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" CHAPTER S

Johnstone's Topos

5.0 Introduction

In the previous chapter we studied the embedding of
SEQ 1into the quasitopos SuSEQ . Johnstone [J2] embedded the
category SEQ 1into a topos. In the next chapter we will study
general topology in Johnstone's topos. So we devote this chapter
to give Johnstones description of his topos. We will give the
proofs in more detail trying to make them readable with a little

background on topos theory.
Johnstone's topos can be described as follows:

Let ¥ be the full subcategory of Top with two objects
1 ={*} and N° the one point compactification of the set
N of the natural numbers. Impose on I the canonical
Grothendieck topology J. Johnstone uses the anodyne notation
E for the topos sh(Z,J) of sheaves on the site (Z,J) , and
this is the topos he is investigating. Note that an object
X of sh(z,J) gives rise to two sets X(1) and X(N+) ;

clearly X(1) should be called the underlying set of X .

+ .
Johnstone points out that each element a of X(N ) determines
- + i A g
a map a: N =~ X(1); he suggests thinking of a as a proof
that a is a convergent sequence.
Lawvere (in private conversation with R. Brown) has

suggested that elements of X(N+) be called processes, thus

dignifying them by a name, rather than making them subservient

to the convergent sequences. We follow this sugestion, and so




. 5/2 .

call X a process space and write Proc for the category

sh(z,J)

5.1 Grothendieck topologies

We begin this section by reminding the reader of the
definition of Grothendieck topology. This material is adapted |
erom [B-Wl , [Frl , [G-V1 , [J13 , [K-M] , [K-W] , [M-R] and
[Wrl . For a category C and object U of C, a sieve S
on U is a subfunctor of the hom functor, hom(-,U) ; that 1is
if V is an object of C then S(V) 1is a subset of
hom(V,U) and these inclusions for all V form the components

of a natural transformation.

Definition 5.1.1 Let C be a small category. A Grothendieck

topology J on C is an assignment to each object U of C

a set J(U) of U-sieves, called covering sieves, such that:

(1) For each U in ob(C) , the maximal sieve, hom(-,U)

itself is in J(U)

(ii) Stability with respect to change of basis:

If R e J(U) and f: V~>U is a morphism of C , then
the pullback £*(R) = f{a: W=V | fo e R} of R along £ 1is

a V-covering sieve.

(iii) Local character:

If R is in J(U) and S is another sieve on U such

that for each (f: V- U) in R, £*(S) is in J(V) , then

S is in J(U)
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A small category with a Grothendieck topology is called
a site . (In the literature, this is often called a small f“ 
site). The idea behind defining a topology on a category is |
to generalise the notion of a *classical* sheaf [T] to an
arbitrary category, rather than the category of open sets of
space. Now for a given family F of presheaves there is a

Grothendieck topology J such that each presheaf in F is

a sheaf, in fact a largest such topology exists. In particular

the canonical Grothendieck topology is the largest for which

each representable presheaf is a sheaf, more precisely J-sheaf.

We now discuss a simple way of describing the canonical

Grothendieck topology on any small C with pullbacks.

Let (C,J) be a site. A presheaf X is a J-sheaf
if and only if for each object U of C and for each

covering sieve R = {aj: Uj ~Ulj eI}

i*: Nat [U,X] -+ Nat [R,X]

is bijective, where i: R -+ U is the inclusion of the

subpresheaf R on the presheaf U

This definition is equivalent to the following condition:

)

Given any compatible family (sj iel Sj eX(Uj) for

i
g
i
5
i
3

Q.
each Uj———l—éU in R , there is a unique s ¢ X(U) which

restricts to sj in X(Uj) for each j

The above condition can be reformulated in terms of a
compatible family of morphisms instead of a compatible family
of elements sj . This can be done since each element Sj in

X(Uj) can be identified with
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.: h -,U.) * X
sJ om(-~, J)
Then the compatibility will mean the following:

For each i,j in I we have

S. © hom(-,uj') = sj ° hom(—,ai')

i
where ai' and aj' are the pullback of uj and o, in C |
0.
U, x J, —— g,
i j i
U
a.' U.
i i
UJ - s U
%

That is the following diagram

hom(—,Ui)

hom(-,a.’
om ( aJ)

hom(—,Ui

(anlib’q
L]

hom(-,a.'
om ( ,uJ)

h -,U.
om(-,U5)
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commutes. Such a cqmpatible family of morphisms is known as
a compatible family of morphisms from the covering sieve R
to the presheaf X . The sheaf condition will be equivalent
to the existence of a unique morphism hom(—,U)—E)L“> X such

that

Let R = {aj: Uj ~U|jel} be a family of morphism

Definition 5.1.2 R 1s said to be an epimorphic family
B

if for any pair U—— V of morphisms with Baj = 'yuj
Y

for all j , then B = vy .

R is called an effective epimorphic family if any

compatible family {Bj: Uj +~V]|j e I} of morphism factors

uniquely through R .

Remark 5.1.3 Clearly any effective epimorphic family is an

epimorphic family. And it is easy to see that a covering U-sieve
R is effective epimorphic if and only if hom(-,U) satisfies

the sheaf condition for R .
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Definition 5.1.4 R 1s said to be universally, or stable,

effective epimorphic if its pullback along any morphism

o
U'— U of C 1is effective epimorphic. That is the family

{aj'} is effective epimorphic

Ul J - UI

X
U

l :
U. »

J o

0.
J

Lemma 5.1.5 A topology J on C 1is the canonical

Grothendieck topology if and only if each covering sieve 1s

universally effective epimorphic.

The following lemma is needed in the next section.

Lemma 5.1.6 If R 1is the empty sieve on U , them R 1is

effective epimorphic if and only if U 1is an initial object.

2. Johnstone's topos

Let I be the full subcategory of Top whose objects
are 1 = {*} , the terminal object in Top , and N' , the

one point compactification of the set N of natural numbers.

We now follow [J2] in describing a topology J on Z
in terms of its family of sieves and showing that J 1is the
canonical Grothendieck topology on I (Prop. 5.2.6). We will
however give the proofs in more detail than in [J2] in order

to make them readable for non-experts in topos theory.
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Lemma 5.2.1 [J2] If R is a universally effective sieve

on N ~in £ , them n: 1~ N* is in R for each n € N

# . 2 .
Proof. Assume that n: 1 > N is not in R for some n € N*

Then it is clear that the pullback n*(R) of R along n is
the empty sieve on 1 . But 1 is not an initial object of
z so n*(R) is not epimorphic (Lemma 5.1.4) . That is R

’

is not a universally effective sieve. O

Let U be an infinite subset of N . Let £ . N+ - N+

U
denote the unique strictly increasing function with image

U u {*} . Then £y is continuous.

Lemma 5.2.2 [J2]1 Let R be an effective epimorphic sieve

on N+ . Then R <contains fU for some infinite subset U

of N .

Proof. Assume not, that is R 1s an effective epimorphic

+ ) ) } ..
sieve on N such that fU is not in R for all infinite

subsets U of N . We then claim that for each f € R the
image of f is infinite. Suppose there 1s an £ in R with
U = image f infinite ; then it is easy to see that there is

g: N' > N' such that £ ¢ g = fy - By the sieve axioms,

f. ¢ R, and this contradicts our assumption.

U

Now consider the function £ ¢ N+ - N+ defined as

[oe]

£ (n} = n for all n e N and f_ () =0 . Then f is

(o]

continuous on every finite subset, and it follows that

hom(1,N")

id: R(1) -~ N (1)

£ xRN > NI hom(N*,N”)
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form the components of a morphism

. " +
has no extension to a morphism N

That is N+'= hom(—,N+)’ fails to satisfy the sheaf

so R

Proposition 5.2.3 [J2]1 If R is a universally effective

is not an effective epimorphic (Remark 1.2). 0O

. ; + P
epimorphic sieve on N , then for each infinite subset § of

N there is an infinite

Proof. Assume that fU ¢ R for all infinite subsets U of
S . Then the pullback of R

epimorphic,

R+ N

= hom(—,N+) > NT

along fs

fU € f§ (R) for some infinite U of
£ P
+ +
N U _ N S N
is in R . But fS o f
since

fU d R for all infinite U

Proposition 5.2.4 [J2] Let J(1)

of N

be the set consisting of

N

be the set of sieves

is not an effective

fails to satisfy lemma 5.2.2.

’

hom(—,N+

UcS with £ e R

Otherwise, let

so the composite

0

if and only if

the maximal sieve on 1 . Let J(N+)
on N* such that a sieve R 1is in J(N+)

) .. +
(1) n: 1 > N is in R for each n ¢ N , and
(ii) if T 1is an infinite subset of N, then f£
for some infinite subset U 'of T .

Then J is a Grothendieck topology on 1L

Proof. The maximal sieves on N+ and 1 are in
J(1)

U ffS[U] eR , which is impossible

U

b ™

Y which

hom(—,N+)'.

axioms for R ,

is in R

J(N+) and

e ey
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For the proof of stability with respect to change of

base, we consider two cases.

Case 1: Consider a sieve R 'on J(1) . Then R 1is the

maximal sieve on 1 , so the pullback of R along any
morphism f: V> U of X , is the maximal sieve on V .

Case 2: Let R € J(N+) . Then n: 1 » N' is in R for each

neN , so n*(R) is in J(1) for all n .

If g: NY - N7 s continuous, then gn ¢ R for each |
n: 1 N . So n is in g*(R) for each n . To show that
g*(R) satisfies (ii) , let T be an infinite subset of N
if g[T] is infinite then there is an infinite Sc g[Tl such

that f£. ¢ R, since R is in J(N') . Then W=T n g 1(85)

S
is an infinite subset of T and g o fw = fS e R, so £y is

in g*(R)

Now if the image of g is finite, then 2 = T n g > ({n})
is infinite for some =n in g[Tl . So g ° £, = Cn the
constant sequence with value n . But Cn is in R , since n

is in R . So f, is in g*(R)
For the proof of the local character;

Let R and S be sieves on N* such that R is a covering
sieve and for each (f: V+U) in R , f£*(S) is in J(V)
Let n e N , then n*(S) is in J(1) so n*(S) = {maximal
sieve on 1} . Thus id: 1 -1 1is in n*(S) , that is

n o id is in S . So S satisfies (i)
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Let T be an infinite subset of N , then there is an
infinite subset U of T such that fU e R . Since
fU*(S) € J(N+) , so there is an infinite set W such that
fw € fﬁ*(S) . So ffu[w] = fU ° fw e S, and fU[W] is an

infinite subset of T. Hence S satisfies (ii) , so S 1is in

JND .o

Proposition 5.2.5 [J2] Let X be an object of SuSEQ , the

category of subsequential spaces. Then
homSuSEQ(l,X) : L + Set

is a J-sheaf.

n

Proof. For R e J(1) , R hom(-,1) . So

i*: Nat [hom(-,1) , hom(-,X)J = Nat [R,hom(1,X)] is bijective.

+
Let R ¢ J(gp) and f: R ~» homSuSEQ(—,X) be a
morphism in set?
Since R(1) = {n: 1 » N | n e N+} , so f determines a

sequence (xn) of points of X = homSuSEQ(l,X) together with
a point x_ . Then the naturality of f implies that each
subsequence of (xn) contains a sequence that converges to X

o0

By definition of subsequential space, the sequence (X ) must

n
itself converge to x_ . So there exists a unique extension of
fi R == homSuSEQ(-,X)
+
to N ————— homSuSEQ(—,X)

namely
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h (N LX)

m

((xp)sxa) € homg gpg

n

+.
Nat [homTop(—,N ), hom ,X)1 . 0O

SuSEQ(‘

In particular for a topological space X the presheaf
homTOp(—,X) , which is isomorphic to homSuSEQ(—,X) where X

is the coreflection of X in SEQ , Chapter 4 , is a J-sheaf.

Proposition 5.2.6 [J21] The topology J coincides with

the canonical Grothendieck topology on =

Proof. By Lemma 5.2.1 and Proposition 5.2.3 , EVery

universally effective epimorphic sieve is in J . So J contains
the canonical Grothendieck topology. Also the above remark shows
that each representable presheaf is a J-sheaf , so J 1is

contained in the canonical Grothendieck topology. [J

Let Proc denote the category of sheaves on I , that

is Proc = Sh(I,J)

Proposition 5.2.7 [J2] -Let X be an object of Top

Then
H: Top —* Proc

X— hom(-,X)

is a functor and the restriction of H to SEQ 1is fully

faithful.

Proof. Clearly H 1is a functor.
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To show that H is fully faithful, let n € Proc(HX,HY) , for

X and Y objects of SEQ . Then mn: HX » HY has components

Nyt HX (1) — HY(1)

i HXON)— HY (N7

SO n is induced by a unique function ny . We have to show
that ny is continuous. By naturality of n , n; maps
convergent sequences to convergent sequences, SO TNy is

continuous. Hence H is fully faithful. O

Let X be an object of Proc . Then X 1is a sheaf on
s . We mentioned in the introduction to this chapter that X
determines two sets X(N+) and X(1) . We follow a suggestion
of W. Lawvere and call the elements of X(N+) processes on

the underlying set X(1)

Remark: Let p e X(N+) . Then p determines in X(1) a

sequence (pn) and a point p_ as follows:
each n: 1 » N induces a map

Xn: X(N) - X(1) ,

so each process p in X(N+) determines a sequence

(Xn(p))n ¢ N together with a point Xw(p) thought of as a limit
of the sequence. Then the definition of subsequential can be
considered as rules of deduction for these processes. For

P ¢ X(N+) we will also write ﬁ = ((xn),xw) for the underlying

sequence determined by p

We will describe the subobject classifier using the

processes, but first we need the following definition.
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Definition 5.2.8 [J21 A closed ideal of subsets of N 1is

a pair (E,I) , with E a subset of N and I 1is a set of

infinite subsets of E satisfying the following conditions:

1. If M isin I , then every infinite subset of M is
in I
2. If M 1is an infinite subset of E such that every

infinite subset of M contains an element of I , then M is
in 1
The set E 1is called the extent of the closed ideal.
The closed ideal whose extent E 1is finite or whose I=0 is called an

empty closed ideal, and the closed ideal (E,ME) , where ME

is the set of all infinite subsets of E , is the largest closed

ideal whose extent is E

If I 1is non-empty then any e in E 1is in some set
of I . For this let M be a set of I ; thus

Mu {e} satisfies 2

Proposition 5.2.9 (Jjzl (i) The subobjects of hom(—,N+)

in Proc with <« as a point of the underlying set are
bijective with the set of closed ideals of subsets of N

(ii) The subobjects of hom(—,N+) , in Proc , which do
not contain the point « are in one to one correspondence with

the power set of N

Proof. Let C be the set of closed ideals of subsets of N,

and subm(N+) the set of subobjects R of N'  with

o ¢ R(1) . Define
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6: C ~ Subw(N+)

E >~ E

as 8(E,I)(1) = E(1) = E v {=}

E(NT) = (B, 1) (N) = {g: NT > N | g factors through fp for

some T e I}

and $: Subw(N+) - C
as ¢(R) = (E,I) where E = R(1) \ {«} ,

I =1{TcN|fye RN}
¢ (E)

= (E,I) , where T ={T cN|f eEN"}

Then »(8(E,I))

To show I = I , clearly fT ¢ EN° for all T e I . So if
T e 1 , then f. e EN" . But fr factors through fr only,
so T e I . Also, fT € E(N+) for each T e I, so I ¢ I
Hence ¢6(E,I) = (E,I) . Similarly 6¢(R) = R . So 6 and

¢ are inverses of each other.

(iii) Any subset M of N determines a unique subsheaf
of the representable sheaf N which can be described as

follows. Define a subsheaf M as

M(1) M

M(N) hom(N™,M)

= {p|p is a process in N (N') such that

the underlying sequence 5 is in M(1) }

Then it is easy to see that the inclusions M(1) = N+(1) and
M(N+] + N+(N+) form the components of a monic morphism in

Proc . [
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Proposition 5.2.10 [J2] The subobject classifier @ in

Proc can be described as follows.

Q(1) = {t,f} , and for any sequence (wn) of Q(1)
there is a unique process p such that P = ((wn),f) , and
the processes q with q = ((w,),t) are indexed by the closed

ideals whose extent is {nfw_ =1t}.

Proof. By the definition of @, R(N') is the set of
subobjects of N°  in Proc . So, by 5.2.9 , @ is the

subobject classifier.

Now to illustrate how the classifier works. Let
m: Y > X be a monic in Proc. Then we can assume m gives
inclusions Y(1) - X(1) ,.Y(Bﬁ+) > X(IN+) (cf. 6.1.3 )
Then the classifying map ¢: X - @ can be described as follows:
¢ X(1) - (1) 1is the characteristic function of Y(1) = X(1)
+

For ¢ : X(N+) - Q(N+) , let p e X(N+) such that p = ((nx),xm)

If x_ 4 Y(1) , then ¢+(p) is the unique process with

37 (p) = ((9,(x)),£) . Also if x_ e Y(1) and x_ ¢ Y(1)
finitely often, then ¢+(p) is the process indexed by the
empty closed ideal. Finally if x_ e Y(1) and x_ e Y(1)

infinitely often then ¢+(p) is the process indexed by the

set of infinite subsets of '{n‘|xn e Y(1) } for which the

corresponding restriction of p 1is in Y(N+) .0
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" The Relations Between ~SEQ ,” SuSEQ and Proc

Introduction

We have seen, Chapter 4, that the problem of finding a

space which contains PC(X,Y) and PO(X,Y) as subspaces cannot

be solved in SuSEQ in general.

In a topos all notions of monic are equivalent so

and Y —> Y~

~

are strong monics, subobjects, in Proc . That is Y and Y

1
are "subspaces" of Y' in Proc

However the extension of the space to work in Proc allows

"subspaces' to include, intuitively, all continuous injections.

The implications of this are not so easy to perceive. One aim
of this chapter is an attempt to understand this, by studying

the subobject classifier in detail.

Johnstone proved that the embedding SEQ ~ Proc has
a good colimits preservation [J2] , he argued that all
topological construction involving CW-complexes may be formed
in Proc and still get the same results as in SEQ . We will
give further properties of fhe embedding, for instance we show

that SEQ »+ Proc preserves function spaces.

6.1 The subobject classifier

In this section our main concern is a detailed study of

the subobject classifier and an jllustration of how it works.




6/2

For example let i: Y * X be a strong monic in the category of
sequential spaces SEQ , so Y is a subspace of X . Now the
embedding H: SEQ + Proc has a left adjoint, so H preserves
limits, in particular, H preserves equalisers. But in SEQ
strong monic is an equaliser, Chapter 4. So H(i): HY =+ HX is
monic, since in Proc all notions of monic are equivalent.
That is the embedding H preserves subspaces. In fact
Proposition 6.1.4 shows that the image of each monic in SEQ 1is
2 monic in Proc . But monic in SEQ 1is just an injective.

So non-subspaces in SEQ become "subspaces'" in Proc. It 1s
also the case for SuSEQ that monics in SuSEQ become strong

monics.

We now give an example to illustrate the classifying map,

cf. Proposition 5.2.10.

Example 6.1.1 Let (X,I) be the indiscrete space and let T

be any sequential topology on X . Now id: (X,t) - (X,I) 1is
a monic in SEQ . So H(id): H(X,t) ~ H(X;I) is monic in
Proc (6.1.3(i)) and the classifying ¢ of H(id ) <can be

described as follows:

¢ is the characteristic function of H(id) , and for

p e H(X,I)(NT)

X ¢ LMY if poe H(X,TN)
) =
(p) C 0 if p ¢ HXONED
H(id)'
H(X,T) (1) +  H(X,I)(1)
¢
1 — (1)

true
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s H(id)" .
HX, T) (N ) “ -~ H(X,I)(N)
+
¢
1 -~ a’)
+
true
The following fact gives a necessary and sufficient

condition for a morphism in the functor category to be monic,

epic. The proof may be found in [S]

Proposition 6.1.2 (S] Let C be finitely complete and

finitely cocomplete, and let D be any category. Let

B: S+ T be a natural transformation of functors D > C

Then

(1) B 1is monic in Fun[D,C] if and only if
Bp: SD + TD is monic in C for all D e |D]

(ii) B8 1is epic in Fun[D,C] 1if and only if
By: SD » TD is epic in C for all D « D]

We now give a necessary and sufficient condition for a

morphism in Proc to be monic.

Proposition 6.1.3 Let f: Y > X be a morphism in Proc . Then

(i) £ is such that £': Y(1) » X(1) and £ : Y(N') + X(N")

are monics if and only if £ is monic in Proc.

(ii) If £ 1is such that f£': Y(1) - X(1) and £ Y(N+) > X(N+)
are epics then f 1s epic in Proc

Proof. (i) Let £ Dbe a monic in Proc . Then £ 1is an

op .
equaliser. But the inclusion Proc - Setz preserves limits.

o
. . ; + ®
So f is monic in Set?Z . Hence f' and f are monics.
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The converse is trivial, since any monic in Set
is a monic in Proc
5 8 . ¥ . .
(ii) If f is such that f' and f - are epics then f is

op
epic in Set” . So f 1is epic in Proc . [

We now state the result that relates monic and epic in

SEQ to their images in SuSEQ and in Proc

Proposition 6.1.4 (i) The following are equivalent:

1) m is monic in SEQ .
2) km 1is monic in SuSEQ .
3) Hm = hkm 1is monic in Proc , (cf. next section for

definition of h )

(i1) m 1is epic in SEQ if and only if km is epic in SuSEQ

Proof. (i) We will show that if m is monic then Hm is
monic. The other implications follow easily from 6.1.3 and
4.5.2 (iii)

Let £ and f' be morphisms in Proc such that

£, f£f: Z » HY and (Hg) £f' = (Hg) £
Clearly fl = fi : Z(1) > (HY)(1) , since g 1is injective.

To show fN* = f&+ , note that (HY)(N+) contains exactly one

+ :
process to each convergent sequence. Now let p e Z(N ) with

p = ((xn),xm) .  Then

]

fyr(p) = ((£(x)),£(x,)) (£ (x)),£'x,,)
£+ (p)
Hence f = f°

(ii) The proof follows from 4.5.2 (iii) . O

R e R e SR s P e
5 5" ks I e S i

e
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We now give an example to show that the functor

H: SEQ » Proc does not in general preserve epics.

Example 6.1.5 Consider the identity id:(X,D) ~» (X,I) as an

epic-monic in SEQ , where X has more than one point. Then
H(id) 1is not epic. For this consider g and ¢;4" H(X,I) - Q

where ¢id is the classifying map and g 1is defined by
g(L)(x) =t for all x ¢ X
and gt (p) = (N,My) for all p e H(X,T) (NT)

Then trivially ¢id(1) o H(id)(1) = g(1) o H(id) (1) . Also for

b e H(X,D) (N

<+

by o (H(E)T(R) = 45q ()

the process indexed by (N,MN)
+

g (p)

+ ) +

g (H(id)) (p).

Hence ¢354 ° H(id) = g o H(id) . However g # d5q » consider

a process D ¢ H(X,D)(N+) . 0

Similar arguments to that of Example 5.3.4 shows that the
functor h: SuSEQ - Proc , h is defined in the next section,

does not preserve epics.

We now give a sufficient condition on epic 1 in SEQ ,

or in SuSEQ , for the image H(i) to be epic in Proc.

proposition 6.1.5 Let i+ X = Y be an epic in SEQ , or

SuSEQ , such that X is initial with respect to (i,Y) . Then

H(i): HX » HY , or h(i) , is epic in Proc

Proof. The proof follows easily from 6.1.3 . O
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However the condition that X must be initial with
respect to (i,Y) , in order for the image Hi of 1i: X*Y

to be epic in Proc , is not necessary.

Example 6.1.7 Let X be a non-indiscrete space with more than

one point, and let Y = {*} . Then i: X+ Y 1is not initial

with respect to (i,Y) but H(i) 1is epic.

We now state the result that will jllustrate how the
classifying map can be used to classify particular kinds of

monics.

Proposition 6.1.8 Let X and Y be objects of Proc such

that both X and Y are sequential spaces, and Y(1) < X(1)
and Y(N+) < X(N+) . Consider the inclusions Y(1) -~ X(1) and
Y(N+) > X(N+)' as components of a monic i: Y » X of Proc

Let ¢4 be the classifying map of 1 . Then

(i) Y is an open subspace of X , as sequential space,
if and only if whenever a process P converges to t in
¢;(XN+) then there is a cofinite set K in N such that »p
is indexed by (K,MK) |
(ii) Let Y be a subspace of X . Y is a closed subspace

of the sequential space X if and only if whenever a process D

converges to f in ¢i(XN+) , then {n|p =1t} 1is finite.

Proof. Let Y be an open subspace of X . Then the following

diagrams
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1+

; .
Y (1) — X(1) yN* r XNT
+
: 6.
1 — Q(1) 1 — Q(N)
true true+

commute. So, if p 1is a process 1in ¢i+(XN+) that converges
to t , then there exists a process (q in X(N+) with
¢i'(qm) =p, =t . S0 q, is in Y(1) , that 1is

E={nlp, = £} is finite. So p is indexed by the largest

closed ideal where the extent is XK = N\ E

Conversely let X, be a sequence in X converging to
X in Y . Consider the unique process q with

oo

g = ((xn),xw) . Then ¢;_(q) is a process converging to t ,
so ¢;'(q) is indexed by the largest closed ideal whose extent
is N\ {nl, .- g nk} for some finite k . That is finitely

many terms of (xn) are in X \ Y . Hence Y 1is an open

subspace of X .

(iii) Let p be a ﬁrocess convering to f , p 1is in
¢i+(XN+) and E = {n Ipn = t} is infinite. Then the restriction
of p to E determines a sequence of Y(1) that converges
to a point not in Y(1) . That is Y is not a closed subspace

of X .

Conversely let (Xn) be a sequence in Y converging to
a point x_ mnot in Y . If q 1is the unique process in
X(N') with q = ((xn),xm) , then ¢;'(q) is a process in

¢i+(XN+) with {n|¢(q) =t} infinite .0
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6/2 Propefties'of'the embedding =~ SEQ - SuSEQ * Proc

The aim of this section is to show that the embedding
H: SEQ -~ Proc preserves function spaces. We will factor the

adjunction (H' - H): SEQ + Proc as

H'
SEQ ¢« > Proc
hl
h
SuSEQ

with h'—<4 h . So for sequential spaces X and Y

H [P_(X,Y)] Z Proc(HX,HY )

e

h [ SuSEQ(kX,kY )1 ,

i

and H [ PO(X,Y) ] Proc(HX,H?)

0

h [ SuSEQ(kX,kY¥) 1
Define a functor h: SuSEQ - Proc aé follows:
For X ¢ |SuSEQ| ,
R(X) = hy = hom(-,X) : 9P 4 set

and h is defined in the obvious way on morphisms.

Proposition 6.2.1 The functor h: SuSEQ - Proc has a left

adjoint h!

Proof. Define a functor h': Proc » SuSEQ as follows:

For Y ¢ |Proc] , h'(Y) = (X,CY) where

Y = Y(1)

e R e S A

R
=

SRR S TR




e e
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and C

y = Iplp 1is a process in Y(NT) }

And for a Proc-morphism

n: Y > Z %

il

h'(m) = n; . I
Then h' 1is a functor (cf the remark after 5.2.7). %

Now let X e |SuSEQ| . We will show that
GY X Proc(Y,h(X)) -+ SuSEQ(h' (Y),X)
b

1s an isomorphism, where eY X(n) =
b

Let n, 1:Y » hX be morphisms such that

N1y T Ty ¢ Y(1) + hom(1,X)

For p ¢ Y(N') with p = ((x),x_) , consider n: 1 » N

Then

n"(n" (p)) n 1y (Y, (@)
n(l) (Xn)
T(1) Xn) |

= Ty (Y, (0))

n* (7 (p))

il
Y (1) - hom(1,X)

Ty T ")
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So T+(p) = n+(p) , since X 1is a subsequential space.

Hence eY,X is injective.

Also each f: Y(1) -+ hom(1,X) induces a morphism
£: Y » hom(-,X) such that
fl = £ : Y(1)—— hom(1,X)
and e y(ND) ——— hom(NT,X)
p— ((fx),£x,)

where p = ((xn),xm) = &

Notation: Let X be a process space. And let p be a

process in X(N+) with p = ((xn),xm)

Write Xﬁ for the set of all processes whose underlying

sequence is ((xn),xw) . That is
+ — -
Xg = {ae XD [a = p = (0Og)x) )
Proposition 6.2.2 The functor h': Proc + SuSEQ , preserves

products.

Proof. Let X and Y be objects of Proc , let Z =X x Y,

then

Z(1) X(1) x Y(1)

Z(N") X(NT) x Y(NT)

Now observe that for p = (q,r) « Z(N+) with

p=( (xpy) » (x, y,) ) , that is g = ((xy),x) and
= (v, » I5 = X5 <Y
So it follows easily that C, = CX X CY . Hence h' preserves

products. O
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Now the functor h satisfies the assumption of

(Proposition 4.6.5), so we have the following result.

Proposition 6.2.3 The functor h: SuSEQ + Proc preserves

function spaces.

We now state one main result of this section.

Theorem 6.2.4  The functor H: SEQ + Proc preserves function

spaces.

Proof. Since H 1is the composite h o k , so the result

follows. [

The next result gives a description of PC(X,Y) and

PO(X,Y) in Proc

Proposition 6.2.5 Let X and Y be sequential spaces. Then

1

(i)  HLP_(X,Y)] Proc (HX,HY )

I

(i) HLP_(X,Y)] Proc (HX,HY)

Proof. (i) Since P_(X,Y) ¥ SEQ(X,Y)

50 HLP_(X,Y)] = HISEQ(X,Y )]

1R

Proc [ HX,H(Y )]

(ii) The proof is similar to that of (i) . O

The aim of the rest of this section is to show that H

preserves exponents, function spaces in SEQ + B

Proposition 6.2.6 Let B be an object of SEQ . Then the

forgetful functor
h': Proc + SuSEQ

preserves pullbacks over B = HB
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Proof. Let Z and Y' be objects of Proc . Let g: Z -~
and f: Y' > B be morphisms in Proc , that is objects of

Proc + B .

Consider the pullback

X =7 x Y! > Y'!
B
[ f
Z , B
g
in Proc .
Then X(1) = Z(1) x Y'(1)
B(1)
= {(z,y) | gz = £y}
Also X(ND) = {(p,a) ¢ 2N x v () | g (@) = £ (@)}
X(NTY =zt x yr(nh) . Y'(ND)
BN+ ;
f+
Al B(NT)
+
g
More precisely, let p = ((z.),2,) qa = ((y)),Ys) - Then

_ 1
each pair (p',q') , where p' ¢ Zﬁ and q ¢ Ya , 1s a

process in X(NT) with (P5,q7) = ( (z:7,) » (ZesYa))

Now the functor h' is such that, for Z in Proc

ht (Z) = (Z ,CZ) where Z = Z(1) and

c, = {plpce Z(N") }

B
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Consider the pullback diagram

W= zoxx -+

X
B

Iw =<
H

N+
|

g

in SuSEQ , where Y' = (yr , c and Z = (Z ,CZ)

-~ z

Then W = {(z,y) |gz = fy} , and a pair ((zn,yn),(zm,yw)) ,

of a sequence (zn,yn) of W together with a point (zo ¥.)

of W, is in Cy 1f and only if (zn,zm) is in C, and

(yps¥,) 1is in Cy,
Claim: C,, = C

Proof of the claim: Let ((zn,yn) , (zm,ym)) € CW

Then there are p ¢ Z(N+) and q ¢ Y'(N+) such that
P = (z,,z) and § = (y_,y.)
+

Since (zn,yn) is in W for all n ¢ N , so

g(zn) = f(yn) for all n .

Thus g (p) = £(q) . That is (p,q) is in X(N') . So

(p,a) = ((z,y)) , (z_,y)) is in Cx
Hence CW < CX

Conversely, let ((zn,yn) » 2,y )) « CK ;

Then there are p ¢ Z(N+) and q ¢ Y’(N+) such that

I-) = ((Zn):zoo) ) i.e. ((Zn)9zoo) € CZ ’
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= (y),¥e) » i-e. ((y),ya) € Cy, , and

g ) = £ , i.e. (p,q) € X(N')

Il

So g(zn) f(yn) for all n ¢ N'. Hence

+ .

(zn,yn) e W for n e N

So (Cz5y,) 5 (265¥5)) € Gy -

That is C C C

X So

In

W Cw = Cx

Proposition 6.2.7 k': SuSEQ - SEQ preserves pullback over

B = kB .

Proof. Let X and Y be objects of SuSEQ . Consider the

pullback diagram

od X

b
3
s}

g

in SuSEQ . Then W = {(x,y) |fy = gx} and

Cy = {Cxyy) > X,y )) | xp - x, and y =+ y}

Now consider the pullback diagram

Z=k'X x k'Y : — k'Y

| |
|
1 £

k'X -
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in SEQ . Then (1) = {(x,y) | fy = gx} . The sequentialised
topology on X 1is induced by the sequentially open sets. That
is V < X 1is open if and only if whenever

(xn,yn) + (X4,Y,) € V then (xn,yn) is eventually in V .

But (xn,yn) > (X4,Ye) 1if and only if X, * x, and Yn ~ 8o -

Also k'(W) has the sequential topology induced by the

family CW .

So k'(W) = k'(X xY) = k'X x k'Y . 0
B B

Corollary 6.2.8 H': Proc = SEQ preserves pullback over B

Proof. H' is the composite k' o h' . [

We conclude this section by stating the following result.

Note that we will use (6.2.8) in the proof.

Proposition 6.2.9 Let B be a Hausdorff space. Then

H: SEQ » Proc preserves exponents, function spaces in

SEQ + B .

Proof. Let X e IProcl .and let Y and Z ¢ ISEQ! . Since
B 1s a Hausdorff space, so SEQ ¥+ B is cartesian closed and

we have a natural bijection

IR

Proc + HB [X,H{(YZ)B}] SEQ + B[H'X,(YZ)B]

e

SEQ + BLH'X x Y,Z]
B

IR

SEQ ¥ BIH'X x H'(HY),Z]
B

IR

SEQ + BIH'(X x HY),Z]
B

Proc + HBLX x HY, HZ)
3 :

= Proc + HBIX, ((HY) (HZ))}]

R

Hence H{(YZ)B} is naturally isomorphic to ((HY)(HZ))B . O
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