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Introduction

Our objectives are topological versions of the Nielsen-Schreier Theorem on
subgroups of free groups, and the Kurosh Theorem on subgroups of free products
of groups.

It is known that subgroups of free topological groups need not be free topological
[2, 6, and 9]. However we might expect a subgroup theorem when a continuous
Schreier transversal exists, and we give such a result in the category of Hausdorff
/<Vgroups (Theorem 8). In the same category, we give an open subgroup version
of the Kurosh Theorem (Theorem 13).

The method of proof in both cases is a topological version of the groupoid method
given by Higgins in [8]—that is, we use topological groupoids. The key steps are
first of all to construct universal morphisms of topological groupoids, and secondly
to prove that the pull-back by a covering morphism of a universal morphism is again
universal. For the second step it is essential to know that the pullback of quotient
maps of topological groupoids is again a quotient, and to obtain this we work in the
category of Hausdorff /^-spaces. The chief technical work is then in constructing
universal morphisms in this category—the results on /r^-spaces needed are Pro-
positions A1-A3 which are given in the Appendix.

This restriction to ^-spaces means that our theorems specialise only to countable
versions of the abstract theorems. More general results can be given by using k-
groupoids, but the proofs involve extra technicalities, and so we refer the interested
reader to [7].

The authors wish to thank P. J. Higgins and P. Nickolas for helpful comments.

2. Universal km-groupoids

A topological graph over X consists of a space F of " arrows ", a space X of
" objects " and continuous functions d', d : F -• X, u : X -> F called the initial,
final and unit functions respectively; these are to satisfy d' u = du = 1. We usually
confuse the graph with its space F of arrows, and also write X = Ob(F).

The graph F becomes a topological category (over X) if there is also given a
continuous composition 6 : (a, b) H-> ba with domain the set

{(a,b)eTxT:d'b = da},

making F into a category in the usual sense. Finally such a topological category is a
topological groupoid if it is abstractly a groupoid and the inverse map a\->a~x is
continuous. Morphisms of topological graphs, categories or groupoids are defined
in the obvious way.

Any space X defines a topological groupoid with arrows X, objects X, and
d' = d = u = \x; this topological groupoid is also written X.
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A morphism 0 : G -*• H of topological groupoids is called universal if the following
diagram is a pushout of topological groupoids

Ob(0)
Ob(G)

C • H

0

in which the vertical morphisms are the obvious inclusions. Clearly such a topological
morphism, if it exists, is uniquely determined up to isomorphism by G and Ob(0):
Ob(C) -* Ob(//).

We now prove the existence of universal topological morphisms under certain
restricted circumstances.

Let G be a topological groupoid, and a : Ob(G) -> X a continuous function into
a topological space X. For each w > 0, let G" = G x ... x G, and let G° = X. Then
Wa(G) £ U G" is defined to be the set of all (non-reduced) " WWY/S " (an, ..., o j of

length w ^ 0 such that ai+u a{ are " j-composable ", i.e. Gd(a{) = ad'(ai+l),
1 < / < / ? . We give Wa(G) its topology as a subspace of | J G", and with this topology

it is easy to see that Wa(G) is a topological category over X—the initial and final maps
are d'(an, ..., a{) = ad'(ax), d(an, ..., aY) = ad(an) and d'O) = d(x) = x; the unit
map is inclusion of X; and composition is simply juxtaposition, i.e.

0((an,..., ax), (bm,..., bt)) = (bm, ..., bu an,..., Oj),

0((an, ...,fl,),x) = (fln, ...,fl,),

0(3;, (an, ...,fl,)) = («„, ...,«!)
and

0(A", A:) = x.

If G, ^ are HausdorfF ^-spaces (see Appendix), then using Proposition A.3 it is
easy to prove that Wa(G) is also a Hausdorff /rw-space.

A (reduced) word of length /z ^ 0 in G is a word (a,,, ..., a,) such that no at is an
identity and ai+u a{ are c-composable but not composable in G, i.e.

(7d'(ai+{) = (rd(ai)
but

d'(al+1)*d(a,),

1 ^ / < /?. There is a well-known process [8; p. 73] of assigning to each (non-reduced)
word a unique reduced word called its reduced form. Let Ua(G) denote the set of
all reduced words of length n ^ 0 in G, with its topology as a quotient space of Wa(G);
i.e. the canonical map p: Wa(G) -*• Ua(G), which sends each word to its reduced
form, is a quotient map.

THEOREM 1. IfG,X are Hausdorff k^-spaces then Ua(G) with its quotient topology
is a Hausdorff ka-space. Further Ua(G) is a topological groupoid over X, and
a* : G -> Ua(G), a\-^p(a), is the universal topological morphism induced by a.

Proof. By [8; p. 73], Ua(G) is (abstractly) the universal groupoid generated by a.
The continuity of d', d, u on Ua(G) follows from the fact that p is a quotient map.
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Similarly, the continuity of the inverse on Ua(G) follows from the continuity of the
anti-automorphism on Wa(G), (an, ..., fli)t-> (ax~

l, ...,a,~l). So the only problem
is continuity of composition in Ua(G), and it is at this stage that we need to restrict
the spaces involved.

Essentially we require the restriction of p xp mapping the domain of composition
in Wa(G) to the domain of composition in Ua(G) to be a quotient map. Now the
domain of composition in Wa(G) is a closed (p x p)-saturated subset of Wa(G) x Wa(G);
so it is sufficient that p x p be a quotient map. This is implied by Proposition A.2
once we have proved Ua(G) a Hausdorff /rw-space, and this follows from Proposition
A.I and the following

LEMMA 2. The relation R = {(w, w'): w, w' e Wa(G), p(w) = p(w')} is closed in

WMxWJG).
The proof is given in §4.
Thus Ua(G) is a topological groupoid. It follows easily that a* : G -> UO(G),

cn->p(a), is a morphism of topological groupoids, and is universal.

Note. It is proved in [3] that if G is any topological groupoid and a : Ob(C) -» X
is any continuous function, then the universal topological groupoid Ua(G) exists.
In fact, if R is the relation given by Lemma 2, then in the terminology of [3], Ua(G)
is the topological category Wa(G) with relations R. However, this extra generality
would not help us towards our main objectives, since we have been unable to prove
Theorem 4 below for arbitrary spaces.

We now consider free topological groupoids. Let F be a topological graph.
The (Graev) free topological groupoid on F is a topological groupoid F(F) together
with a topological graph morphism / : F -> F(T) such that if/: F -*• H is any topo-
logical graph morphism into a topological groupoid H then there is a unique topo-
logical groupoid morphism/* : F(F) ->H such tha t /* / = / . Clearly if F(T) exists
then it is uniquely determined by F. Also given a non-based topological graph F '
(so that only d', d are part of the structure) we can form a new graph F with
Ob(r) = Ob(r ') , T = T' u Ob(r ' ) and u : Ob(F) -> F the inclusion. The (Graev)
free topological groupoid on F is then called the Markov free topological groupoid
on F ' (compare a similar distinction for free topological groups [6 and 13]).

If X is a topological space with base point e, then X defines a topological graph
with arrows X, objects {e} and u: {e} -> X inclusion, and F(X) is the (Graev) free
topological group on X.

PROPOSITION 3. If T is a topological graph which is a Hausdorff kw-space, then
the (Graev) free topological groupoid F(T) exists and is also a Hausdorff k^-space.

Proof Define a topological groupoid T(2) as follows: Ob(F(2)) is the space T
of arrows of T, and the arrows of F( 2 ) are pairs (a, b) of arrows of F with the same
initial point. The initial and final maps of F( 2 ) are the projections (a, b) i—> a,
(a, b) i-> b, and composition is given by (b, c). (a, b) = (a, c).

Let a : Ob(F(2)) -> Ob(F) be the final map d. Let a* : F( 2 ) -> Ua(T
w) be the

universal morphism, and let i: F -*• Ua(F
m) be the identity on objects and be given

on arrows by a\-*G*(ud'(a), a). Then it is easy to check that / satisfies the required
universal property, and so F(T) = l7ff(F

(2)).
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Notice that our definitions and constructions do not coincide with those in the
abstract case given in [8]—the construction there is not so convenient in the topo-
logical case.

The definition and construction of the free topological product of a countable
family of Hausdorff /c^-groupoids are the exact analogues of those for the abstract
case, which are given in [8; p. 79], and so we do not repeat them here. (Note that
a countable disjoint union of A-w-groupoids is km)

A morphism q: G -> G of topological groupoids is a (topological) covering
morphism [4] if (q, d'): G -*• G x Ob(G) is a homeomorphism, where G x" Ob(G) is
the pull-back of d': G -> Ob(G) and Ob(q) : Ob(G) -> Ob(C). Our key result for
the subgroup theorems is the following which is a topological version of Theorem 8
of [8].

THEOREM 4. Suppose given a pull-back diagram of topological groupoids

G

I e lq

B >G

in which q is a covering morphism, B, G, G are Hausdorff km-spaces and 0 : B -* G is
universal. Then 8 : B -> G is also universal.

Proof. Let a = Ob(0): Ob(B) -> Ob(G); then we may assume G = Ua(B). Let
a = Ob(#): Ob(B) -• Ob(G). The proof of Theorem 8 of [8] constructs in essence
an algebraic isomorphism 0 : U9(B) -> G such that ®<7* = 0. We have to prove
0 a topological isomorphism.

To this end, let p: Wa(B) -*• G, p : WS(B) -*• Ud(B) be the canonical quotient
maps, and consider the pullback diagram

We construct below a topological isomorphism O in a commutative diagram

W3(B)

U,0)

Now p is a quotient map. Also by Proposition A.2, px 1 : Wa(B) xG -> GxG is a
quotient map. Since P is closed and (px l)-saturated, it follows easily that p is a
quotient map. Hence 0 is a topological isomorphism.

It remains to construct O. Let s be the inverse of (q, d'): G -* G Si Ob(Cj). Then,
regarding pullbacks as subspaces of products, we set

, an), ..., (bu 3$ = ((bn, ..., bv), an... ax)
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and
O - H f o , ..., bx),a) = ((bn,an), ..., (6 , , a,))

where
a, = s(06ls d'd), and ol + 1 = s(0bi+i, da,), 1 ^ / < w.

Of course the same formulae on reduced words define 0 and 0"1—the further work
on p. 113-4 of [8] is to use the solution of the word problem to show these maps are
well-defined.

COROLLARY 5. Let q': G -* G be a covering morphism of Hausdorff km-groupoids.
(i) If G is the free topological groupoid on a Hausdorff k^-graph T, then G is the free
topological groupoid on the Hausdorff kco-graph T, where T is the puUback of the
inclusion i:T-+G and q : G -* G. (ii) / / G has a free decomposition G = * GA as a

A

free topological product of a countable family of Hausdorff k^-groupoids {G^}, then
G has a free decomposition G = * Gx as a free topological product of Hausdorff k^-

A

groupoids {Gx}, where Gx is the puUback of the inclusion ix : G x ^ G b y q : G ^ G .

Proof, (i) We have to prove that the following diagram is a pullback,

r<2> JU G
*(2)| 1*

r(2) — • G
o

in which0(a, b) = i(b).i(a)-\ 9((a, a), (b, B)) = B.d~l and q{%a, a), (b, b)) = (a, b).
If F(2)S< G is the pullback of 0 and q, then the commutativity of the above diagram
gives a topological morphism ¥ : f(2) -+ T(2) x G, ((a, a), (b, B))*-+((a, b), fi.a"1),
and it is easily checked that VF~1 is given by

((a, b), c)^(^{a, s(i(ayl, d' c)"1), [b, s(i(by\ 5c)

The argument for (ii) is similar.

3. The subgroup theorems

Let X be a topological space. The tree groupoid XxX has object space X and
arrows pairs (x, y) of elements of X with composition (y, z). (x, y) = (A% Z). A
topological groupoid T is called a tree groupoid on X if it is isomorphic over X to
XxX.

Let G be a topological groupoid over X. Then G is globally trivial if G contains a
wide, tree topological subgroupoid. In such a case we can define, for any xoeX,
a morphism r : G -> G{x0} of topological groupoids retracting G onto G{x0}.

For example, let G be a topological group, and H a subgroup. Then G operates
on the space G/H of left cosets of G, and we can form the translation groupoid,
G = Tr(G, H) as in [8]; thus Ob(G) = G/H and the space of arrows is GxG/H,
with d', d the projection to G/H and the operation respectively. The composition in
C is (/;', g'H) (h, gH) = (h'h, gH). Clearly the product topology on G makes G a
topological groupoid and the projection q : G -*• G makes G a topological covering
groupoid of G.
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PROPOSITION 6. Under the above assumption, Tr(G, H) is globally trivial if and only
if the projection G -> G/H has a continuous section.

The proof is trivial.

Of course to obtain a subgroup theorem for free topological groups a section of
G -> G/H has to be chosen carefully.

Let F be a subgraph of G, and T a wide tree subgroupoid of G. We say T conjoins
T if T is abstractly freely generated by the subgraph FT of T comprising all the non-
identity arrows of T which are also in P.

PROPOSITION 7. Let G be the free topological groupoid on a subgraph T, and suppose
G contains a wide tree subgroupoid T such that T conjoins T. Let x0 e Ob(C), and
let r : G -*• G{x0} be the retraction defined by T. Then G{xQ} is the free topological
group on r(T).

The proof follows easily from the abstract case [1; p. 277] and the fact that /• is a
retraction.

Now we have our main result on free topological groups, namely an analogue of
the usual Nielsen-Schreier theorem.

THEOREM 8. Let G be the Graevfree topological group on a Hausdorff km-space X,
and let H be a closed subgroup of G admitting a continuous Schreier transversal with
respect to X. Then H is a Graevfree topological subgroup of G.

Here a continuous Schreier transversal with respect to X for H is a continuous
section s : G/H -» G of the projection p : G -* G/H such that set {s(a) : a e G/H}
is a Schreier transversal with respect to X in the usual sense.

Proof We form the covering groupoid Tr(G, H) = G with covering morphism
q : G -* G. By Corollary 5, G is the Graev free topological groupoid on F = q~x(X).
The assumptions on s imply that T conjoins the wide tree subgroupoid T generated
by {(s(a), H):aeG/H}. The theorem then follows from Proposition 7.

COROLLARY 9. IfG is the Graevfree topological group on a Hausdorffk^-space X,
and H is an open subgroup ofG, then H is a Graevfree topological subgroup ofG.

In this case H is also closed, and G/H is discrete. Hence the construction of the
section s required by Theorem 8 can be carried out as in the abstract case.

Notice that a closed subgroup of finite index is open, so that Corollary 9 applies
to this case. Also if X is a countable discrete space then G is just the (abstract)
free group on the set X with the discrete topology, and any subgroup H is open.
So we have the usual Nielsen-Schreier result for subgroups of the free group on a
countable set. As mentioned in the introduction, a more general version of Theorem 8
is given in [7] using the notion of Ar-groupoid—this version specialises to the usual
theorem for subgroups of the free group on an arbitrary set.

In view of [6; p. 328], Corollary 8 implies:

COROLLARY 10. An open subgroup of a Markov free topological group on a Haus-
dorff k^-space is a Markov free topological group if and only if it is disconnected.

The following corollaries are proved in [11], [9], respectively, by different methods.
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COROLLARY 11. Let G be a Hausdorff km-space and let H be the kernel of the
canonical morphism F(G) -* G. Then H is a Graev free topological group.

In this case the section s : G -* F(G) simply sends an element of G to its correspon-
ding generator.

COROLLARY 12. Let X be a closed subset of the real line R such that OsX, and the
non-zero elements of X are positive. Then the commutator subgroup C of F(X) is a
Graev free topological group.

Proof. As base point of X we take 0. Let AF{X) be the Graev free abelian topo-
logical group on X, so that we have an exact sequence

Since X is a Hausdorff A^-space, F(X) is a quotient of the topological monoid
of words in elements of X or ( — X); let X = X u ( — X) s R. Then we have quotient
mappings, where W = U (X)'\

q2 : W -+AF(X).

Lets ' : W -* W begivenby fo * l s ..., eM *„)•-> ( T ^ , ..., xny,), where (TX ylt ...,T,,yn)
is the rearrangement of (et x]5 ..., s,,xH) to be in ascending order, x{ yl ^ ... ^ T,,^,,.

Then s' is continuous, and defines a section s : AF(X) -> F(X) of p satisfying the
conditions of Theorem 8. Hence C is a free topological group.

In contrast to Corollary 12, F. Clarke has proved that the commutator subgroup
C of the Graev free topological group on S" is not the free topological group on any
countable CW-complex for n ^ 2. The method is to show that the classifying space Bc

has a cohomology ring with non-trivial cup-products. However it is proved in [7]
(using results of Milnor [15]) that the classifying space of the free topological group
on a countable CW-complex has the homotopy type of a suspension, and so has
trivial cup products.

We now give our version of the Kurosh theorem.

THEOREM 13. Let G = * G^ be the free topological product of a countable
;. e A

family of topological groups which are Hausdorff k^-spaces. Then any open subgroup
HofG is a free topological product

H = (* HXtt) * F
where Al"

(i) each Hx^{k e A, pi e Mx) is of the form H n xkll Gxx^~l where as [i varies
in Mx, xXfl runs through a (suitably chosen) set of double coset representatives ofHxGx.

(ii) F is the Graev free topological group on a countable discrete space.

Proof. We assume that the reader is familiar with Higgins' groupoid proof of
the Kurosh theorem [8; p. 118].

Let G = Tr(G, H) be the translation groupoid, and q : G -> G the topological
covering morphism described in §3. Then, by Corollary 5, G is the free topological
product * (JA where Gx = q~1(GA).
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LEMMA 14. For each XeA, the components Gifl(fieMx) of Gk are globally
trivial subgroupoids ofGk, and Gx = * GXll.

ft e A/A

This follows trivially from the abstract case and the fact that Ob(<jA) is a discrete
space.

An easy consequence of Lemma 14 is that for each k e A, /i e M we can choose a
vertex group Kkil and a wide tree topological subgroupoid 5A/( of GXft such that
&xn = K*n * S^c Thus G = K * S, where K = * Kkil is totally intransitive (i.e.

A , / t

the only non-empty " horn sets " of K are vertex groups), and S = * SA/, is a free

topological groupoid on T (say). Clearly S is a wide transitive subgroupoid of G;
and in fact we have

LEMMA 15. S contains a wide tree topological subgroupoid T which conjoins T.

Proof. Since Ob(G) is a discrete space, we can choose T exactly as in the abstract
case [8; p. 119].

If r : G -> H is the retraction defined by T, then Higgins [8; p. 119] proves that H
is (abstractly) the free product ( * Hh) * F, where HXtl = r(KXfl) and F = r(S)

is a vertex group of S. The topological result now follows from Proposition 7 and
the fact that r is a continuous retraction.

Finally, we prove that S is a countable discrete space. It is clear that each SXfl is
countable and discrete, but since Ob(GA) is a subspace of Ob((j) = G/H, it is countable,
so Gx

 n a s a t most a countable number of components (i.e. MA is countable) and
S = * Ŝ M is a countable discrete space. Hence F is countable and discrete.

A , M
It is also notable that in [5] Gildenhuys and Ribes prove in the category of pro-

C-groups a version of the Kurosh theorem which implies an open subgroup version
of the Nielsen-Schreier Theorem (in the same category). It would be interesting to
have a version of Theorem 13 which implied Theorem 8.

4. Proof of Lemma 2

For any topological spaces Y, Z we will denote a function / with domain Df a
subset of Y, and values in Z, b y / : Yt-*Z; we will s a y / i s continuous if/ | Df is
continuous in the usual sense.

Let Wn be the subset of Wa{G) consisting of all the (non-reduced) words of length
< n in G. Then Wa(G) has the weak topology with respect to {Wn}ni.o, so that
Wa(G) x Wa(G) has the weak topology with respect to {Ĥ , x W^n*Qt and a necessary
and sufficient condition for R to be closed is that Rn = Rr\(Wnx Wn) is closed in
Wn x Wn for each n ^ 0. We prove this by induction.

Let Ao be the diagonal in XxX; and for each n > 0, let A;1 be the diagonal in
Wn x Wn. Then, since Wa{G) is Hausdorff, each A,,, n ^ 0, is closed.

LEMMA 16. /?X is closed.

Proof. R! is a subset of (G x C) u (G x X) u (X x G) u (X x X). Now

.Ri n (G x G) = AG u (u x« ) (ux a)~x (Ao),
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where AG is the diagonal in G x G, and is closed since G is Hausdorff, while u is a
homeomorphism onto a closed subset of G(since d'u = 1 and G is Hausdorff), and
so is proper, whence u x u is a closed map.

Next R{ n(XxX) = Ao which is closed.
Finally K, n (GxX) = («x 1) (ax I ) " 1 (Ao), which again is closed since u is

proper, and similarly Rl n (XxG) = (1 xw) (1 x c ) " 1 (Ao) is closed.

Now for the inductive step, suppose /?„_ x is closed mWn-i'x.Wn-1', then we prove
that Rn is closed in WnxWn. To this end, for each 1 ^ / < n, let 0,: H^i-* Wn.u
{a, , at) >-*•(«„, ..., «, + 1 . a l 5 ..., a^, be given by composition of the /th and (r + l)th
co-ordinates whenever possible; and for each l^j^n, let Uj: Wn\-> Wn_u

(an, ..., fli)i-* (#„, ..., Sj, ..., ax), be given by omission of the j th co-ordinate
whenever it is an identity. Let 60 = 7r0 : Wn\-> W ,̂_x be given by the identity on
Wn.i. Then it is easy to see that each 0h n^ is continuous and that G Hausdorff
implies that each 0b nj has closed domain.

Our proof is now completed by

LEMMA 17. R,, = A,, u (J (J)~1(Rn-i), where 0 runs through all Ax/i, with k, pi

either a 0h 0 < i < n or a Uj, 0 < j < /?.

Proof. This follows from the fact that the non-diagonal elements of Rn are
obtained from elements of /?„_! by the inverse of the reduction process [8; p. 73].

5. Appendix

The purpose of this section is to give the basic results we have used on ^-spaces.
A topological space X is a k^-space if it has the weak topology with respect to

some countable increasing family X o c Z , c , , , c j f ) | c , . . of compact subspaces
whose union is X; we then call {Xn},,^0 a k^-decomposition of X. We are more
concerned with Hausdorff ^-spaces.

PROPOSITION A.I. Let X be a Hausdorff k^-space and p : X -* Y a quotient map.
Then the following are equivalent:

(i) The graph of the equivalence relation R associated with p is closed.

(ii) y is a Hausdorff'km-space.

The proof is given in [12; Proposition 4.25].

PROPOSITION A.2. / / p : X -* Y, p': X' -> Y' are quotient maps of Hausdorff
k^-spaces X, X', Y, Y' then p x p': X x X' -> Y x Y' is also aquotient map of Hausdorff
km-spaces.

This follows from the fact that (a) any Hausdorff A^-space is a fc-space, (b) that
the weak product of quotient maps of /c-spaces is a quotient [12], and (c) the following
proposition:

PROPOSITION A.3. / / {Xn},,^0, {Yn}n^0 are k^-decompositions of Hausdorff km-
spaces X, Y respectively, then {X,,x Yn},,^0 is a k^-decomposition of the Hausdorff
space XxY. That is, XxY is a Hausdorff k^-space.

The proof, which is essentially that of [14; Lemma 2.1], is given in [12; page 16].
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