
j+1u, ∂0

j+2u or ∂1
j+2u. This proves (c) and completes the proof

of Theorem A.
2

5 The Isomorphism of Categories

If (K,T ) is any T -complex (K being the underlying cubical set and T
the collection of thin elements), the construction described above gives
an ω-groupoid σ(K, T ) = (K, +

j
, Γj). Conversely, given an ω-groupoid

(K, +
j
, Γj), it was proved in Section 7 of [4] that K carries a T -complex

structure in which the thin elements are all composites under the oper-
ations +

j
of elements of the form

εiy or −
i
−
j

. . .−
l

Γmy.

We abbreviate this last element to (±)Γmy, and we denote the result-
ing T -complex by τ(K, +

j
, Γj). Both constructions σ and τ are clearly

functorial.

Theorem B Let T denote the category of T -complexes and G the cate-
gory of ω-groupoids. Then functors σ : T → G and τ : G → T are inverse
isomorphisms.



The Equivalence of ω-Groupoids and Cubical T -Complexes 368

Proof: Let (K,T ) be a T -complex and let σ(K,T ) = (K, +
j
, Γj). Then

τσ(K, T ) = (K, T ′) where T ′ consists of all composites of elements εiy
and (±)Γmy. By definition of T -complex, εiy ∈ T . By definition of Γm

in a T -complex, Γmy ∈ T . Also, if t ∈ Tn, we have

t +
j

(−
j
t) = e = εj∂

0
j t

(since +
j

gives a groupoid structure on Kn) and so the socket sj(t, e; e,−
j
t)

has a plug. Since this plug and all its n-faces other than −
j
t are in

Tn it follows that −
j
t ∈ Tn, by axiom (T3). Hence (±)Γmy ∈ T and

Proposition 10 implies that T ′ ⊆ T . But this implies that T ′ = T ; for if
t ∈ Tn+1 and b is any box consisting of all n-faces of t except one, then
b has a unique filler in T ′ (see [4], Proposition 7.2), whence t ∈ T ′n+1.
This proves that τσ is the identity functor on T.

Now let (K, +
j
, Γj) be any given ω-groupoid and let

(K, T ′) = τ(K, +
j
,Γj),

where T ′ is defined as above. To show that σ(K,T ′) = (K, +
j
, Γj) we

must show that, for x, y ∈ Kn,

(i) Γjx is a plug in (K, T ′) for the socket sj(x, e; x, e) where e =
εj∂

1
j x, and

(ii) if ∂1
j x = ∂0

j y then the socket sj(x, f ; x +
j

y, y) where f = εj∂
1
j y

has a plug in (K,T ′).

Now Γjx certainly spans sj(x, e;x, e). Also, for any cubical operator
∆ of In+1 \ Sn

j , the laws of ω-groupoids imply that ∆Γjx = Γk∆′x
for suitable k, ∆′, and hence ∆Γjx ∈ T ′. This proves (i). Similarly, if
∂1

j x = ∂0
j y, the element t = Γjx +

j
εj+1y spans sj(x, f ;x +

j
y, y), and

∆t ∈ T ′ since it is of the form Γk∆′x +
k

εk+1∆′y. This proves (ii) and

completes the proof of Theorem B. 2
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