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1. Introduction

Let X = Xo u {e\}XeA be a space obtained by attaching 2-cells to Xo, and let
xoeXo. In his 1941 paper [4], J. H. C. Whitehead attempted an algebraic
description of the second homotopy group n2{X,x0). In his 1946 paper [5] his
results were reformulated (with some corrections of definitions) in terms of a precise
algebraic description of the second relative homotopy group

A = n2{X,X0,x0).

In his 1949 paper [6], a different exposition of part of the proof was given, and also
the result was codified finally in saying that the group A is the free crossed
nx{XQ, x0)-module on the 2-cells.

One difficulty in obtaining this theorem by standard methods of algebraic
topology is that it is a non-abelian result. A proof has recently been given by
Ratcliffe, using a homological characterisation of free crossed modules [3]. The
theorem also is a special case of the generalisation to dimension 2 of the Seifert-van
Kampen Theorem [1], where free crossed modules arise as very special cases of
pushouts of crossed modules. Indeed one aim of the program completed in [1] was
to forpulate a generalisation of Whitehead's theorem, and to prove it by verification
of a universal property. A list of papers which apply the theorem is also given in [1].

In spite of these other proofs and generalisations, Whitehead's proof still has
interest. It has a curious structure, a modern-looking use of transversality, and a
clever interplay of the relations for a knot group and the rules of a crossed module.
Also the /ideas have some relevance to difficult problems in combinatorial group
theory involving identities between relations. (I hope to give elsewhere an exposition
of some ideas of Peter Stefan in this area.t) But the proof is difficult to read, for
reasons which include its originality of conception, and the change in notation and
formulation over the years 1941-49. I hope therefore that it will prove useful to
present a straightforward account of Whitehead's proof; my own contribution is
simply that of presentation in a modern, and uniform notation and terminology.

Thanks are due to the late Peter Stefan for discussions on some of this material,
and to Johannes Huebschmann for helpful comments on an earlier draft.

Received 24 August, 1979.

f This work is planned to appear in [8]. There are related ideas in [7].

[J. LONDON MATH. SOC. (2), 22 (1980), 146-152]
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2. Results

We assume Xo to be path-connected. Let ux: Sl -> Xo be the attaching map for
the cell e\, XeA. Let A = 7i2(^, A'Q, x0) as above, and let B = nx(X0,x0). Let
ax e B be represented by — ^ + UA + ^ where tx is a path in Xo joining ux(l) to x0. Let
axe A be determined by the characteristic map for e\ joined to x0 by the path tx

chosen already. Then the boundary map d: A -> B satisfies d(ax) = ax.

The group B acts on A so that /4 with d becomes a crossed B-module. We assume
the notation and terminology for crossed modules from [1]; in particular we assume
the notion of free crossed module.

Whitehead's result is:

THEOREM. The crossed module (A,B,d) given above is free on the elements ax

with dax = OLX, X e A.

The proof is in several steps.

3.

Let (C,B,d) be the free crossed fi-module on generators cx with dcx = ax,
I G A. Then there is a unique morphism 0: C -> A of crossed ^-modules such that
0(cx) = ax, X e A. Whitehead proves that 6 is an isomorphism.

By choosing a small 2-disc o\ in e\ and adding the complement of of in ef to Xo

(this does not change the homotopy type of the triple {X, Xo, x0)) we may assume
that each e\ is the interior of a 2-disc o\ a X whose boundary b\ is contained in Xo.
We also assume that the path tx used above joins a base point xx of b\ to x0.

Fig. 1
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A transverse map f: (E2, Sl, 1) ->{X, Xo, x0) is a map of triples such that each
f~x(o2) is a finite set S2

x,...,df,x of disjoint 2-discs in E2\S1 such that each <5J is
mapped difleomorphically by / to a\. (Whitehead uses the term normal map) It is a
standard kind of deduction from transversality theory that every element of
A = n2{X, X0,x0) may be represented by a transverse map (for more details on
transversality, see [2; Chapter VII]).

Let / be transverse as above. Let xa be the unique point of the disc dfx such that
f{xu) = xA. Let {siX} be a set of paths in E2 such that siX joins xu to 1 and such that
the su meet each other only at the end point 1, and meet one of the discs only in the
other end point xiA. We now order the sa round 1 and relabel them as sl,..., sq; we
label the corresponding <5fA as d\,...,d2 and write the X such that f(5f) = o\ as Xi.

Let £i 6 B be represented by - 1 u +/(s1), and let e, be ± 1 according as / maps Sf
to a\i in an orientation preserving or reversing manner. We define

The homotopy addition lemma in dimension 2 can be formulated as the statement:
/ is a representative of 6\j/{f). This proves that 9 is surjective.

Note also that if £ e B is represented by the restriction of / to (S1,1) -* {Xo, x0),
then

and it follows that

4.

Group presentations of free crossed modules are given in [6; p. 255] and [1;
p. 207]. It follows from these that any element of C can be written in the form of the
right hand side of (1) for some e,, <!;,, Xi. Hence for any c e C there is a transverse map
fc such that \l/(fc) = c.

We now start on the proof that 9 is injective. Let c e C be such that 9(c) = 0. Let
fc be a transverse map such that i^(/c) = c. Since fc represents 0(c), which is 0, there
is a null-homotopy of fc and so fc extends to a map

H:(CE2,CSl,Cl)^(X,X0,x0)

of the cone on the triple (E2, S1,1).
By transversality theory, H may be deformed rel E2 into a map such that for each

Xe A, H~l{aj) is a disjoint union of solid tubes S2 x / and solid tori 52 x S1, the
union of all these for all X e A forming a linkage L in CE2. We may also assume that
the projection from p, the vertex of the cone, to the base, makes this linkage regular
in the sense of knot theory, so that there are only over—and under—passes as in
Figure 2.

Let G = nl(CE2\L, p) be the group of the linkage L. Let s be the path in CE2

joining 1 to p along Cl , and let g e G be represented by —s + S^+s.
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Fig. 2

CLAIM. There is a homomorphism of groups <j) :G -> C such that (j)(g) = c.

COROLLARY, C = 0.

Proof. Since the linkage L does not meet the boundary of CE2 except in the
interior of the base, the loop —s + Sl+s may be deformed up the cone to p. So
g = 0. Hence c = 0.

This shows that to prove the theorem it is sufficient to prove the above claim.
This proof occupies the next two sections.

5. Construction of <f): G -> C

Let {Lj} be the (finite) set of overpasses of L. The Wirtinger presentation for G
has one generator g} for each overpass L} and a relation gk = gj^g^j at each
crossing. A precise description of gi is as follows.

By taking the tubes of the linkage L slightly smaller, we have that H(Lj) is
contained in the interior of a disc o1^, say, of A". Let Vj be a loop going once round Lj
and mapped by H homeomorphically and preserving orientation to d^. Let p} be the
unique point on u, such that H(Pj) = xw- (the base point on <r̂ ). Let vv,- be a path from
Pj to p which goes round u, as necessary and then up a cone line to p.
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P

Let g} = [-Wj
generators of G by

eB. We define $ on the

and verify that 0 annihilates the relations.
Consider the relation gk = gj lg{g} defined by a crossing with overpass L}. Let zlk

be a path joining p, to pk and mapped by /f into dj,(= jjk). Then for some e = ± 1,
the paths - Wj + ê -+w -̂ and - w, + z,fc + wk both go close to and once round Lj in the
same direction and so are equivalent. Also — tM, + H{zlk) +1^ represents an element of
B of the form a£,. Hence the path H( — w, + zlk + wk), which is equivalent to

(H(- W|) + tj-1, + H(zlk) + t.lk + (-Kk + H(wkj),

represen ts rjt
 1cc"tllrjk.

Similarly, H( — w^, + evj + wj) represents

We wish to verify in C that

Now the right-hand side of (3) is

j . Hence

(2)

(3)

b y

since cSc = c,

since nk =

This proves (3) and thus that
that H determines H^ : G -»
follows that

> C is a well-defined morphism. Note further
= B, and that H ^ ) = rj^a^rjj, jeJ. It

# = (4)
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6. Proof that cf)(g) = c

We now generalise our representation of elements of G corresponding to the
overpasses L,.

Fig. 4

Let v be any small loop round Lj which is mapped by H homeomorphically and
preserving orientation to &*/, let p' be the unique point of v with H(p') = xw. Let w be
any path in C £ 2 \ L joining p' to p.

LEMMA. / / —w + v + w, —t^ + H(w) represent heG, C,EB respectively, then
<t>(h) = (cj.

Proof. Let z be a path joining p} to p' and mapped by H into CT*. Then h is
represented also by

So

and

— (z + w) + Vj

h = k~xgjk where k = [ — Wj

= e ' 1 ^ ^ where e = (j)(k)

d(e) = dcj)k = H^(k) = \_-H{wj) + H(z) + H{w)'], using (4).
But

Hence

*lAe) = l-tuj + Hiwji-Hiwj)

= [ - t^j + H(z) - t^j] + [ - tw. + //(w)]

which is of the form a™.-(, for some m. The lemma follows.
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Recall now that g is represented by —s + Sl+s. Then g = gx ...gq where g{ is
represented by

-S-Si + S? +St + S .

By the lemma, $(#,) = (c )̂Cl where

which is the element £,• defined just before (1). It follows from (1) that <j){g) = c, and
Whitehead's proof of his theorem is complete.

The author would like to thank Dr. F. M. Burrows for assistance in producing the
diagrams.
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