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PHILOSOPHY: programme since 1967 was
to investigate for description and
computation in topology the extensions:

groups C groupoids C multiple groupoids.

First observation (1967):

the fundamental groupoid 71(X,A) on a set
A of base points gives better results than the
fundamental group.

So why not rewrite higher homotopy theory
replacing groups by groupoids?

Motivation: Curiosity!



Second observation:
group objects in groups = abelian groups
(so higher homotopy groups are abelian).

What about groupoid objects in groups~?
These are more complicated than groups!
Non-commutative structures

Higher dimensional algebra

Expect to use such structures for:

Higher order Van Kampen Theorems
Local-to-global problems
Algebraic inverse to subdivision



Implications of Higher Order Van Kampen
Theorems:

Interested in colimit constructions for these
new algebraic structures. It was one such
construction which led RB and J-LL to the
non abelian tensor product in 1982 - though
it had precursors - and also gave a ready
made application to homotopy theory.

Part of the interest is possibly that:
(i) it suggests a range of analogous algebraic
constructions,

tensor products mod g
tensor products of Lie algebras
non abelian homology

(ii) this construction impinges on but a
fragment of the potential theory (it involves
only triple groupoids).



Groupoid objects in groups are equivalent to:
Crossed modules

Morphism u : M — P of groups

action of P on the left of M by (p,m) — Pm,
SO that

CM1) p(Pm) = p(um)p~1;

CM2) mnm~1 = #mp

for all m,n € M,p € P.

We can conveniently regard crossed modules
as

2-dimensional groups.



Examples:
1. A normal subgroup M < P.

2. The inner automorphism map
X . M — Aut(M).

3. The trivial map M — P when M is a
P-module.

4. Any surjection M — P with central kernel.

5. The free crossed P-module C(w) — P on a
function w: R — P on a set R.

6. The induced morphism w1 (F) — m1(F)
when FF — FE — B is a based fibration.



If M, N are normal subgroups of the group P
then we are interested in the commutator

map
[—,—] : M X N — P,[m,n] = mnm~ tn~1.

This function is not bimultiplicative. Instead
it is what we might call a biderivation. That
IS

[mm/, n] = ["m","" n][m, n]

[m, nn'] = [m, n]["m," n]

for all m,m' € M,n,n’ € N. Notice that M, N
operate on each other via conjugation in P
and of course on themselves by conjugation.



So we form the universal object for
biderivations, i.e. define the non abelian
tensor product M @ N as the group generated
by elements m ® n subject to the relations

mm' @n = "m' @ ™n)(m e n)
m@nn = (men)("me ™)

for all m,m/ € M,n,n' € N.

One of the consequences is that P operates
on M & N so that

Plm®@mn) =Pm QPn.



Homotopical consequence:
Consider the homotopy pushout
BP——B(P/M)

B(P/N)
Then (Brown-Loday, 1987)

X

(P/(MN) if n=1,
(X)) =2 { (M NN)/[M,N] if n=2,
Ker(M@ N —+P) ifn=3.

Consequence of a Van Kampen Theorem for
the fundamental crossed square of a square of
spaces.

This was the first time this 3rd homotopy
group was calculated!
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The above result leads to explicit calculations,
as expected by a theorem of Ellis:

M, N finite implies M @ N finite.

(Brown/Loday) Exact sequence
H3(M) — (M3 - M ® M.

So if M is free, then M ® M is isomorphic to
[M, M] x T(M3b).

Here [ is Whitehead’'s universal quadratic
functor on abelian groups.

The general case when M is infinite and non
commutative is quite hard (L-C. Kappe and
students).
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Example: M = N = D, the dihedral group of
order 2n with presentation (z,y : 2", y2, zyzy).
Then M ® M is isomorphic to:

if n is odd

Lo X Ly, generated by yQ y,x Q v;

if n is even

Lo X Ly X 4o X 4 generated by
YR Y, xRy, zQx,(r®@y)(y )

This calculation is by hand. Lots more
calculations available, some by computer (see
bibliography).
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Back to the definition: What happens now if
you expand mm/ @ nn/ in two ways? After
some reduction and manipulation you get

(mnml ® mnn/)(m ® n) — (m ® n)(nmm/ ® nmnl).
This can be rewritten as
[m@n,m ®@n'] = [m,m]®[n,n].

We then get the beautiful diagram

)\/
MK N-—-—-N,
S
M—z—P

where

AM(m®n) = mn(m_l), N(im@n) = mnn_l,

together witha map h: M X N - M N
making a so called crossed square.
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crossed square (crossed module in the
category of crossed modules)

L-A.N

A v and h: M x N — L

M—p—P
actions of P on L,M,N, so that M and N act
on L, M,N via P
the morphisms \, X, u,v and pX = v\ are
crossed modules
X, X are P-equivariant;
and for alll € L,m,m' € M,n,n' € N,p € P:

h(mm',n) = h(Mm', ™ n)h(m,n)
h(m,nn) = h(m,n)h("m," n')
M(m,n) = m("m 1),
Nh(m,n) = (Mn)n"1
h(Al,n) =1(")~ L,
h(m, N1) = (™)1t
h(Pm,Pn) =Ph(m,n)
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Notice this is a mouthful, and cumbersome to
verify in many cases.

But as crossed modules are just groupoid
objects in groups, so crossed squares are
double groupoid objects in groups. This
gives a relation to geometry, suggest higher
dimensional versions, and also versions for
other algebraic objects (Lie algebras, DGA
algebras, ...). There is a lot to explore!
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Philosophy: The aim of this work is not to
solve other people’s problems in homotopy
theory, but to use homotopy theory as a test
bed for the tools. It is a useful test bed
because:

1. Calculations in homotopy theory are
notoriously hard.

2. The notion of homotopy, of deformation,
as a mode of classification is important
across a range of areas, so we are interested
iIn new methods, which might generalise.

3. We are trying to understand the underlying
structures, which seem to be non abelian.
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Relation with homology:

Let M, N« P. Define

MAN=MQ@N)/{m®m} meMNN
Claire Miller:
Hy(M) =Ker(k: MANM — M)
Def: (Graham Ellis)
Hy(P,M) =Ker(k: PANM — P)
Exact sequence:

H3(P)—"-H3(P/M)—Hy(P,M)——Hy(P)—

H>(P/M)—P/[P, M] pab (P/M)3P

This is the start of work of Ellis to obtain
many new results on classical Schur
Multiplier.
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Nice exact sequence

r((MNN3® S M@N—-MAN-—=O

Other nice tricks:
Define variants of the centre of a group P as:
1. {peP:p®q=1,Vq € P}
2. {peP:pAhq=1,Vq € P}
3. {p€e P:pAq=1,Vq € P}
In the last, PAP=(PQ P)/{(p® ¢)(¢ @ p)}.

Ellis uses these in relation to capability.
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Theorem (Loday and Guin-Waléry)

(crossed squares) ~ (cat’-groups)

where cat2—groups are double groupoids
internal to the category of groups.

If Xoe = (X : A, B) is a based triad, let ® be
the maps of cubes I3 — X which take faces in
direction:

1 to x

2to A

3to B

edges to C .

Let G be homotopy classes of such maps.
Then G gets a group structure in direction 1.
Claim: the other partial gluings of cubes
inherit to make G a cat?-group. (Loday)
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Conclusion: The origin of this work was a
simple question:

what role could and should groupoids play in
higher homotopy theory?

It now seems that n-fold groupoids model all
homotopy information up to level n (Loday,
Porter).

Out of this approach we obtained a new
construction in group theory, which refines
commutator theory, motivated by the
properties of and constructions with some
special kinds of triple groupoids.

Surely we have just picked some nice nuggets
from the surface, in one locality! How deep
and wide does this vein run?
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Other points:

1. M perfect implies M @ M — M is the
universal covering group.

2. The definition of M ® N requires only that
M, N act on each other, and on themselves
by conjugation. However the main properties
(e.g. the actions of M, N on M ® N) require
compatability which is that

m/ — n(m(n_lnl)) mnm/ — m(n(m_lm/))

for m,m’ € M,n,n’ € N. This holds for
crossed P-modules.

n

3. In order to define derived functors of
tensor products, Niko Inassaridze has relaxed
compatability but imposed extra relations to
recover the desired properties.
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For lots more topics, see the bibliography on
the web.

Non abelian derived functors of G Q —.

Tensor products mod gq

Other algebraic structures

Conclusion

The theme of higher dimensional group
theory might be seen as a useful research
strategy, and source of problems and
questions for research students! Surely we
have so far only scratched the surface.
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