
HOPF FORMULAE FOR THE HIGHER HOMOLOGY
OF A GROUP

RONALD BROWN AND GRAHAM J. ELLIS

In this note we generalise Hopfs formula

for the second homology of a group G in terms of a free presentation R >-• F^» G. We
prove:

THEOREM 1. Let Rlt...,Rn be normal subgroups of a group F such that
F/Y\iiiinRi = G, and for each proper subset A of <«> = {1,...,«} the groups
Hr(F/Y[ieA R,) are trivial for r = 2ifA = 0, and for r = \A\ + 1 and \A\ + 2 if A # 0
(for example, the groups F/\\ieARi are free for A-£(n)). Then there is an
isomorphism

- l )l /»£<«> ieA ilA

Here \A\ denotes the order of A, and ^ 6 ^ 1 *s t n e subgroup of F generated by
the subgroups Ri with ieA (in particular, I~[ie0^i *S ^ e trivial subgroup). Also
f]ie0Rt is understood to mean F. Thus for n = 2 the formula reads

H3(G) « {R, n R2 n [F, F]}/{[F, R, 0^) [Rlt R2]}.
\

Note that for any group G and n ^ 1, such an F and Rt can be found: let Fl(G)
be the free group on G; define inductively Ft = F^-^G)), and set F= Fn(G); for
1 ^ / ^ n let e(: F

n(G) -> Fn~\G) denote the canonical homorphisms induced by
applying F"'* to the standard 'augmentation' map F^F1"1^)) ->Fl~\G) (where
/ro((7) = Gyf a n d s e t ^ ( = K e r f i i

An alternative method, analogous to methods in [4,5], is best illustrated for
n = 2. Choose any surjections F{^G with F{ free, / = 1,2. Let P be the pullback of
these surjections and choose a surjection F-» P with F free. Let Rf be the kernel of
the composite F-> P -> Ft. In general, one constructs inductively an «-cube of groups
F such that, for A c <«>: (i) /r j s free if ^ ^ <«>, (ii) /r j s G for ^ = <«>, and (iii)
the morphism FA -»limB=)/4FB is surjective. Such an /i-cube might be called afibrant
n-presentation of G.

Again, suppose G = F/HKwhere / /and # a r e normal subgroups of Fsuch that F,
F/H and F/KSLTQ free. For example, we might be given a presentation <A^ £/, V) of
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G such that the normal closures of both U and V in the free group F on X are
summands of F. Then {X; U,V} and the diagram of quotient morphisms

F *F/

I I
could be called a 'double presentation' of G.

Our proof of Theorem 1 is topological and uses the Hurewicz theorem for n-cubes
of spaces given in [2] which itself is an application of the generalised Van Kampen
Theorem for diagrams of spaces proved in [1]. These theorems involve the
'fundamental catn-group of an w-cube of spaces'; we also need the equivalence
between catn-groups and crossed «-cubes of groups proved in [3].

This presents a dilemma, because it is difficult to make the proof completely
intelligible without saying a great deal. We hope therefore to say just enough to
indicate the manner of the proof, and why these results do immediately imply
Theorem 1.

The method is to introduce hyper-relative homology groups Ht(Q; N1} ...,Nn) of a
group Q relative to n normal subgroups Nv ...,Nn, i ^ 1. The definition is topological,
in order to be able to apply the Hurewicz theorem. An algebraic definition is also
possible, using bar resolutions. In the application, we will take Q = F, Nt = Rv

To define the multirelative homology group, we define spaces B(Q; N1}...,Nn)
inductively as follows. Let B(Q) = K(Q,\). Then B(Q; NJ is defined to be the
mapping cone of the induced map B(Q)-+ B^Q/NJ. Thus BiQiNJ contains
B{Q/N^) as a closed subspace.

Suppose that B(Q; N1,...,Nn_1) has been defined so as to be a functor of
(Q; Nlt ....N^i). Then B(Q; Nlt ...,Nn) is defined to be the mapping cone of the
induced map

B(Q; Nl9...,Nn_J ->B(Q/Nn; N.NJN^ ....N^NJNJ.

Next we define the multirelative homology groups for / ^ 1 by

Ht(Q; Nv ..., AT) = Hn+i(B(Q; Nlt...,NJ).

PROPOSITION 2. Let n ^ 1 and let N1}...,Nn be normal subgroups of the group Q.
Then there is an isomorphism

H1(Q;N1,...,Nn)^\f]N\l{ ft [f] Nt, f] Nt]}.
U=l Jl As(,n) ieA i$A

This proposition follows from Theorem 6.2 (the Hurewicz theorem) of [2] and the
equivalence between catn-groups and crossed w-cubes of groups given in [3]. Here is
some explanation.

Define an «-cube of spaces A' by XA = B(Q/Y\ieANt), for A c <H>5 with maps
XA -+ XA[}{i] induced by the quotient map of groups. Let M =Y[X, the fundamental
crossed «-cube of groups of X. Then for A £ <«>, the group MA is f]iiA Nt with the
maps of the cube being inclusion and the /i-maps being commutators. Now the space
Y = B(Q; Nlt ...,Nn) is the (multiple) mapping cone of the «-cube X (see below).
Theorem 6.2 of [2] gives immediately that Y is /^-connected, and also implies our
stated description of HX{Q\ Nlt ...,Nn) = Hn+1(Y). In order to understand this it is
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best to restate Theorem 6.2 of [2] in terms of crossed n-cubes of groups [3] rather than
catn-groups, as follows.

If C is a crossed «-cube of groups, then the crossed «-cube of groups triv (C) is
obtained from C by trivialising all groups CA for A ^ <«>. Hence (triv (C))<n>, which
is both the big and little group of the catn-group associated to triv (C), is obtained
from C<n> by factoring out the images of all /i-maps of C with codomain C<n>.
Replacing C by the particular crossed w-cube of groups M gives Proposition 2.

In order to see how this gives Theorem 1, we first explain how the Hopf formula
for H2 follows from the relative Hurewicz theorem.

The exact homology sequence of the cofibration sequence

B(Q)-+B(Q/N)->B(Q;N)

gives, if G = Q/N and H2(Q) = 0,

0 -»H2(G) - HX(Q; N) -> HX(Q) - HX{G) -> 0.

The relative Hurewicz theorem in this dimension gives that HX(Q\ N) is isomorphic
to n2(B(Q/N), B(Q)) with the action of Q = n^BiQ)) killed. The exact homotopy
sequence of the pair implies that this relative homotopy group is isomorphic to N. So
we obtain the exact sequence

0 _> H2(G) - N/[N, Q] - Q/[Q, Q] -* G/[G, G\ - 0

and this implies the Hopf formula (with Q = F, N = R).
In the general case, the assumptions of Theorem 1 and various exact homology

sequences give the exact sequence

0 - Hn+1(G) -> H^F; Rlt..., Rn) - H^F) (1)

which with Proposition 2 gives Theorem 1. That is, we see that a generalised Hurewicz
theorem yields a generalised Hopf formula. However, the derivation of (1) needs
more explanation on the construction of the multiple mapping cone and on the
associated exact sequences. This we now give.

We need some facts on «-cubes of cofibrations. Such «-cubes are the dual of
«-cubes of fibrations which are dealt with in [5], so we just state the results here.

All spaces and maps will be pointed.

DEFINITION. An n-cube of spaces AT is a commutative diagram consisting of
spaces XA {A c <«» and maps XA -*• XA[}{i) (i$A). The n-cube of spaces A'is cofibrant
if the canonical maps

iA: colim Xs -* XA (A c ( « »
S<=A

are closed cofibrations.
An equivalence X -> Y of H-cubes of spaces is a map of n-cubes such that each

XA -* YA is a homotopy equivalence.
An n-cube of cofibrations A' is a commutative diagram consisting of spaces XB> A

(B, A disjoint subsets of <«» and cofibration sequences

XB, A ( / g Qy Q)
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(In a cofibration sequence X-*Y-*Z, X^>Y is a closed cofibration and Z is the
quotient space Y/X.) Thus a 0-cube of cofibrations is a space, a l-cube of cofibrations
is a cofibration sequence and a 2-cube of cofibrations is a commutative diagram

X0-0

I i I
Jf0,{2! »-^0,<2> • ^

I I I
< } 0

whose rows and columns are cofibration sequences. The following are essentially the
duals of Propositions 1, 2 of [5].

PROPOSITION 3. A cofibrant n-cube of spaces X extends to an n-cube of cofibrations
X such that X0* = XA.

PROPOSITION 4. For every n-cube of spaces X there is a natural cofibrant n-cube of
spaces X and an equivalence X -> X.

Propositions 3 and 4 give for every «-cube of spaces X an «-cube of cofibrations
X; the space X<n>'0 is called the multiple mapping cone of the «-cube X.

We shall use repeatedly the homology exact sequence arising from the cofibration
sequence (2). Our aim is the following result.

PROPOSITION 5. Suppose that X is an n-cube of cofibrations, and that

\r = 2 and A = 0,

\A\ + \ or \A\ + 2 and A^0 or <«>.

Then there is an exact sequence

0 -> Hn+1 X0'<n> - Hn+1 X<n>'0^HxX0-0. (4)

{ r = 2 am
(3)

r = \A\ + \ ' " " - -

Proof. The proof is a diagram chase. The details are as follows.

Claim 1. If B U A # in), then

\r=\BUA\ + 2 and A = 0,
HrX

BA = 0 if
= \B[}A\ + \ or \B[)A\ + 2, and A # 0 .

. This is proved by induction on |2?|. It is true by (3) if B = 0. Suppose
B # 0. Choose i e £ , apply the inductive hypothesis to XB^A and X™'A u {1), and use
the homology exact sequence of (2).

Claim 2 . If A [} B = ( n } and A ^ 0 (A f]B = 0 ) t h e n

IJ V0. <«> ~ If YB'A
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Proof. This follows from Claim 1 by induction on \B\, since if B # 0, say ie B,

If VB\{i), A U {<} ~ tf VB, A

Claim 3. If B # <«> and ieB then the map

"\B\+1A ^ n\B\A

is injective.

Proof. Apply Claim 1 to show that Hw+1 XB\{i]<(1} = 0.

Conclusion. The exact sequence (4) now follows from the exact sequence
Hn+l A

r<n-1>-0 -> //n + 1 ^<n-1>'{n) i . Hn+1 ^<n>- 0 -» //n + 1 ^
<n-1>i 0 ,

since / / n + 1 ^ n - 1 > 0 = 0 by Claim 1, / / n + 1*<"-1 M n ) s H^X0'^ by Claim 2, and
//n + 1^< n~1 >'0->/f1^0 '0 is injective by repeated application of Claim 3. (We are
grateful to the referee for some neat improvements in the arrangement of this
proof.)

The exact sequence (4) now yields the exact sequence (1).
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