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Introduction
THE study of topologies on X X Y is motivated by some outstanding
deficiencies of the cartesian, that is the usual, topology on the product
of spaces. (Throughout this paper all spaces will be assumed to be
Hausdorft.)

Firstly, the cartesian product of identification maps is not, in general,
“an identification map. As a consequence certain natural products such
as the join and smash product which are formed as identifications of
cartesian products, turn out to be non-associative [cf. (4)]. Further,
the cartesian product of locally uncountable CW-complexes is not a
CW-complex, and this is a difficulty in an important application of these
complexes: to the singular complex of a space.

Secondly, the cartesian topology does not behave well in considering
maps from, rather than ¢nfo, X X Y. One example of this, the exponen-
tial law for function spaces, will be discussed in detail in a sequel to
this paper (1) (the difficulty here is, however, not usually traced to the
product topology). Another, and similar, example is the use made by
Bourbaki in (2) of ‘fonctions hypocontinues’, which are simply bilinear
functions X X Y — Z, continuous in some topology on X X Y other than
the cartesian.

Now there are indefinitely many natural product topologies [cf. § 1].
There are also a surprising number which are relatively close to the carte-
sian product, have interesting and useful properties, and are in some
respects better than the cartesian.

Our main purpose is to prove the theorem:

TrEOREM 0.1. There are on the category of spaces at least ten natural
products which are associative and have the same compact subsets as the
cartesian product. These products are distinct in general.

Included among these products is the cartesian product itself, and
the weak product discussed by Spanier in (8). The eight other products
we call the extraordinary products. They lie between the cartesian and
the weak product in the usual partial ordering of topologies on a set.
Quart. J. Math. Oxford (2), 14 (1963), 303~19.
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As examples where improvements on the cartesian product are ob-
tained, we shall prove the theorems:

TaroreM 4.8. Two of the extraordinary products have the property:
if f: P — X is an identification map, then forany ¥, fx1: PX ¥Y-> XX Y
18 an identification map.

THEOREM 0.2. The extraordinary products, and the weak product, make
the product of CW-complexes a CW-complez.

The latter result was well known for the weak product.

Theorem 0.2 is a special case of the result that the extraordinary
products coincide with the weak product on the category of k-spaces.
Hence the category of k-spaces has a convenient product (namely the
weak product) and in (1) we shall show the importance of this category
for homotopy theory.

It may turn out that the category of k-spaces is adequate and con-
venient for all purposes of topology. In this case the extraordinary
products will lose their interest. At present, their introduction is justi-
fied by the applications of some of them [cf. also (1)] and by their close
interrelationship.

This paper rests on the properties of weak topologies discussed in § 1.
§ 2 resumes known results on k-spaces and the weak product. § 3 defines
the extraordinary products and proves their simpler properties. § 4 is
concerned with conditions for the products to coincide, and with the
proof of associativity and Theorem 4.8. § 5 uses a result proved in § 6
to show that the products are distinct in general.

1. Weak topologies
Let X be a cover of a space X; the elements of X are to be taken as
subspaces rather than just subsets, of X.

DermvrTioN 1.1, 4 set C < X 3 closed (open) in the ‘weak topology
with respect to T’ if and only if C N 8 is closed (open) in S for each S € Z.
The set X with this topology is written X .

ProrosrrioN 1.2. Bach S € I refains its own topology in Xy: that is,
the incluston 8 — Xy i8 a homeomorphism into. In particular, if X € X,
then X = X5.

ProrosrrioN 1.3. I 48 a cover of X5 by subspaces, and (Xy)y = X5.

ProrosrrioN 1.4. The topology of Xy, i8 larger than that of X: that is,
the identity Xy — X i8 condinuous.
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ProposrrioN 1.5. 4 function f: X5 — Y is continuous if and only if
S| 8 s continuous for each S € X.

These propositions follow immediately from the definition.

For each S of X, let

P(S) = {(8,z): z € S}, PZ) = QEP(S).
Let o: P(X) > X be defined by o(S,z) = z, and let P(X) have the
topology that each P(8) is open and closed in P(X) and o | P(S) is a
homeomorphism onto S.

ProposITION 1.6. 0: P(X) > X5 18 an identification map.

The proof is easy. This proposition says that the weak topology with
respect to X is exactly the identification topology with respect to o,
and this gives a handy method of proving that a space has the weak
topology. [This method is due to Cohen (3).]

Another consequence of Proposition 1.6 is the theorem:

THEOREM 1.7. Let Z, T’ be covers of X, X' respectively. Let f: X — X'
be a function such that for each S of = (i) there is an 8’ of T’ such that
f(8) € 8, and (ii) f| S is continuous. Then f: Xy - Xy. 18 continuous.

Proof. Foreach S € = we choose an 8’ such that f(S) = §’, and define
[t P(£)> P(Z') by f'(8,z) = (8, fxr). The following diagram is com-
mutative

) L Py

al l
x, -1, x,.
Since ¢ is an identification map, f is continuous.

CoroLLARY 1.8. Let T, X’ be covers of X. If X is a refinement of T,
then the identity Xy - X ., is continuous. If also X' ts a refinement of Z,
then Xy = X5.

Now let T be a cover of X, and let A = X. The restriction of T to
A is the cover of 4,

T|A={8n4d:8eZ}.
So we can form the space Ay ,. On the other hand, 4 with its relative
topology as a subset of Xy determines a space 4y, say.

ProrosITION 1.9. The identity Ay, — As i8 continuous. If A and
each S of T s closed in X, then Ag, = Ag, and Ay 18 a closed subspace
of X5.

8695.2.14 X
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Proof. By Theorem 1.7, the inclusion Ay, + Xy is continuous.
Hence the identity Ay, - Ay is continuous. Thus the topology of
Aj,, is not smaller than that of A5, and we now prove that, under the
given assumptions, it is not larger.

Let C = Abeclosedin Ay, ,. ThenforeachSofZ,CNS=Cn8SnA4
is closed in SN A4 and hence in §. So C is closed in Xy, and hence C
is closed in A5. Thus 4y, = As.

Similarly C = Ay, is closed in Xy; hence Ay is a closed subspace
of X P>l

DermviTIiON 1.10. Let & be a category of spaces. A ‘natural cover on
X’ is a function T assigning to each space X in & a cover Z(X) of X and
such that, for each map f: X - Yin Z and each S in 3(X), (i) there is an
S’ in Z(Y) such that f(8) = §’; (ii) f| 8 <8 continuous.

If ¥ is a natural cover, we write Xy for X5y, By Theorem 1.7, if
f: X > Yis map in &, then f: Xy - Y; is continuous. This map is
sometimes written fs. :

Examples 1.11. The following are natural covers on the category of
all spaces and continuous maps:

(i) Z(X) = {X};

(i) 2(X) = {{z}: xe X};
(iii) (X)) = ¥(X), the set of compact subsets of X;
(iv) Z(X) is the set of connected subsets of X.

For many categories 2, natural covers on £ can be constructed by
the method of the universal example. A space U in & and a set Xy
of subspaces of U are chosen. For any X, £(X) consists of the sets
f(S) for all Sin Z; and all maps f: U - X. Clearly (X)) satisfies the
strong naturality condition that, if g: X - Y is a map, and S € Z(X),
then g(8)e 2(Y). However, some conditions on Z are necessary to
ensure that X(X) is & cover of X: it is enough, for example, that all
constant maps are in Z.

We remark finally that, if {Z};.; is & family of natural covers on %',
then their union X defined by

Z(X) = | Z(X)
iel
is again a natural cover on Z.

2. k-spaces

The main purpose of this section is to collect together for ease of
raference some known facts on k-spaces.
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A k-space is a space X such that X = Xg: that is, a k-space is a space
which has the weak topology with respect to the family of compact
subspaces.

ProrosrrioN 2.1. (i) X and X ¢ have the same compact subsets, (i) X¢
is a k-space, (iii) X4 has the largest topology with the same compact subsets
as X.

Proof. (i) X has a larger topology than that of X, and so

€ (Xg) = €(X).
By Proposition 1.2, €(X) < €(X¢).

(i) This follows from (i) and the definition of weak topologies.

(iii) Let X’ have the same compact subsets as X. It is sufficient to
prove that these compact subsets are the same spaces in X as in X',
For then the identity 1: X - X’ is continuous on compact subspaces,
and so 1: X - X' is continuous.

The closed subsets of a compact space are the compact subsets.
Hence the closed subsets of a compact subspace of X' are the same as
the closed subsets of the corresponding compact subspace of X: that is,
the compact subsets of X and X’ coincide as spaces.

Now € is & natural cover. So Proposition 2.1 (ii) implies that &
determines a functor from spaces to k-spaces. This functor will be
written k.

ProposiTioN 2.2. If X is locally compact, or satisfies the first axiom
of countability, then X is a k-space.

This is Theorem 7.13 of (7).

ProrosrTioN 2.3. Any CW-complex i8 a k-space (10). If K, L are
CW-complezes, then k(K X o L)t 18 a CW-complex.

For proofs, see (8) [§ 2].

ProrosrTION 2.4. A closed subspace of a k-space i8 a k-space. A quo-
tient space of a k-space is a k-space.

The first part follows from Proposition 1.9. For a proof of the second

part, see (4) [(1.81)] (we must assume, of course, that the quotient space
is Hausdorff).

Examples of spaces which are not k-spaces are a little hard to find.
Ex. 7.J of (7) outlines a proof that arbitrary subspaces and arbitrary
products of k-spaces are not k-spaces. A stronger result than the latteris

ProrosrrioN 2.5. T'here are k-spaces K, L such that K X o L 18 not a
k-space.

t K X ¢ L denotes the cartesian product space of K and L.
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Proof. Dowker in (5) has given an example of CW-complexes K, L
such that K X o L is not a CW-complex. Proposition 2.3 shows firstly
that K, L are k-spaces, and secondly that K X o L # k(K X ¢ L).

This last proposition shows that the cartesian product does not define
a product in the category X of k-spaces. The ‘correct’ product in ¢~
is in fact the weak product.

DEFINITION 2.6. The ‘weak product’ of spaces X, Y is the space
XXpY=kKXXY).
Prorosrrion 2.7. X X Y has the weak topology with respect to the
Sfamily {A X o B}, for all compact subsets A of X, B of Y.

Proof. This follows from Corollary 1.8 since each 4 X B is com-
pact, and any compact subset of X X oY is contained in the compact
product of its projections.

ProrosrrioN 2.8. For any X, Y,
XXpY=HKX)Xwk(Y).

Proof. The identity 1: k(X)X ok(Y)—> X X Y is continuous, and
hence sois 1: B(X)X g B(Y) > X X Y.

The identity 1: X X oY —» k(X)X o %(Y) is continuous on 4 X o B for
each compact subset 4 of X, B of Y. By Theorem 1.7 and Proposition
2.7, 1: XX 5 Y- k(X)X k(Y) is continuous. Hence

XXpY=EKX)Xzk(Y).
ProrosiTiON 2.9. The weak product is associative and commutative,
and the projections X X Y - X, X X1, Y- Y are continuous.
Proof. The only non-trivial part is associativity. By Proposition 2.8,
XX YXp Z) = XXp(¥YXZ) = KX X oYX 2),

and similarly (X XpY)Xp Z = KX X YX o 2).

We may ask for conditions on X, Y that X X, Y = X X Y. In one
direction there is an easy result:

ProposrrioN 2.10. If XX , Y= X X7, then X and Y are k-spaces.

Proof. Let ye Y. Then X is homeomorphic to X X {y}, which is
a closed subspace of the k-space X X ;Y. So X is a k-space. Similarly
Yis a k-space.

Only incomplete results are known in the other direction. The follow-
ing theorem seems to cover all known cases:
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THEOREM 2.11. X X5 Y= X X Yif (i) X and Y satisfy the first axiom
of countability, or (ii) X and Y are k-spaces one of which is locally com-
pact, or (iii) X and Y are CW-complexes one of which s locally finite, or
(iv) X and Y are locally countable CW-complexes.

In case (i), X X oY also satisfies the first axiom of countability, and
so is a k-space by Proposition 2.2. Case (iii) is a special case of (ii)
which is due to Cohen (3). In case (iv) it was proved by Dowker [(6) § 8]
that X X Y is a CW-complex. Hence X X ;Y = X X Y by Proposi-
tion 2.3.

3. Product topologies

Let & be the category whose objects are the cartesian products
X X oY for all spaces X, Y, and whose maps are fX g for all con-
tinuous maps f, . Let T be a natural cover on . Then X determines
a product X X 5 Y of spaces by the rule

.XXEY= (XXcY)z.
This product is natural in the sense that, if f: X - X', g: Y- Y’ are
continuous, then the product map fXygg: X XY+ X'X:Y is con-

tinuous.
The opposite of X is the natural cover Z* on Z such that, for any

X, 7, Z¥X X oY) ={T(U): UeZ(YxsX)},

where T: YX X - X XY is the natural map. Then X* defines a
product X X 5. ¥, the oppostte of the product X X 5 7.

A product X Xy Y is commutative if for all X, ¥, XX ¥ = X X ;. Y.
It is assoctative if for all X, ¥, Z the natural map

(XXsY)XgZ > X X5(¥X52)
is a homeomorphism.
In Table 3.1 we define ten natural covers on X. We abbreviate
Z(XXeY)to Z, X XY to XX Y, and the sets {z}, {y} to z, y respec-

tively. It is to be understood that z, y range over the elements, and
A, B over the compact subsets, of X, Y respectively.

TaBLE 3.1
W = {4 x B} C={XxY}
P* = {AX B, zx7Y} P ={4AxB, Xxy}
R* = {A XY} R ={Xx B}
S* = {4 XY, X xy)} S ={XxB,zxY}

Q@ ={AXB, zxY, Xxy} T ={AxY, XxB)}
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These natural covers define ten natural products, which, by Corollary
1.8, are related by the following diagram of continuous identity maps:

X X Y
Y/ \XXPY\

Y/XXP‘ \

e N
X X ge N /an X X gY
e Ny

XXs-Y\ /XXsY
XXpY

Xx C‘Y
Di1agram 3.2

The products X X 5, ¥, X X Y are, of course, the weak and cartesian
products respectively. The eight other products we call the extra-
ordinary products.

There are other natural covers on the category &, but the author
has not found any which determine products that are associative, that
have the same compact subsets as the cartesian product, and that are
distinct from the products of Diagram 3.2.

The products XX Y, XX oY, XX 7Y, XX Y are commutative.
The other six products consist of three pairs of a product and its
opposite, but the proof that the products X X ¥, X X ¢ ¥ are not com-
mutative is non-trivial [cf. § 5, 6].

We now prove the easy part of Theorem 0.1, namely the proposition:

ProrositioN 3.3. The extraordinary products and the weak product
have the same compact subsets as the cartesian product.

Proof. By Proposition 2.1 the weak and the cartesian product have
the same compact subsets. Since the extraordinary products lie be-
tween these two, the result follows.

Prorosrtion 3.4. The extraordinary products and the weak products
satisfy (i) the projections X X Y- X, X X Y— Y are continuous, (ii) if
X', Y’ are closed subspaces of X, Y respectively, then X' X Y’ is a closed
subspace of X X Y.

Proof. The first part is clear from Diagram 3.2 since the projections
are continuous for the cartesian product.

The second part follows from Proposition 1.9 and the fact that the
natural covers T which determine the products all satisfy

2(X'XeY)=Z( XX DX’ X Y').
The restriction to closed subspaces is essential here.
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We now give simple conditions for some of the products to coincide.

Prorosrrion 3.5. The 10 products of (3.2) coincide if and only if
XX oY is a k-space.

The proof is clear. Conditions for X X ;Y to be & k-space were given
in Theorem 2.11.

THEOREM 3.6. X XY= X XY =X XY= XXzYif Yis locally
compact. X X oY = X X pY = X X ¥ = X X p.Y if X is locally compact.

Proof. We prove only the first statement, from which the second
follows. From Diagram 3.2, it is sufficient to prove that

XXeY=XXpY
if Y is locally compact.

We remark first that, if Y is compact, then X XY= XX Y by
definition of X X 5 ¥ and Proposition 1.2. In general we know that the
topology of X X oY is not smaller than that of X XY, and we now
prove that it is not larger if Yis locally compact.

Let U be an open subset of XX Y, and let (z,y) e U; let V be a
compact neighbourhood of y. By the definitionof X X p ¥, U N (X X oV)
is open in X X V. Since V is a neighbourhood of y, there are open sets
U,in X, U, in Ysuch that

(9 eUxU, c Un(Xx,V)cs U
Hence U is open in X X o Y.

4. Identification maps
As before, when no confusion will arise, we abbreviate X XY to
X x Y. We recall that all spaces are assumed to be Hausdorff.
The results of this section all depend on the following lemma, which
is a special case of Lemma 4 of (9):
Levma 4.1. If f: P — X i3 an identification map, and B is compact,
then fXol: PX o B —> X X B is an identification map.
The first use we make of this lemma is to prove the theorems:
THEOREM 4.2. If Yis a k-space, then
(i) XXpY=XXgY=XxXg ¥,
(i) XXg¥Y=XXqY=XxpY,
(ill) XXp¥Y=XXp.Y=XXp7Y
TaEOREM 4.3. If X 18 a k-space, then
(1) XXpY=XXg¥=XXp1Y,
(i) XXg¥=XxXq¥Y=XXp7,
(i) XXpY=XXpY =XXpl,
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THEOREM 4.4. If X and Y are k-spaces, then the extraordinary and
the weak products coincide.

Theorem 4.3 results from Theorem 4.2 by replacing each product by
its opposite. These two theorems together imply Theorem 4.4 of which
Theorem 0.2 of the Introduction is a special case.

In the proof of Theorem 4.2 we need the following lemma whose
proof is trivial:

Lemma 4.5. Let X, Y be the union of disjoint subspaces X ,, Y, each
open and closed in X, Y respectively. Let o: X — Y be a function such
that (i) o(X,) = Y, (ii) 0| X 4: X, - Y, is an identification map. Then o
i8 an identification map.

Proof of Theorem 4.2 (i). It is sufficient to prove X X, ¥ = XX Y.
Werecall that T is the cover {4 X ¥, X X B}, and R is the cover {X X B},
for all compact subsets A < X, B = Y. We abbreviate symbols such
as P({4 X B}), where Pisasin § 1, to P{4 X B}.

Since any compact space can be embedded as a closed subspace of
a non-compact space, we may assume X is non-compact. This ensures
that the spaces P{X x B} and P{4 X B} are disjoint. In the diagram

P{X x B} U P{4 x B}
o l ¢ oy
P{XxB}U P{AX Y}
i o
XX,7%,
o is the identification map of Proposition 1.6, o, is the identity, and o,
is defined by o,(4 X B,2) = (4 X X,2) (z€ A X B).

It is sufficient to prove that o, is an identification map. For then,
by Lemma 4.5, g, U o, is an identification map, as is o(c, U 0,). Hence
X X 7Y has the weak topology with respect to the family {X x B, 4 X B},
which refines, and is a refinement of, R = {X X B}. So

XXxpY=XxXxpzpT.

Since Y is a k-space, there is an identification map oy: P{B} > Y.
For each fixed compact subset 4, = X, 0,|P{4,X B} may be identified
with 1 X o5: Ag X P{B} > Ayx Y. Hence, by Lemma 4.1,

0, | P{4yX B}: P{4yX B} - P{4,X Y}
is an identification map. By Lemma 4.5, o, is an identification map.

Proof of Theorem 4.2 (ii). We give the proof in less detail than the
preceding.

Itissufficient to prove X X . Y=X X p Y. Now 8* = {4 X ¥, X x{y}}.
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Since Yis a k-space, the method of the preceding proof shows that S*
determines the same weak topology as {4 x B, X x{y}} = P. Hence
XXgY=XXpY.

Proof of Theorem 4.2 (iii). Since Yis & k-space, R* = {4 X Y} deter-
mines the same weak topology as {4 X B} = W: that is,

XXpgY=Xxpl.

TBEOREM 4.6. The extraordinary products are associative.

Proof. 1 give the proof for X o, and leave the similar proofs for the
other products to the reader.

In the following, let z, y, z range over the elements, and 4, B, C
over the compact subsets, of X, ¥, Z respectively. Let L range over
the compact subsets of ¥Yx o Z. By Proposition 3.3, the compact sub-
sets of YX ¢ Z are the compact subsets of YX o Z, and 80 X X o(¥YX o Z)
has the weak topology with respect to

S={AXL,zx(YXqg2Z), X xyXz}.
By Corollary 1.8, X determines the same weak topology as
2, ={AXBxC,zx(YxqZ), XXyXz}.
The method of proof of Theorem 4.2 shows that X, determines the same
weak topology as
2, ={AXBXC,zxyxZ,2x ¥Yxz, X BXC, X XyXx2}

={AXBXC,zxyxZ,zx ¥Yxz, X XyXz}.
A similar computation shows that (X X 5Y)X o Z also has the weak
topology with respect to Z,.

There are other associativity relations among the products. I state
two of these, and leave the reader to investigate the situation:

THEOREM 4.7. For all X, Y, Z, the natural maps

XX p(YXgZ)> (XX g Y)XRpZ,
XXp(YXgZ)> (XX pY)XgZ,
are homeomorphisms.

The proof is omitted.

THEOREM 4.8. Let f: P> X be an identification map. For any ¥,
fXrl: PXgY—> XXRY, fXgl: PXgY—>XXgY are identification
maps.

Proof. We prove first that & = fX ;1 is an identification map. Let
U < PX Y be open and saturated with respect to 2. We must prove
that k(U) is open in X X 57, i.e. that A(U) N (X X o B)isopenin X X o B
for each compact B € Y.
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Let B < Y. Since b = fXx1,
MU) N (X X B) = KU n(Px B)).
Let hg = h|PXB: PX¢cB—>XXgB. Then
hz'hg(U N (P X B)) = hg}{M(U) n (X X B))

= h-(U)n (P X B)
= Un(PxB).

Thus U n (P X B) is saturated with respect to A p.

Let B = Y be compact. Then hp is an identification map by Lemma
4.1. Also UN (P X B)is open in P X o B and saturated with respect
to hp. Then 3 7 n (PxoB)) = WU)N (X X B)
is open in X X' B. Therefore A(U) is open in X X Y.

To prove b’ = fX ¢1 anidentification map, we start with U = PxgY
open and saturated with respect to »’. Then U is open in PX Y and
saturated with respect to h. So A(U) = A'(U) is open in X X Y. We
show that »'(U) is also openin X X g 7.

For any p € P,

BMlpXcY: pXcY—>foxoY
is a homeomorphism. Now UN(pXoY) is open in pXcY; so
R(UN(pxcY))is open in fpX Y. For any ze X, W' (U)n (xx oY) is
the union of the sets A'(U N (p X o Y)) for all p € P such that f(p) = z.
Hence A'(U) N (xXoY)is open in 2X Y. So A'(U) is open in X X7,
and %’ is an identification map.

Let f: P— X and Y be as in Theorem 4.8. By combining Theorem
4.8 with Theorems 3.5, 3.6, 4.2, and 4.3 we can obtain conditions that
fx1 be an identification map for various natural products. For example,
if Y is locally compact, then fX 1 is an identification map [a result
due to Cohen (4)]. I give only two other results, the first because it
is needed in (1) and the second because it seems to be a new result on
the cartesian product.

CoroLLARY 4.9. Let f: P— X, g: Q- Y be identification maps, and
let P and Q be k-spaces. ThenfX prg: P Xy Q@ - X Xy, Y i8 an identifica-
tion map.

CoroLLARY 4.10. Letf: P> X, g: @ — Y be identification maps, and
le¢ P, Q, X, Y satisfy the first axiom of countability. Then fXog:
PxcQ — X XY is an tdentification map.

Proof of Corollary 4.9. By Proposition 2.4, X and Y are k-spaces.
By Theorem 4.4, PXpQ = PXpQ, XXp @ = XX 5@, and so, by
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Theorem 4.8, fXp1: PXp Q@ > XXy @ is an identification map.
Similarly 1 X5 g9: XX 5 @ > X Xy Y is an identification map. Hence
TXwgd = (1Xpg)o (fXw]1) is an identification map.

Proof of Corollary 4.10. This follows immediately from Corollary 4.9
gince the given conditions on P, @, X, Y imply PXp Q@ = PXQ,
XXpY=XXcT

We do not know if f X ;¢ is an identification map for arbitrary P, Q.
The fact that fX g is in general not an identification map is a conse-
quence of Proposition 2.5.

Theorem 4.8 suggests the following question: Are there natural pro-
ducts such that the product of identification maps is an identification
map? Two trivial examples of such products are those with the discrete,
and with the indiscrete, topologies.

Another such product is X X 5, ¥, which has the weak topology with
respect to D = {x X ¥, X Xy}. This product is associative and commu-
tative, but does not have the same compact subsets as the cartesian
product (the diagonal in X X ;, X has the discrete topology).

There are other natural products: for example that formed by the
cover {x X B, A xXy}forzin X,yin ¥, 4 in ¢(X), B in €(Y). This product
is commutative but does not have the same compact subsets as the
cartesian product. We do not know if this product is associative.

5. The products are distinct
In § 6 we shall prove the theorem:

THEOREM 5.1. There are spaces X, Y such that X is compact and
XXgY# XXt

Here, we use Theorem 5.1 to complete the proof of Theorem 0.1.
We prove the theorem:

THEOREM 5.2. The ten products of Diagram 3.2 are distinct in general.

The proof consists of a sequence of propositions:

ProposITION 5.3. There are spaces X, Y such that X X oY # X X, Y.

Proof. By Proposition 2.5, there are k-spaces X, Ysuch that XX oY
is not a k-space. However, if X, Y are k-spaces, sois X X Y.

ProPOSITION 5.4. If any one of X X7 Y, XX oY, XXgY, X Xg Yis
a k-space, then X and Y are k-spaces.

Proof. These products all coincide with X X oY if X or Y has only
one element. So, if one of these products is a k-space, then X X {y},
{Z}xcY (x € X, y € Y) are also k-spaces. Hence X and Y are k-spaces.
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ProposrTioN 5.5. The three sets of spaces
8 ={XXpY, XXg. Y, XXR.Y},
S ={XXgY,XXoY, XXp. Y},
83 ={XxpY, XXpY, XXy Y}
are digjoint in general.

Proof. Let X, Y be as in Theorem 5.1. Since X is compact,
XXpY=XXg¥Y=XXg7,
XX5Y=XXoY=XXp. ¥,
XXpY=XXpY=XXpT

Now Y is not a k-space since X X g Y # X X, Y, and so, by Proposition

5.4, the elements of S; and S, are not k-spaces. But X X, Y is a k-space;
808, NS, =8, NS; =0. Also S, NS, =@ since X XY #= XX Y.

ProprosiTioN 5.6. The three sets of spaces
{XXpY, XXgY, XXgY},

{XX5 Y, XXoY, XXpY},
{XXpY, XXp. Y, XXpY}
are disjoint in general.

This follows from Proposition 5.5 on replacing each product by its

opposite.

Theorem 5.2 follows immediately from Propositions 5.3, 5.5, 5.6.

Remark. These results leave open a number of questions. For

example, if X XY= X X ¥ for all X, does it follow that ¥ must be
a k-space?

6. Proof of Theorem 5.1

In the example of spaces X, ¥ such that X Xg¥ # X X,7Y, X is
the 1-point compactification of a countable discrete space, and Y is the
function space R’ (with the compact-open topology), where R is the
real line and J is an uncountable discrete space. This example was
suggested by Ex. 7.J (b) of (7).

We note that the compact-open topology on RV is the same as the
cartesian product topology, in which R’ is regarded as the product of
copies of R.

First we prove the lemma:

Lemma 6.1. Theset F* < R’ of functions taking only values 0, n and
having at most n zeros, is closed.
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Proof. Any g in the closure of F* also can take only values 0, n; if g

has zeros at ,,..., 1,,, then g has a neighbourhood
U={ffeR, —}<fl)<}1<r<m}
which does not meet F» unless m < n. Hence g € F*, as asserted.

Let X = Z+U {w} be the 1-point compactification of the discrete
space Z+ of positive integers; since X is compact, X X p R/ = X X R’
by Theorem 3.6. So Theorem 5.1 will follow if we show that

XxgR #XXR..

Let @ < X X R’ be the set

Q=U {n}xF,
nezZt
we prove the lemma:

LemMMa 6.2. Q is (i) closed in X X g R’, and (ii) not closed in X X R’.
In fact,in XX R, @ = QU {(w, 0)}, where 0: J — R is the zero function.

The last statement is used to simplify the proof of (i).

Proof of Lemma 6.2 (ii). We first prove that (w,0) e @. For any
finite set 4 < J, let «, , be the function whose values are 0, » and
whose zeros are the points of 4; for » > cardinal 4, «, € F*, and
(n, 0, 4) € @. Now any neighbourhood of (w,0) in X X R/ contains a
product set U XV, where U is a neighbourhood of w and V is a basic
neighbourhood of 0 of the type

V={ffeR fla)eV, forac A}
for some finite non-empty set A = J and some neighbourhoods ¥, of 0
in R. Then U contains integers » > cardinal 4, and, for such an n,

¢ ma)e@n(UXD).
Thus (w,0) € §—Q.

Next we show that this is the only point in §—@, which clearly

cannot contain any (n, f) (n € Z+) since

QN ({n}xX RI) = {n}x F*
is closed in {n}X R’ by Lemma 6.1. Also it is easily seen that for any
f # 0 in R’ such that either

(i) f takes a value in R—(Z+ U {0}), or

(ii) f takes more than one value in Z+,
the point (w,f) has a neighbourhood disjoint from . Finally, if f # 0
takes the values 0, » only, then w has a neighbourhood not containing
n, and f has a neighbourhood disjoint from F™ for any m # n, so that
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(w,f) again has a neighbourhood disjoint from . This completes the
proof of Lemma 6.2 except for 6.2 (i).

CoRrOLLARY 6.3. The closure of Q in X X g R is contained in
QU {(w,0)}.

For the natural map XXgR’/—» XX R’ is continuous, and so
Q U {{w, 0)} is closed in X X g R’.

Now a set C < X X g R’ is closed if and only if C' meets each set of
the types {z} x R7, X X B in a closed set (in the cartesian topology),
where z € X and B is compact in R’. Clearly

QN {w}Xx R) =9, QN ({n}X R) = {n}x F»
are closed [Lemma 6.1]. Therefore Lemma 6.2 (i) will follow at once
from the lemma:

LemMA 6.4. @ N (X X B) s closed in X X B for any compact set B = R’.

Proof. By Corollary 6.3, we have only to show that (w,0) is not in
the closure of such an intersection; there is nothing more to prove if
0 ¢ B, and so we suppose hereafter that 0 € B. Furthermore, since the
projections of B are compact, B is contained in the compact product
of its projections (from Tychonoff’s theorem); so without loss we may

suppose that B = {f:fe .RJ, f(i) € B{},
where each B, is a compact neighbourhood of 0.
Let J, = {i: i€ J, n < some member of B;}. Then [ J, = o since

each B; is compact, and so J = | (J—J,). Hence, since J is un-
n

countable, not all of J—J, are finite. Let N be selected such that
J —Jy is infinite and let 4 = J—Jy be a subset of eardinal N. Define
a basic neighbourhood V of 0 in R’ by

V={ffeR, - <fla) < % acd}
We assert that the neighbourhood X xV of (w,0) does not meet
Qn (X xB).
Suppose to the contrary that, for some (n, g),
n,g)e@n(XXB)N(XxV).

Then g € F* has value n except for at most n zeros; therefore, since
J—Jy is infinite, g(i) = n for some ¢ € J—Jy. Since g € B, we have
g(¢) € B; and so, by the definition of Jy, n < N. But this is impossible,
for g € V and so is zero on 4 which has cardinal N; yet g € F*, and so

g has at most n zeros. This completes the proof of Corollary 6.3, and
so of Lemma 6.2 and Theorem 5.1.
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CoROLLARY 6.5. The natural map X X g RV — R’ X ¢ X s bijective and
continuous, but not a homeomorphism.

For RV xgX = R’X X since X is compact; thus the natural map
XX R’/ - RVXgX is & homeomorphism; however, by Lemma 6.2, the
natural map X X gR’ - X X R’ is continuous but not & homeomorphism.
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