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Abstract

The purpose of this note is to give clear references to the many applications of higher order
Seifert—van Kampen theorems, in terms of specific calculations in homotopy theory and related
areas; such theorems refer to all involve spaces with structure, either a filtration, or an n-cube
of spaces. Numbers [xx] refer to my publication list http://pages.bangor.ac.uk/~mas010/
publicfull.htm. Numbers [[xx]] at the end of an item refer to the number of citations given
on MathSciNet.
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This paper, which generalises [25] to all dimensions, gives a new approach to the border between
homotopy and homology by working with filtered spaces, and, using homotopical constructions, gives
what we now call a Higher Homotopy Seifert van Kampen Theorem. From this, without setting up
singular homology, or using simplicial approaximation, one proves:

A. The Brouwer Degree Theorem (the n-sphere S™ is (n — 1)-connected and the homotopy classes of
maps of S™ to itself are classified by an integer called the degree of the map);

B. The Relative Hurewicz Theorem, which is seen here as describing the morphism
(X, A, 2) = m(X UCA,CA, z) = m,(X UCA, z)
when (X, A) is (n — 1)-connected, and so does not require the usual involvement of homology groups.

The following book contains a comprehensive survey of much of the above, and more, including in
Part I results in dimensions 1 and 2 which should be seen as an aspect of low dimensional topology.
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