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Introduction

Multiple categories, and in particular n-fold categories, have been considered by various
authors [8,11]. The object of this paper is to define ∞-categories (which are n-categories for
all n) and ∞-groupoids and to prove the equivalence of categories

(∞–groupoids) ↔ (crossed complexes.)

This result was stated (without definitions) in the previous paper [3] and there placed
in a general pattern of equivalences between categories, each of which can be viewed as a
higher-dimensional version of the category of groups.

∗This is a slightly edited version of the paper published in CAHIERS DE TOPOLOGIE ET
GÉOMETRIE DIFFERENTIELLE Vol. XXll-4 (1981) 371-386. 3e COLLOQUE SUR LES CATÉGORIES
DEDIÉ A CHARLES EHRESMANN Amiens, juillet 1980.
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The interest of the above equivalence arises from the common use of n-categories, partic-
ularly in situations describing homotopies, homotopies of homotopies, etc..., and also from
the fact that ∞-groupoids can be regarded as a kind of half-way house between ω-groupoids
and crossed complexes. It is easy to construct from any ω-groupoid a subset which has the
structure of an ∞-groupoid and contains the associated crossed complex. In this way we get
a diagram of functors

(ω-groupoids) //

))TTTTTTTTTTTTTTT
(∞-groupoids)

uujjjjjjjjjjjjjjj

( crossed complexes)

which is commutative up to natural isomorphism.

The reverse equivalence

(∞–groupoids) → (ω–groupoids)

has, however, proved difficult to describe directly.1

Earlier results which point the way to some of the equivalences described here and in [3]
are:

1. the equivalence between 2-categories and double categories with connection described
in [10],

2. the equivalences between double groupoids with connections, G–groupoids (i.e. group
objects in the category of groupoids) and crossed modules established in [4,5], and

3. the equivalence between simplicial Abelian groups and chain complexes proved in [7,
9]2.

1 ω-categories and ∞-groupoids.

An n-fold category is a class A together with n mutually compatible category structures Ai =

(A, d0
i , d1

i , +i) (O 6 i 6 n − 1) each with A as its class of morphisms (and with d0
i , d1

i

giving the initial and final identities for +i ). The objects of the category structure Ai are here
regarded as members of A, coinciding with the identity morphisms of Ai. The compatibility
conditions are:

dα
i d

β
j = d

β
j dα

i for i 6= j and α, β ∈ {0, 1};(1.1)

dα
i (x +j y) = dα

i x +j dα
i y for i 6= j and α = 0, 1,(1.2)

1This has been done in the hard category case in F. A. Al-Agl, R. Brown and R. Steiner, “Multiple categories:
the equivalence of a globular and a cubical approach”, Advances in Mathematics 170 (2002) 71-118.

2See also R. Brown and P.J.Higgins, ‘Cubical abelian groups with connections are equivalent to chain com-
plexes’, Homology, Homotopy and Applications, 5(1) (2003) 49-52.
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whenever x, y ∈ A and x +j y is defined.

(The interchange law) If i 6= j , then

(x +i y) +j (z +i t) = (x +j z) +i (y +j t)(1.3)

whenever x, y, z, t ∈ A and both sides are defined. As in [1], we denote the two sides of (1.3)
by




x y

z t




j

i

²²

//

The category structure of Ai on A is said to be stronger than the structure Aj if every
object (identity morphism) of Ai is also an object of Aj. An n-fold category A is then called
an n-category if the category structures A0, A1, · · · , An−1 can be arranged in a sequence of
increasing (or decreasing) strength. Different authors choose different orders [8, 11]; our
exposition will correspond to the order

Ob A0 ⊂ Ob A1 ⊂ · · · ⊂ Ob An−1.

Adopting this convention, we now define an ∞-category3 to be a class A with mutually
compatible category structures Ai for all integers i > 0 satisfying

(1.4) Ob Ai ⊂ Ob Ai+1 for all i > 0

The ∞-categories considered in this paper will also satisfy the extra condition

(1.5) A =
⋃

i>0

Ob(Ai).

An interesting alternative set of axioms for such ∞-categories, with a more geometric
flavour, will be given in Section 2. However, the axioms given above will be used in the later
sections for the proof of the main theorem since they make the algebra simpler.

An ∞-groupoid A is an ∞-category satisfying condition (1.5) in which each category
structure Ai is a groupoid.

Clearly there is a category Cat∞ of ∞-categories in which a morphism f : A → B is a
map preserving all the category structures. The full subcategory of Cat∞ whose objects are
∞-groupoids is denoted by H.

2 The Relation of ∞-groupoids to ω-groupoids.

In this section we explore a direct route from ω-groupoids to ∞-groupoids and use it to
reformulate the definitions of ω-groupoids and ∞-categories. This account is intended to

3The terminology has changed since this paper was written. The general term is now ω-category, and one
also has to distinguish between cubical and globular theories.
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show how ∞-groupoids fit into the pattern of equivalences established in [1,3]; it will not be
needed in later sections.

We recall from [1] that an ω-groupoid G is a cubical set with some extra structures. In
particular each G carries n groupoid structures with Gn−1 as set of objects.The face maps
∂0

i , ∂
1
i : Gn → Gn give the initial and final objects for the groupoid ⊕i, and the degeneracy

map εi, εi : Gn−1 → Gn embeds Gn−1 as the set of identity elements of ⊕i. Adopting the
conventions of Section 1, we write

ηα
i = εi∂

α
i : Gn → Gn

and
Obi(Gn) = εiGn−1 = {x ∈ Gn | ηα

i x = x for α = 0, 1}

The axioms for ω-groupoids now ensure that the groupoid structures

(Gn, η0
i , η

1
i ,⊕i), i = 1, 2, · · · , n

are mutually compatible. Thus for n > 0, Gn carries the structure of n-fold category (with
inverses) and εj : Gn−1 → Gn embeds Gn−1 as (n − 1)-fold subcategory of the (n − 1)-fold
category obtained from Gn by omitting the j-th category structure.

Now there is an easy procedure for passing from an n-fold category A to an n-category
induced on a certain subset S of A. Let

Ai = (A, d0
i , d

1
i , +i), i = 0, 1, · · · , n − 1,

be the n category structures on A. Write

Bi = Ob(Ai) ∩Ob(Ai+1) ∩ · · · ∩Ob(An−1), 0 6 i 6 n − 1,

and define
S = {x ∈ A | dα

i x ∈ Bi for 0 6 i 6 n − 1, α = 0, 1}.

The compatibility conditions (1.1)-( 1.3) imply that each Bi is an n-fold subcategory of A and
hence that S is also an n-fold subcategory of A, with category structures si = {S, d0

i , d
1
i , +i}.

But, for X ∈ S, dα
i x ∈ Bi∩S, so Ob(Si) ⊂ Bi∩S; conversely, if y ∈ Bi∩S then y ∈ Bi ⊂ Ob(Ai),

so dα
i y = y. Thus Ob(Si) = Bi ∩ S. Since B0 ⊂ B1 ⊂ · · · ⊂ Bn−1, it follows that S is an n-

category.

Before applying this procedure to the n-fold category Gn we renumber the operations to
conform with conventions adopted in Section 1. Write

+i for ⊕n−i on Gn and dα
i for ηα

n−i : Gn → Gn.

Then Gn is an n-fold category with respect to the structures

Ai = (Gn, d0
i , d

1
i , +i) i = 0, 1, · · · , n − 1.

Also

Bi = Ob(Ai) ∩Ob(Ai+1) ∩ · · · ∩Ob(An−1).

= εn−iGn−1 ∩ · · · ∩ ε1Gn−1

= εn−i
1 Gi.
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We therefore define

Sn = {x ∈ Gn | dα
i x ∈ εn−i

1 Gi for 0 6 i 6 n − 1, a = 0, 1}

= {x ∈ Gn | ∂α
j x ∈ ε

j−1
1 Gn−j for 1 6 j 6 n, a = 0, 1},

and deduce that, for each n > 0, Sn is an n-fold category with respect to the structures
(Sn, d0

i , d
1
i , +i), 0 6 i 6 n − 1. These structures are in fact all groupoids. One verifies easily

that the family (Sn)n>0 admits all the face operators ∂
β
i of G and also the first degeneracy

operator ε1 in each dimension. Since ε1 embeds Gn−1 in Gn as (n − 1)-fold subcategory
omitting ⊕1, it embeds Sn−1 in Sn as (n − 1)-subcategory omitting +n−1. In other words, it
preserves the operations +i, 0 6 i 6 n − 2 and its image is the set of identities of +n−1. It
follows that if we define

H = lim−→(S0
ε1
↪→ S1

ε1
↪→ S2 ↪→ · · · ),

then the operations +i (for fixed i) in each dimension combine to give a groupoid structure
Hi = (H, d0

i , d
1
i , +i) on H. Also Ob(Hi) is Hi, the image of Si in H. Thus we have

Proposition 2.1 If G is an ω-groupoid, then G induces on H the structure of ∞-groupoid.

Clearly, the structure on H can also be described in terms of the family S = (Sn)n>0. The
neatest way to do this is to use the operators

Dα
I = (∂α

1 )n−i = ∂α
1 ∂α

2 . . . ∂α
n−i : Gn → Gi, 0 6 i 6 n − 1, a = 0, 1,

Ei = εn−1
1 : Gi → Gn, 0 6 i 6 n − 1.

Since S admits ε1 and all ∂α
i , there are induced operators

Dα
i : Sn → Si, Ei : Si → Sn, 0 6 i 6 n − 1, a = 0, 1.

If x ∈ Sn, we have ∂α
n−ix = εn−i−1

1 y for some y ∈ Gi and this y is unique, since ε1 is an
injection. The effect of Dα

i is to pick out this i-dimensional 〈essential face〉 y of x, because

Dα
i x = ∂α

1 ∂α
2 . . . ∂α

n−i−1(∂
α
n−1x) = (∂α

1 )n−i−1(εn−i−1
1 y) = y.

If we pass to H = lim−→ Sn the operators Ei induce the inclusions Hi ↪→ H and the operators
Dα

i induce the dα
i : H → H, since for x ∈ Sn, we have dα

i x = εn−i
1 y, where y = Dα

i X .

It is easy now to see that the definition of ∞-category given in Section 1 (including con-
dition (1.5) is equivalent to the following. A (small) ∞-category consists of

2.2 A sequence S = (Sn)n>0 of sets.

2.3 Two families of functions4

Dα
i : Sn → Si, i = 0, 1, . . . , n − 1, a = 0, 1,

Ei : Si → Sn i = 0, 1, . . . , n − 1,

satisfying the laws
4The structure given in 2.2, 2.3 came later to be called a globular set.
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(i) Dα
i D

β
j = Dα

i for i < j, α, β = 0, 1,

(ii) EjEi = Ei for i < j,

(iii) D
β
j Ei =





D
β
j for j < i,

1 for j = i,

Ei for j > i.

2.4 Category structures +i on Sn(0 6 i 6 n − 1) for each n > 0 such that +i has Si as its set
of objects and D0

i , D
1
i , Ei as its initial, final and identity maps. These category structures must

be compatible, that is:

(i) If i > j and α = 0, 1, then
Dα

i (x +j y) = Dα
i x +j Dα

i y.

whenever the left hand side is defined.

(ii)
Ei(x +j y) = Eix +j Eiy

in Sn whenever the left hand side is defined.

(iii) (The interchange law) if i 6= j then

(x +i y) +j (z +i t) = (x +j z) +i (y +j t)

whenever both sides are defined.

The transition from an ∞-category A as defined in Section 1 to one of the above type is
made by putting Sn = Ob(An) and defining Ei : Si → (i < n) to be the inclusion map and
Dα

i : Sn → Si to be the restriction of Dα
i : A → A.

We note finally that, starting from an ω-groupoid G, the ∞-groupoid S = (Sn)n>0 de-
scribed above contains the associated crossed complex C = γG defined in [1] by the rule

Cn = {x ∈ Gn | Dα
i x ∈ εn−1

1 G0 for all (α, i) 6= (0, 1).

The equivalence of categories

γ : (ω–groupoids) → (crossed complexes)

established in [1] therefore factors through (∞–groupoids). We shall show below that the
factor

α : (∞–groupoids) → (crossed complexes)

is an equivalence, with inverse

β : (crossed complexes) → (∞–groupoids).

Hence
ζ = βγ : (ω–groupoids) → (∞–groupoids)
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is an equivalence. By results in [2], any ω-groupoid is the homotopy ω-groupoid ρ(X∗) of a
suitable filtered space X∗. Defining the homotopy ∞-groupoid of X∗ to be σ(X∗) = ζρ(X∗),5

we deduce that any (small) ∞–groupoid is of the form σ(X∗) for some X∗.

3 The Crossed Complex Associated with an ∞-groupoid.

Let H be an ∞-groupoid in the sense of Section 1. Then H has groupoid structures (H, D0
i , d

1
i , +i)

for i > 0 satisfying the compatibility conditions (1.1), (1.2), (1.3) and the conditions

3.1
Hi ⊂ Hi+1for i > 0; H =

⋃

i>0

Hi

where Hi = d0
iH = d1

iH is the set of identities (objects) of the i−th groupoid structure. The
conditions (3.1) enable us to define the dimension of any x ∈ H to be the least integer n such
that x ∈ Hn; we denote this integer by dim x. It is convenient to picture an n-dimensional
element x of H as having two vertices dα

0 x, two edges dα
1 x joining these vertices, two faces

dα
2 dx joining the edges, and so on, with x itself joining the two faces dα

n−1x ∈ Hn−1. (The
actual dimensions of the faces dα

i x may of course be smaller than i.)

Some immediate consequences of the definitions are

3.2 (i) For each x ∈ H, d0
jx = d1

jx = x if j > dim x.

(ii) If i < j then dα
i d

β
j = d

β
j dα

i = dα
i for α, β = 0, 1.

(iii) If i < j then dα
i (x +i y) = dα

i x = dα
i y for α = 0, 1 whenever x +j y is defined.

Here (ii) follows from (i), since dim(dα
i x) 6 i < j, and (iii) follows from (ii) since, for

example,

dα
i (x +j y) = dα

i d0
j(x +j y) = dα

i d0
jx = dα

i x.

We shall show that any ∞-groupoid H contains a crossed complex C = αH, as described
in Section 2. First we recall from [1] the axioms for a crossed complex.

A crossed complex C (over a groupoid) consists of a sequence

· · · → Cn
δ // Cn−1

// . . . // C2
δ // C1

δ0
//

δ1
// C0

satisfying the following axioms:

3.3 C1 is a groupoid over C0 with δ0, δ1 as its initial and final maps. We write Cl(p, q) for the
set of arrows from p to q(p, q ∈ C0) and C1(p) for the group C1(p, p).

5A paper is in preparation giving a direct homotopical construction of σ(X∗) in terms of filter homotopy
classes rel vertices of filtered maps of n–globes to X∗.
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3.4 For n > 2, Cn is a family of groups {Cn(p)}p ∈ C0 and for n > 3 the groups Cn(p) are
Abelian.

3.5 The groupoid C1 operates on the right on each Cn(n > 2) by an action denoted (x, a) 7→ xa.
Here, if x ∈ Cn(p) and a ∈ C1(p, q) then xa ∈ Cn(q). (Thus Cn(p) ≈ Cn(q) if p and q lie in
the same component of the groupoid C1.)

We use additive notation for all groups Cn(p) and for the groupoid C1 and we use the
symbol 0p ∈ Cn(p), or 0 for all their identity elements.

3.6 For n > 2, δ : Cn → Cn−l is a morphism of groupoids over C0 and preserves the action of
C1 where C1 acts on the groups C1(p) by conjugation: xa = −a + x + a.

3.7 δδ = 0 : Cn → Cn−2 for n > 3 (and δ0δ = δ1δ : C2 → C0 as follows from (3.6).)

3.8 If c ∈ C2 then δc operates trivially on Cn for n > 3 and operates on C2 as conjugation by
c, that is,

xδc = −c + x + c (x, c ∈ C2(p)).

The category of crossed complexes is denoted by C.

Given an ∞-groupoid H , we define C = αH by

C0 = H0, C1 = H1and

Cn(p) = {x ∈ Hn | d1
n−1x = p} for p ∈ C0, n > 2.

It follows from (3.2) (ii) that if x ∈ Cn(p)(n > 2) then

for 0 6 i 6 n − 2, dα
i x = dα

i d1
n−1x = p.

Thus we have the alternative characterisation:

Cn(p) = {x ∈ Hn | dα
i x = p for 0 6 i 6 n − 1, a = 0, 1, (i, a) 6= (n − l, 0)}.

For n > 2, let Cn be the family {Cn(p)}p∈C0 and, for x ∈ Cn(p), define δx = d0
n−1x. Then

δx ∈ Cn−1(p) since
d1

n−2 d0
n−1 x = d1

n−2 x = p.

This defines δ : Cn → Cn−1 for n > 2 and we define

δα : C1 → C0 by δα = dα
0 (a = 0, 1).

Clearly C1 is a groupoid over C with respect to the composition +i. Also for each p ∈ C0

and n > 2, Cn(p) is a group with respect to each of the compositions +i for i = 0, 1, . . . , n−2,
with zero element p. If 0 6 i < j 6 n − 2 and x, y ∈ Cn(p) then the composites




x p

p y







p x

y p




i

j

²²

//
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are defined. Evaluating them by rows and by columns we find that

x +j y = x +i y = y +j x.

Thus, for n > 3, these group structures in Cn(p) all coincide and are Abelian. We write x + y

for x +0 y whenever this is defined in H. Then Cn(p) is a group with respect to +. By (1.2),
δ = d0

n−1 : Cn(p) → Cn−1(p) is a morphism of groups for n > 2. Also δδ = 0 since for
x ∈ Cn(p) and n > 3,

δδx = d0
n−2 d0

n−1 x = d0
n−2 x = p.

Let x ∈ Cn(p), n > 1 and let a ∈ C1(p, q). We define

xa = −a + x + a.

If n > 2, then

d1
n−1x

a = −d1
n−1a + d1

n−1x + d1
n−1a by (1.2)

= −a + p + a = q.

If n = 1, then d1
0x = d1

0a = q. Thus, in either case, xa ∈ Cn(q) and we obtain an action of C1

on Cn. This action is preserved by δ since for n > 2,

δ(xa) = −d0
n−1a + d0

n−1x + d0
n−1a = −a + δx + a.

Lemma 3.9 If n > 2, x ∈ Cn(p), u ∈ Hn and d0
0 = p, then

−u + x + u = xd0
1u.

Proof This follows from evaluating in two ways the composite



d0
1u x d0

1u

−u p u




1

0

²²

//

2

From (3.9) we see that if x, c ∈ C2(P), then −c+x+c = xδc, as required in (3.8). Further,
if x ∈ Cn(p), n > 3 and c ∈ C2(p), then the composite




−c p c

p x p




1

0

²²

//

is also defined, giving −c + x + c = x, so in this case (3.9) implies that xδc = x.

This completes the verification that C = {Cn}n>0 is a crossed complex, which we denote by
αH. We observe that this crossed complex is entirely contained in H, and all its compositions
are induced by +0, while its boundary maps are induced by the various d0

i . The groups
Cn(q), Cn(p) are disjoint if p 6= q; the groups Cm(p), Cn(p) have only their zero element p

in common if m 6= n.

We now aim to show that H can be recovered from the crossed complex C = αH contained
in it. The key result for this is
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Proposition 3.10 Let H be an ∞-groupoid with associated crossed complex C = αH. Let n >
1, x ∈ Hn, d0

0x = p and d1
0x = q. Then x can be written uniquely in the form

(*) x = xn+xn−1+ · · ·+x1, where x1 ∈ C1(p, q), xi ∈ Ci(p) for i > 2 and + stands for +0 .

Further, xi is given by

(**) xi = d1
ix − d1

i−1x for 1 6 i 6 n.

Proof If (*) holds then, for 1 6 i 6 n,

d1
i x = d1

i xn + d1
i xn−1 + · · ·+ d1

i xi+1 + xi + xi−1 + · · ·+ x1

= xi + xi−1 + · · ·+ x1

since d1
ixj = p for i < j. The formula for xi follows, and this proves uniqueness. For existence,

let xi be defined by (**). Then

xn + xn−1 + · · ·+ xi = d1
n x − d1

0 x = x − q = x.

Also xi ∈ Hi, and
d1

i−1 xi = d1
i−1x − d1

i−1 x = d0
0 d1

i−1 x = p.

if i > 2, that is, xi ∈ Ci(p). Similarly, x1 ∈ C1(p, q). 2

We now give some basic properties of the decomposition (*) of Proposition (3.10).

3.11 d1
i x = xi + xi−1 + · · ·+ x1, −1 6 i 6 n.

3.12 d0
ix = δxi+1 + xi + xi−1 + · · ·+ x1 = δxi+1 + d1

ix, i 6 i 6 n − 1.

We have already proved (3.11), and (3.12) is similar. 2

3.13 If z = x +0 y is defined in H, then

zi =

{
x1 + y1 if i = 1

xi + y−x1
i if i > 2.

Proof Clearly
z1 = d1

1 z = d1
1 x + d1

1 y = x1 + y1.

If i > 2 then

zi = d1
i(x +0 y) − d1

i−1(x +0 y) = d1
i x + d1

i−1 y − d1
i−1 y − d1

i−1 x

= xi + d1
i−1 x + yi − d1

i−1 x = xi + y−v
i

by (3.9), where v = d0
1 d1

i−1 x. If i = 2, then

v = d0
1 d1

1 x = d1
1 x = x1

If i > 3, then
v = d0

1 x = δx2 + x1,

But δx2 acts trivially on Ci for i > 3, so the result is true in this case also. 2
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3.14 If z = x +j y is defined in H,where j > 1 then

zi =





yi = xi if i < j

yi if i = j

xi + yi if i > j.

Proof First note that d1
j x = d0

j y and hence d0
0 x = d0

0 y = p, say. If i < j, then

zi = d1
i(x +j y) − d1

i−1 (x +j y)

= d1
i x − d1

i−1 x = d1
i y − d1

i−1 y by (3.2)(iii)
= xi = yi.

If i = j, then z = d1
i y − d1

i−1 y = yi. If i = j + 1 then

zi = (d1
j+1 x +j d1

j+1 y) − d1
j y

=

[
d1

j+1 x −d1
j y

d1
j+1 y −d1

j y

]

j

0

²²

//

But

d1
j+1 x − d1

j y = xj+1 + d0
j y

= xj+1 + d0
j y − d1

j y

= xj+1 + d0
j yj+1

and d1
j+1 y − d1

j y = yj+1, so

zi =

[
xj+1 d0

j yj+1

p yj+1

]

j

0

²²

//

= xj+1 + yj+1.

If i > j + 2, then

zi =

[
d1

i x −d1
i−1 x

d1
i y −d1

i−1 y

]

j

0

²²

//

= xi +j yi = xi + yi

2

These results show that the ∞-groupoid structure of H can be recovered from the crossed
complex structure of C = αH, a fact which we make more precise in the next section. We
observe that all the equations (3.11)-(3.14) and (**) of (3.10) remain valid for values of i

and j greater than the dimensions of x, y, z if we adopt the convention that, for i > dim x, xi =

d0
0 x.
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4 The Equivalence of Categories.

We have constructed, for any ∞-groupoid H, a crossed complex αH, and this construction
clearly gives a functor α : H → C. We now construct a functor β : C → H.

Let C be an arbitrary crossed complex. We form an ∞-groupoid K = βC by imitating the
formulas (3.10)-( 3.14). Let K be the set of all sequences

x = (. . . , xi, xi−1, . . . , x1)

where x1 ∈ C1, xi ∈ Ci(δ0 x1) and xi = 0 for all sufficiently large i. As for polynomials, we
shall write

x = (xn, xn−1, . . . , x1) if xi = 0 for all i > n.

We define maps dα
i : K → K by

d0
0 x = (. . . , 0p, 0p, . . . , 0p), p = δ0 x

d1
0 x = (. . . , 0q, 0q, . . . , 0q), p = δ1 x

d1
i x = (xi, xi−1, . . . , x1), i > 1,

d0
i x = (δxi+1 + xi, xi−1, xi−2, . . . , x1), i > 1.

It is easy to verify the law (1.1). (The crossed module law δδ = 0 is needed to prove d0
i d0

i+1 =

d0
i+1 d0

i). Also, writing Ki = d1
i K = d0

1 K for i > 0, we have

Ki ⊂ Ki+1 (i > 0) and
⋃

i>0

Ki = K.

Suppose now that we are given x, y ∈ K such that d1
0 x = d0

0 y, that is δ1 x1 = δ0 y1. We
define

x +0 y = (. . . , xn + yx1
n , . . . , x2 + y−x1

2 , x1 + y1)

which is an element of K. Similarly, if j > 1 and d1
j x = d0

j y, that is xi = yi, for i < j and
xj = δyj+1 + y, we define

x +j y = (. . . , xn + yn, . . . , xj+1 + yj+1, yj, yj−1 . . . , y1)

again an element of K. In each case it is easy to see that the composition +j defines a groupoid
structure on K with Kj as its set of identities and d0

j d1
j as its initial and final maps. The law

(1.2) follows trivially from these definitions if α = 1 or if i < j. If α = 0 and i > j, it reduces
immediately to one of the following equations:

δyi+1 + xi = xi + δyi+1, i > j > 2,

δ(y−x1
i+1 ) + xi = xi + (δyi+1)

−x1 , i > 2,

δ(y−x1
2 ) + x1 = x1 + δy2.

These are all easy consequences of the laws for a crossed complex. The interchange law (1.3)
is proved in a similar way to complete the verification that K = βC is an ∞-groupoid. The
construction is clearly functoria1.
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Theorem 4.1 The functors α : H → C and β : C → H defined above are inverse equivalences.

Proof. Given an ∞-groupoid H, the ∞-groupoid K = βαH is naturally isomorphic to H by
the map

(. . . , xn, xn−1, . . . , x1) 7→ · · ·+ xn + xn−1 + · · ·+ x1

(the sum on the right being finite since xr = 0 for large r). This is a consequence of Proposi-
tion (3.10) and the relations (3.11)–(3.14).

On the other hand, if C is a crossed complex H = βC and D = αβC, then H consists of
elements x = (xn, xn−1, . . . , x1) and hence

Dn = {x ∈ Hn | d1
n−1 x ∈ H0}

consists of elements x = (xn, 0p, 0p, . . . 0p), where xn ∈ Cn(p). It is easy to see that the map
Cn → Dn defined by

c 7→ (c, 0p, 0p, . . . , 0p︸ ︷︷ ︸
n−1

), c ∈ Cn(p)

gives a natural isomorphism C → αβC. 2
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