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ABSTRACT

The purpose of this work is to define the notion of a T-complex
and to give some of its basic properties. A T-complex is a simplicial
set X with certain special elements in each dimension. These special
elements are called thin and are required to satisfy the following three
axioms ¢
(A1) all degenerate elements of X are thin,
(A2) any horn in X has a unique thin filler,
(A3) if all faces but one of a thin simplex of X are themselves

thin, then so also is the last face.

Further a T-complex is said to be of rank n if above dimension n it
consists only of thin simplices .

We show how the axiomé for a T-complex X enable us to define n
groupoid structures on the set Xn of n-simplices . In particular we prove
that the category of T-complexes of rank 1 is equivalent to the category

of groupoids and that the category of T-complexes of rank 2 is

equivalent to the category of crossed modules over groupoids. A crossed
module over a groupoid is an extension of the idea of a crossed module
as defined by Whitehead E]ﬂ where one has a morphism d: A—»B of groups
together with a group action of B on A written ab and satisfying

-1
aa.

(1) 4(a®) = b7la(a)b and (i1) a¥' = a
The higher dimensional generalisation of a crossed module is a

crossed chain complex, originally defined by Whitehead[il] and called

by him a homotopy system, and we show how, by using relative homotopy

groups, one can obtain a crossed chain complex from a T-complex.
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INTRODUCTION

L]

As part of a programme of work to obtain new information on the

computation of second relative homotopy groups of topological pairs,

R. Brown and C.B. Spencer [3] defined the notion of a double groupoid
with connection. This was applied by R. Brown and P.J. Higgins [2]
and new results on the computation of certain second relative homotopy
groups were produced. The question of generalising these results to
higher dimensions then arose, but it was not clear what the algebraic
object generalising the idea of a double groupoid ought to be. In this

thesis we put forward a suitable candidate and call it a T—complex.

A T-complex is a simplicial set X with certain special elements in
each dimension. These special elements are called thin and are required

to satisfy three simple axioms. These are

(A1) "all degenerate elements of X are thin,
(A2) any horn in X has a unique thin filler,
(A3) if all faces but one of a thin simplex of X are themselves

thin, then so also is the last face thin.

Chapter 1 of this thesis is devoted mainly to the definition of
a T-complex and to showing how a T-complex has a natural filtration
similar to the filtration of a simplicial set by its skeleta. We call this

the T-filtration and we shall make use of it later.

A T-complex is said to be of rank n if above dimension n it consists

only of thin simplices . In Chapter 2 we show that the category of
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T-complexes of rank 1 is equivalent to the category of groupoids. This
is done by showing that the simplicial nerve of a groupoid, as defined
by Segal.[9] s is a T-complex and by showing how, conversely, the axioms
for a T-complex enable us to define a canonical groupoid structure on

the set of its l-simplices .

More generally, we can obtain n groupoid structures om the set of
n~simplicies of a T-complex and Chapter 3 shows how this is done. One
might expect to obtain in this way a multiple category in the sense of

Wyler [12] » where we have an interchange law. In other words, we

would have for each pair of groupoid compositions 0. and ogs an identity

of the form (x oL y)os(z orw) = (x o z)or(y oy w). We have been unable

to prove this for simplicial T-complexes although we note that P.]J. Higgins
has applied the axioms for a T-complex to a cubical set and has shown how

one does then obtain an interchange law.

One of the essential parts of the work of Brown, Higgins and Spencer
is that if we restrict ourselves to double groupoids with connection
possessing only one vertex, then the category so formed is equivalent to

the category of crossed modules. A crossed module (originally defined

by Whitehead in [11] ) is a triple (A, B, d) where d: A—> B is a morphism
of groups such that there is a group action of B on A written ab and

daf = at 1 a0 . Brown and

satisfying (i) d(a®) = b~ ld(a)band (ii) a
Higgins exploit the fact that if (X, A) is a topological pair then the
homotopy groups TTZ(X, A) and TTI(A) together with the boundary map

between them constitute a crossed module. In Chapter 4 we follow
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Lamotke [4] in showing that for a simplicial pair (X, A) one also
obtains a crossed module d : TTZ(X, A)-#-TTI(A). By taking the pair
(X, A) to be the bottom two levels of the T-filtration of a T-complex,

one obtains a particular crossed module associated to the T-complex.

The higher dimensional generalisation of a crossed module is the

notion of a homotopy system as defined by Whitehead EJ] « Brown and

Higgins call this a crossed chain complex. A crossed chain complex C

is essentially a chain complex (Cn)n vhere each C for n> 2 is a

>1
Cl/dcz-module and C2 is a crossed Cl-module. Using Lamotke's methods we
show further in Chapter 4 how one obtains a crossed chain complex from

a T-complex by using the T-filtration. Crossed chain complexes were

defined by Blakers in (1] but called group systems. Blakers went on

to show how one could obtain a simplicial set from a group system.

Finally in Chapter 5 we prove an equivalence of categories. In
order to avoid having to select one basepoint, we define the idea of a

crossed module over a groupoid and prove that the category of T-complexes

of rank 2 is equivalent to the category of crossed modules over groupoids
In defining the simplicial nerve of a crossed module we show that there
is a connection between this theory and the homotopy addition lemma

since we require thin simplices to, in a suitable sense, have the sum

of their faces zero.

An important conjecture is that the category of all T-complexes
possessing only one vertex is equivalent to the category of crossed chain

complexes. More generally one could define a crossed chain complex C
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over a groupoid where C1 is a groupoid rather than a group and we

have a crossed chain complex over each object of Cl' We conjecture
that the category of these objects would be equivalent to the category

of T-complexes.

The work of this thesis is by no means complete; its purpose is
rather to define the notion of a T-complex and to suggest areas for future
work. In particular the ﬁethods of proof need to be refined to avoid
the necessity of using complicated diag:ams as in Chapter 5. The
application to topology is to construct a T-complex from a topological
filtration by using maps of standard geometrical n-simplices into the
filtration and then taking homotopy classes. By taking the associated
crossed chain complex one then obtains relative homotopy groups of the
filtered space. Brown and Higgins have done work on this using cubical
T-complexes and they have shown that if one begins with a pushout of
topological spaces then, under certain assumptions, one obtains a pushout
in the category of T—complexes. By taking the associated crossed chain

complex, they then obtain some new results on the relative homotopy groups.

Unless  obheroise  shated | a\ @uences fo prior wtulds
ohtained in Wy Hewms v b to '?m?osl‘r(ev\t)drc.) %l\rev\ tw the
Soume c\\aP\Qr ar Heot tn whidh  He velerena (e weed .
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CHAPTER 1

T-Complexes

In our(first chapter we define the notion of a T-complex and
show how any T-complex has a natural filtration by dimension in a
similar way that a simplicial set has a filtration by its n-skeletons.
We also prove a general result (Theorem 3.1) on homomorphisms of
T-complexes which we shall make use of later.

Before beginning, we establish some notation. For the face
and degeneracy maps of a simplicial set we shall write di and S: 3
A" will denote the standard n-simplex and A™P the subcomplex of
A" generated by the p-dimensional part of A", ZSP will denote the
boundary of A", The p'th horn of AP will be denoted by /\z and the
p'th horn of an arbitrary simplex x by /\R. We shall also write A\Px
as the sequence (xs,...,x 1,-,xb+1,...,xh) where X = dix, the i'th

p—
face of x.

§1. The definition of a T-complex

DEFINITION 1.1 A T~complex consists of a pair (X,T) where X is a
simplicial set and T = (Ti)i>,1 is a graded subset of X with TiS X..
Elements of T are called thin and the following three axioms are
satisfied:

(A1) all degenerate elements of X are thin,

(A2) any horn in X has a unique thin filler,

(A3) if all but one of the faces of a thin element of X are

themselves thin, then so also is the remaining face thin.



Further, (X,T) is said to be of rank n if X, =T, for all i> n but

X + T

A morphism of T-complexes is a simplicial map taking thin

elements into thin elements and this gives us the category of T-complexes

which we denote by ;l“

Civen a horn h in a T-complex (X,T), we shall denote the thin
filler of h by T(h). This will be standard notation throughout this

work.

For brevity, we shall generally refer to a T-complex (X,T) by
the simplicial set X with the understanding that X has thin elements.
Note that a T-complex X is certainly a Kan complex but of course a
horn in X may have many other Kan fillers besides its unique thin
}iller.

It is clear from the axioms that T-complexes could equally
well be defined usiﬁg cubical sets rather than simplicial sets and
P.]. Higgins has investigated some of the properties of cubical

T-complexes.

Another alternative is to define the notation of a T-complex
using A -sets rather than simplicial sets. A /A -set, defined by
Rourke and Sanderson [8] s is a simplicial set for which no degenerate
elements are defined. Using this method dispenses with axiom Al.
Rourke and Sanderson have proved that a A -set satisfying the Kan

extension condition admits a (non-canonical) set of degenerate elements



and so becomes a Kan complex, but in our case we may simply define
the degenerate simplices as thin simplices  with suitable boundaries

so that axiom Al is automatically satisfied.

A further point about our axioms is that Levi [ 6] has described
a method of representing the law of composition in a group G by
means of a relation on GxGxG written [a,b,c] when aeboc =1,
Levi gives a number of axioms which must be satisfied and one of
these axioms is essentially our axiom A3 in dimension 3.

82, The T-filtration of a T-complex

Let (X,T) be a T-complex. As a simplicial set, X has a natural
filtration by the n-skeletons of X. However these are not T-complexes.
We shall now show how the n-skeletons of X do generate T-complexes,
thus giving a natural filtration of {X,T). This filtration will be
called the T-filtration

For each n 2 0, we define the graded set @ recursively by

X.k k€n
{x €T, : dx e (in)k_1 for all i} k>n

Thus X° is a graded subset of X. We write .X-i instead of (J-In)k.
Notice that in fact, when k > n, i‘l‘; is just the set of all those thin
elements of X.k whose i-dimensional faces, for all i > n, are themselves
thin.

When n 2 rank X, we have =X, Otherwise, we shall show that

© has the structure of a T-complex of rank at most n.



-4=

ILDMA 2.1 is a simplicial subset of X.

PROOF. We need to check that the faces and degeneracies of elements
of I® do themselves lie in X°.
Firstly, if x ei’.ﬁ, then if k < n+l1 we have, for each i,

d;x € X ; and if k>o+1 we have, by definition, d;x exl‘:_l.
®

Secondly, suppose x GQ. If k £ n-1, then for each i,
s; X € xk+1 -%l' If, on the other hand, k > n-1 then we need to
use induction to show that each s; X belongs to i;._l. Suppose as
induction hypothesis that if y e X_']l;_l, then for all i, s, X € X;H.
Now each 8;X is a thin element of xk_l_l with each face being either x,
vwhich belongs to ikn, or spdqx for some p and q. But we have already
proved that dqx € X'.";_l and so, by the induction hypothesis, spdqx € %
Thus each 8; X is a thin element of xlc+1 with each face lying in 72::,
and so, by definition, each s; X belongs to ill:‘l-l' Finally, to start
the induction, when k = n we have Tq = xk, and so each ;X is certainly
a thin element of xlc-l-l with all faces lying in % In other words

each ;X is an element of i;._l This completes the proof.

Next we show how each X° may be given the structure of a

T-complex. Define a graded subset T2 = {T;:l k> 1 of X% by
7’;: =X & 'I‘k ¢ for each i, dixe Xﬁ_lz

™ will be the set of thin elements of X°.

PROPOSITION 2.2 For each n > Oj_fi“,fn) is a T-complex.

PROOF, We must verify the three axioms Al > A2, and A3 of the

definition of a T-complex.
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Al (degeneracies are thin) : 1let x € g: for
some k then, for each i, s;x €T, . by axiom A1 for (X,T) and , by
Lema 2.1, d;s,x € xﬁ for each j. Hence, by definition, 5;% € T“H_I
A2 (every horn has a unique thin filler): let

h: /\pk—»x“
be a k-horn in X®. Then by axiom A2 for (X,T) there exists a unique

b Ak—-> TE X
extending h. Writing x for the k-simplex defined by B, we must show
that x € T, We already know that x € T and so, by definition, it

remains to show that, for each i, dix e X°.

Case (i) k < ntl : we have dix & xk—l =§_1.
Case (ii) k > n+l : for all i # p we have
drxen  ={ren, : 4reX, V i}

Thus, firstly, dix €T for all i # p, from which it follows by axiom A3
for (X,T) that dpx € T also and, secondly, djdixein for a1l i # p and
all j, from which it follows that dJ.dpx'Slit1 for all j also. Hence
by definition, d.x € X" for all i.

This verlfles the two cases and so x ¢ T - Thus h has a umique
extension over A in T and this verifies axiom A2 for (in Tn)
A3 (if a1 faces but one of a thin element are themselves thin, then
so also is the last face):
suppose x is an element of T° such that dixeTn for all i # p (say).
Then by axiom A3 for (X,T), dx € T, Further, by Lemma 2.1, d;d x eX®

for all j and so, by definition, dpx e ™, This verifies axiom A3.



THEOREM 2.3 Suppose (X,T) is a T-complex of rank g. If n<q then the

T—complex (X, T%) has rank at most n,
(in: i;n) = (x:T)
PROOF. Firstly, for all n we recall that

and if n > q then

Xk k<n
i:
{x e T, dixef;:_l foralli} k>n
and

T’; = {x € 'I‘k : dix X‘.“;_l for all i}

Thus T; = X'].; whenever k > n and so (fn,fn) cannot have rank greater than n.

Suppose now that n > q. For k < n we have by definition iﬁ = Xk

and "I"; = Tk' When k > n we check this easily by induction.

Suppose
iﬁ—l = x'k-l s then we have

-==xeT td.xe for all i
k i xk-l

since k > q. But we already know that i: = Xn and so g

= Xk for all k> n.
Further, for k>n we have

Le=G=x =1
and so we have checked (fi, "f’ﬁ) = (xk,rk) for all k.,

PROPOSITION 2.4 Suppose (X,T) is a T-complex. For each n 21, there is

an inclusion of T-complexes

ip2 (3,17) —s (2 7,
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PROOF. First we check that XE c ii.ﬂ for all k. For k € n we have
Y = =X 1 X = = X 1
x“:-xk—x.:" and further we havexf;_ Tn+19' Xn+1 X::l. When

k > n+l, suppose as an induction hypothesis that il[:-l < i::: (which we

already know is true when k = n+2), then, since we have
I:: = {x € Tk : dixexﬁ_l for all i}

X':H ={xe'rk: dixei"':i for all i}

it follows that .X;_C. itﬂ. Hence by induction, i‘.ﬁ% i:*'l for all
k>ntl,

It now follows by Lemma 2.1 that there is a simplicial inclusion
in : X — b ol
Now for all k we have by definition
Tz = {xeTk : d;x e Xﬁ_l for all 1}

Tmlé{xeTk:dixei::i fora.lli}

and so by the above we have i’;g "1":“. Hence in is an inclusion of

T-complexes

COROLLARY 2.5 For each n, the T—complex &™) is a sub-T-complex of (X,T)

PROOF., This follows either from Lemma 1.1 on noting that T’;s Tk for

each k,or from Theorem 1.3 and proposition 1.4 together,

We have now shown how a T—complex X has a natural filtration by

the T-complexes X%, We shall call this filtration the T-filtration




of X, Note that as simplicial sets, the % are of course not the same
as the simplicial n-skeletons of X, since these latter comsist only of
degenerate elements above dimension n, whilst the X contain other thin
elements. However it is easy to see that as a simplicial set, each

Y is Just the Kan extension of the n-skeleton.

§3. A _theorem on homomorphisms

Since a T-complex of rank n has only thin eléments above level n, one might
suspect that the maps comprising a homomorphism of T-complexes need only

be specified up to level n; In order toprow thiskinmi of result however, we havehad -
to specify the maps at level m+l also. We obtain the following theorem.

TEZOREM 3.1 Suppose (X,S) and (Y,T) are T-complexes of rank n. Let

rt+l

£={1: (&, 8)— (¥, 1,) i=0

be a collection of maps of pairs satisfying

djfi = fi—ldj for all j< ig ntl. Then f extends uniquely

to a morphism (X,S) —> (Y,T) of T—complexes. If further each

£, (0gigntl) is a bijection of pairs, then the extension

is an isomorphism.

PROOF. Denoting the postulated extension by £ ={fi} i o also, we shall
(i) define f recursively on each X, (i> n+1) in turn;

(ii) prove that f is a simplicial map and deduce that it is a morphism
of T-complexes;

(iii) prove that f is unique as an extension;

(iv) show that if each £, (0 € i< ntl) is a bijection of pairs, then

the extension is an isomorphism,
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(i) Suppose that f is defined on X1 (k> o+1) and that 4, f = fdi

for all i £ k-1.
Let x be a point of X (= Sk) and let p be an integer satisfying

O €p<k. Then, since d;d;x = dj_ldix implies that difdjx = dj—lfdix _
(where 0 < i < j= k), it follows that f APxis a horn in Y. Thus we
may define
fx = 1(5,_ APx)

However, it will not be sufficient for us to do this for a given
fixed p and so we check that 'I‘(fk_1 /NPx) is in fact independent of
the choice of p.

We already know that diT(f Nx ) = fd,x for i # p and we check
further that de(f NPx) = fdpx. Now by the above remark, since
fd.x is thin for all i (dix is thin), it follows by axiom A3 that
de(f /\PX) is thin also. Thus, since a thin q-simplex is entirely

determined by any q of its faces, it is sufficient for us to check that
/\pde(f APx) = /\pfdpx

Let t = T(f APx) then, using the simplicial identities, we have
/\pdpt = (dodpt,...,E,...,dk_ldpt)

= (dp-ldot’...,dp—ldp-lt’-’dpdp"“zt,."’dpd](t)
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= f(dp-ldox’ LN ] ,dp—ldp—l bnd dpdp_’_zx’ see ,dpd.kX)

= f(dodpx,...,.l?.,...,dk 14,%)
= (dofdpx, RO S ,dk_lfdpx)
= /\pfdpx

as required. Thus
dii‘(f NPx) = fdix

for all i £ k and so, by the uniqueness in axiom A2, T(f APx) is
independent of the choice of p. Our definition of ka may therefore

be written
= P
fix = 1(f,_, APx)

where p is any arbitrary number less than k, ka being invariant under
the choice of p. From this we have d. fk f d for all i< k and so
f is defined on Xk and satisfies d f= fd for all i < k.

Finally, by assumption, f is defined on Xn+1 with dif = fdi and so
f= ifi}izo is defined recursively over the whole of X and satisfies
dif = fdi for all i > 0. Note that, by definition, f preserves thin

elements,

(ii) We already know that f satisfies d,f = fd, for all i > 0 and so
in order to show that f is simplicial we must simply check that sif = fs:.L
for all i 2 0. For this we use induction. Suppose s; f= fs on

xk 1, that is, for all i< j< k-1, s, fJ = f, 154 and let x be a point

Jt1
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of Xk Then, for all i « k, by axiom Al and using the simplicial identities

we have
i+l
lx S(Sl 1 ox,.--,sl ldl lx,x, —— ,Sidi+1x,o--,sid-kX)
and so, as f preserves thin elements,
1+1
fs.x = T(fs (g% eeesfs, 1951 %1% = fsldl+1x,...,fs dkx)
- i+1
- T( l d fx,-.o,sl ldl lfx’fx, —-,Sidi+1fx,.-.,sidkfX)

by assumption

fx
Si

Thus sif = fsi for all ik on Xk. But we know that for all points
x of Xo, sofx = fsox since f preserves thin elements and, by axioms

Al and A2, the only thin elements of Xl are the degeneracies. Hence,
by induction, we have s;f=f s; (for all i) over the whole of X and so
f is a simplicial map. Moreover, since f preserves thin elements, it

is a morphism of T-complexes.

(iii) Suppose that f and f' are two extensions so that f. = f1; for
i<ntl. If f# f' then there exists k > ntl such that f # fio Let

x be a point of X, such that f x# fx, that is

(5, APx) + 7(2_, NPx)



-12-

P 1 P L £1 R
Hence fk-l Nx # fk—l A Px and so fk-l * fk-l' Continuing the process

we obtain by induction that f 1 *+ f;ﬁ-l’ But this is false and so f = f,

(iv) Now suppose we are given that each fi for 0 i€ ntl is a bijection
of pairs. First we show that the remaining f,'s as defined in (i) are
bijective. Again we use induction. Firstly suppose fk—l(k > n+l) is

injective, then, if ka'= ka s that is
Py = p1
T(fk-l A Ffx) T(fk_1 NPx")

where x and x' are points of xk-l = Sk-l’ it follows that APx = APx
and so, since x and x' are thin, x = x'. Thus fk is injective. But

we know fn+1 is injective and so by induction it follows that fi is
injective for all i > 0., Secondly, suppose that fi1 (k > ntl) is
surjective and let y be a point of Yk =T. Theny= T( APy) (o< p<k).

Now, since fk—l is surjective, there exist points xj for j =0,...,k

such that djy = fk—lxj and,using the simplicial identities,we have

fy2di®y = 44y = 45,4y = N pd5 0%

for all i < j<k. Butf , (in particular) is injective,and so

dixj = dj-lxi for all i < j £ k. It follows that, given p

h = (xo,oco,xp_l’-,xp+1,c..,x1c)

is a horn in x’k—l and we define x = S(h). Then we have
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= P
fix = T(fk_I/\ x)

= 7(f, _,b)

= T(fk__lxo,.. eyPses .,fk_lxk)

= T(doy,.ongg,ooo,dg)

and it follows that fk is surjéctive. But we know that fn+1 is
sur jective and so, by induction, fi is surjective for all i >0. Thus,
since for i > o+l, X, =S, and Y, =T, it follows that f, 3 (xi,si) —_— (YiTi)
is a bijection of pairs for all i > 0.

Next, denoting the inverse function of f by £l , since f is a simplicial
map it follows tha,t'f-1 is also a simplicial map. Furfher £1 must preserve
thin elements and so it is a morphism of T—complexes. Thus f is an

isomorphism of T-complexes and this completes the proof of the theorem.



CHAPTER 2

The Groupoid Structure in Dimension 1 and T-complexes of Rank 1

In this chapter we show how the axioms for a T-complex X enable
one to define a law of composition on the set Xl of l-simplices of
X so that Xl becomes a groupoid. We then show that the simplicial
nerve of a groupoid, as defined by Segal [9] s is in fact a T-complex

and we deduce that the category of T-complexes of rank 1 is equivalent to

the category of groupoids.

Let (X,T) be a T-complex. Given a thin 2-gimplex x of Xl’ x is
entirely determined by any two of its faces and so we may represent x

by the diagram

N

rd
dsc
where the letter T denotes that the diagram represents the thin simplex

determined by the given faces.

We define a partial law of composition on Xl as follows : suppose

X,y € Xl are such that dox*= dly. We define the composite x o y by

Xoy = le(Y"‘:x)

Vv

X.oj
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PROPOSITION 1 With the above law of composition, Xl is a groupoid over Xo.

PROOF, We check that (i) the law of composition o is associative,

(ii) the degeneracy map Sy ¢ Xo-> X1 gives identities and (iii) inverses
exist.

(i) Let x,y,z be elements of Xl satisfying d x = d,y and d y = dlz so
that the composites (x o y) o z and x o (y o z) exist.

Construct the thin 3-simplex

t = T(T(z,~, ¥),=, T(y o z, -y X), T(y,~,x) )

By axiom A3 of definition 2.1, d,t is thin and so x o(y 0 2) = le(z,-,x oy),
that is x o(y.0 z) = (x 0 y) o z.
(ii) Suppose that x € X, then, by axiom Al together with the uniqueness

in axiom A2,
x o(sodox) = le(sodox,-,x)
== dlslx

=X
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Similarly (Sodlx) ox = x and we write s a = 1_ for each vertex a of X .

(iii) Iet x € X| and define e X, by

-1
x = doT(-"sodix’ x)

N
S:J.,x
so that. X o x"1 = sodlx (where we have made use of the uniqueness in axiom

A2) Further, by associativity, we then have x = (x 0 xHox=xo0 (x%o x) =
le(x"lo X,~,X) and so xto x = d T(-,x,x). But by axiom A1, T(-,x,x) is

degenerate and so we have x1lox= R

¢y

This completes the proof.

We denote the groupoid obtained in the above fashion by G(X)
and it is clear that we have a functor G from fhe category of T-complexes
to the category of groupoids.

Now let N be the simplicial nerve functor defined by Segal [9-.).
Then, if C is a category, the l-simplices of NC are the elements of C,

the 2-simplices are commutative triangles of elements of C and so on.
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PROPOSITION 2 N Merm'me.s a functor from the category of groupoids to

the category of T-complexes of rank 1.

PROOF. Suppose n is a groupoid. Define a set of T of thin elements for
NI by letting '1'1 be the degenerate l-simplices of NI and letting Ti = NP i

for i 2 2. The axioms are trivially verified.

THEOREM 3 The pair of functors G and N give an equivalence between the

category of T-.céinplexes of rank 1 and the category of groupoids.

PROOF. We must construct a pair of natural transformations NG =2 1 and
GN= 1. This is quite trivial for firstly if (X,T) is a T-complex of

rank 1 then NG(X) has rank 1 and
NG(X)O = ObG(X) = Xo

NG(X):l = ArrG(X) = Xl
NG(X)2 = {commutative triangles in G(X)}
= Xz
this last isomorphism being canonical. It is easy to see that, using |hecem 5.}
°fChapls ), @ natural transformation NG = 1 is canonically defined, the
naturality being immediate.

Secondly, if I’ is a groupoid, then
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ObaN( 1) =Nf‘°=0b|"
Arr GN(I) =NP, =Arrl

Composition in both[ and GN() corresponds to commutative triangles in
NT and so a natural transformation GN = 1 ig canonically defined.

Naturality is again immediate.

As a corollary we \oye He Pollowing resull of |ee L5
COROLLARY 4 let C be a category, then NC is a Kan complex if and only

if C is a groupoid.

PROOF. If C is a groupoid then NC is a T-complex and so certainly a

Kan complex. On the other band, suppose that NC is a Kan complex and let

x€C(p,q). We need to show that there is an element x ! e C(q,p) such that
xox! = 1,. Consider the horn (-,lp,x) in NC.,. Since NC is a Kan complex,

this horn has a filler u and we let x-l = dou. Now the 2-simplices

of NC are commutative triangles in 01 and so we have x o :tc"1 = lp as required.



CHAPTER 3

The Groupoid Structures in Higher Dimensions

In our last chapter we showed how a T—complex possesses a canonical
groupoid structure on the set of its l-simplices . We now demonstrate
that a T-complex admits canonical groupoid structures in all dimensions.

The aim of this chapter is to prove the following theorem.

THEOREM Let X be a T-complex with face and degeneracy maps di and Siz

For each n» 1, there exist n canonical groupoid structures

o. for 1€ r€ n with Xn as the set of arrows, xn-l as the set

of objects and initial, final and identity maps being dr’dr-l

and s 1 respectively. Furthermore, these structures satisfy
e

dix °n_q diy i<r-1
di(x ) ry) =
dix o diy i>r
The chapter is divided into three sections. In 81 we define the laws
of composition o. and show that the faces of x o o are as stated in the

theorem. B2 is devoted to the proof of associativity and in 83 we deduce

‘the existence of identities and inverses.

81. The laws of composition

Let (X,T) be a T—complex with face and degeneracy maps di and S;

respectively. We first show how, for a given n31 » two elements x and y



of Xn may, under suitable conditions, be composed.

IBMAl1.1 Given ne1, suppose x and y are n—simplices of X satisfying

dqx = dp_ly vhere 06 q <€ p-1 € n. Then there can be assigned

to x and y a unique thin simplex T [x,y] D.q of dimension n+1

such that
de [x,y] Pyq =X

d47 (x.v] Psq Y

T [dix’diy—.l p-1,q~1 1<g
4,1 x,y] b T [dix,di_ly] 1.q o+ P
r[a,_ x, di_ly] - i>p

Using this lemma we may define laws of composition o, on Xn for 1€r<n

by
xoy=d T[xy] .y
where dr-lx =d Ve We shall show later that these are in fact groupoid

structures.

PROOF OF 1.1 The proof is by induction. Suppose that the lemma is true
for dimension n-1 and suppose that, for all (n-1 )-simplices u and v

satisfying dqu = dp—lv for some pand qwith 0<q<p-1€n-1, the thin

simplices T r_u,v] P,q have been assigned.
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Now let x and y & Xn be such that dqx = dp_ly for some p and q
with oS q<p-1€n. To prove the lemma, we must check that the postulated
faces of T[x,y] P,q do actually fit together to form a horn.
2
First, if i<q,

dq_1 dix = didqx = didp-ly = dp_zdix

and so, by the induction hypothesis, T [dix, diy] p-1,q-1 is defined.

Similarly, if ¢+l < i< p,

dqdix = di_ldqx = di-ldp—ly = dp-Zdi-ly
and so T [_dix, di-ly] p-1,q is defined.

Finally, if i > p,

dqdi-lx = di_qux = di-zdp—ly = dp-ldi—ly

and so T [d, ,x, d, 7] p,q IS defined.

Thus all the postulated faces of T[x,y] B,q certainly do exist and
2
we now check that they form a horn. Denoting these faces by b, (i # q+1),

we have to check that di hj = dj-l hi for all i,j witho i j n

and i,j, # qtl. There are a number of cases :

Case 1 : i<j<«q

d;h. = d.T [djx, djy]

13 p-1,9-1

= T[didjx, didjy] p-2,q-2

=4 d

j-1%% 454 iy] p-2,q-2



Case 2 : i<j=gq

d.h.=d. y

Case 3 : i<q, qti< j<p

=1 [didjx’ didj-ly] P2, -1
=T [dj-l d;x, dj-zdiy] pP-2,q-1
= dj—l T [dix, diy] p~1,q-1
di1 By
Case 4 : i=gq, ¢f1<j<p
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dj—ly

=d. .d T
i-1 % x’y]p,q

1
b

=dja by

Case 5 : i<q, j=0p

=d5a By

Case 7 ¢ qt1<i<p, j=rp



i<q, j>p
dihy = d, T[dj__lx, dj_ly] -
=144
=rla,_,ax, ¢
= dJ._1 T[dix, diy]
=iy
i=4gq, j>p
d;h

4,

i
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Case 10 : gHtl<i<p, j>p
4jhy =4 T[dJ X J_ly] 2,4
—T[J_Jlx, 131y]p-1q

=1[4, 4% dj_zdiy] 1.4

1 T[di"’ diY] p-1,q
djo1 By
Case 11 : i=p, j>p

h.=d T[ d. .x.4. }
d;hy = d, [J-lx’ =17 p,q

=4, ,x

51
=dja by

Case 12 : j>i>p

djhy = 4, T[dj_lx, dj_ly:) -

=T dl-ldJ-l ? d1-1 J-ly] P,q
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=1l 59, %, dj-zdi-ﬂ’] Psq

= a5y 1Lay yx a4y ] P»q

dy_ 3 by

Thus we have shown that the postulated faces do constitute a horn
in X and we take its unique thin filler to be T[x,y] ,q° This then
has the required faces and, as such, is unique.

Finally, to start the induction, if n = 1 the only possibility is
q=0and p = 2, }We define T[x,y] 2,0 to be the unique thin filler
T(y,~,x) and this satisfies the required conditions. This completes the

proof of the lemma.

Using Lemma 1.1, we are now in a position to define laws of composition
on the T-complex (X,T). Suppose, for some n2>1, x and y are two n-simplices
of X satisfying dr_lx = dry for some r, then, by Lemma 1.1, we may

define the composite simplex x 0.y by

XOp¥= dr T [x,y] r+1, r-1
Notice that, by virtue of the uniqueness of the thin element
TCx,y] » the law of composition o 4is both well~defined and

canonical, Further, if x and y belong to xl, then x oy ¥ is precisely

the composite x o y described in Chapter 2, namely

X0y y=4d T (y,-,%)
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—

o) > 2
x oy

IEMMA 1.2 The laws of composition o.are preserved by the face operators

di. Explicitly,

di( X or)') =

whenever x and y are composable n-simplices - for some n > 2.

FU rﬂ\ev mor e

qlr(x 0 l_y) = drx
dr-l (x °r y) = dr-ly

PROOF. Using Lemma 1.1 we have

Case 1 (i<r-1) :
di(x o l__'y') = didrT[x,y] r+1,r-1

= dr—ldiT [x,y] r+1,r-1

=4,y [4;x0;7) r,r-2



=dxo, _, dy

Case 2 (i>r) :
d; (x o.y) = didrT[x’Y]xq.]_’r—l

=d a4 Thovl iy g

- dx; T [dix, diYJ r+1,r-1

= dix Or dly

Al so
dr(x OI‘ y) = drdrT [x,YJ r+i,r-1
= drdrl"lT[ x:Y] r+1,r-1
=d x
r
and

4, (x o ¥) = doy 9T [x.5] r+l,r-1

4y 4y TLx] r+1,r-1

= dr-l y

Thus we have shown that the face operators of the T-complex (X,T)
behave "correctly" with respect to the laws of composition OL.¢ One might
ask whether a similar result holds good for the degeneracy operators.

In fact a similar result for degeneracy operators does hold if one sets

up similar machinery using cubical, rather than simplicial, T-complexes.
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This has been proved by P.J. Higgins. However, in our case there is
no corresponding result since composites of degenerate elements do not

exist except in certain very special cases.

82. Associativity of o,

In this section we prove

IEMMA 2.1 The laws of composition 0. are associative.

The pfoof of this lemma is lengthy but notice that it consists only
of applying axiom A3 of the definition of a T-complex,
PROOF. Let x,y and z be three n-simplices of the T—complex (x,1)
satisfying dr_lx.='dry and dr-ly = drz. Then, by Lemma 1.2, the

composites x o (y o, z) and (x o, y) ©. 2 are defined. Let
a=1[xy] r+H,r-1 b=T [y’z]rf-l,r-l

so that d. 2=y =d_ . b. Applying Lemma 1.1, we have the thin (n+2)-simplex

u=T r_a,b] r+2,r-1

Now by the simplicial identities for X we know that drdru = drdr+1u
and so it will be sufficient to prove that

(1) d.4

rre+1t T X or v °r z)

(ii) drdru = (x o y) o z
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(i) This is trivial for, using Lemma 2.1, we have

drdri-lu = dr T [dri-la’ drb] r+1,r-1
= dr T[x, Y O z] r+i,r-1

=xo_ (yor z)

(i) In order to prove this, we resort to induction to show that

dru = T[x °. ¥, z] r+1,r-1

that is
= (*)
dr T [a,b] r+2,r-1 ~ T [x °p V5 2 r+1,r-1

where

a=T[xy] rH, -1 b=1[y,z] r+,r~1

Let ¢ = dru and assume that (*) is true for all values of r in all
dimensions less than n, that is, given m<n and r with 1€ r€m we
assume that (*) holds good whenever X; ¥y and z are replaced by suitable
elements of dimension m.

Since all faces diu of u, except when i = r, are thin, it follows
by axiom A3 that ¢ = dru must also be thin, Hence, in order to check

(*), by axiom A2 it will be sufficient to show that
dic = di T[x o ¥ z] 1, r-1

for all values of i except i =r, since it will then follow that
c=T [x °r 75 z] r+1,r-1

as both these elements are thin,
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Now we have

c = dr-l dru

= dr-l dr--lu

= dr-1 dr-1 T [a,b] r+2,r-1

Il
a,
o
[
[y
o ]
™M
"
(~]
e}
<
-
3]
[
&
-
e
i
oy

and

=X 0
rY

=dy, T[xo v z] r+1,r-1

Immediately, this verifies (%) in the case when n = 1, as in this case
r =1 and the only possible values of i are 0, 1 and 2, This begins the
induction.

When n>1 we have extra faces of ¢ to calculate, namely dic for

i<r-l and i>r+l1. First suppose i<r-l, then
dic = di dr u

= dr—l di u
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Gy & TLad] 1y

= dr-l T [dia’ dibj r+l,r-2
by Lemma 1.1. Now also by Lemma 1.1 we have
da=d; T[x y] r+l,r-1 = T (4=, diYJ r,r-2

4 =4 T[ys 2] 1y ey = 7 (47 ¢42] ryr-1

and hence, if we replace x, y, z and r in (%) by d, x, d;y, d;z and r-1
respectively, a and b are replaced by dia and dib. But, by the induction
hypothesis, (%) is true in this case and S0, using Lemmas 1.1 and 1.2,

we deduce from the above that
die=T[axo, 4y, qz] r,r-2
=T I:di(x r ¥)s diz] r,r-2

=d4; T[x o V5 2] r+1,r-1

Secondly we have the case i > r+1 to check. Here we proceed in an

exactly similar way. We have

d.c =d.d u
i ir

= drdi+1 u

dd; 4y Tla, b] +2,r-1

=4 T [dia: dib] r+2,r-1



Now

42 =4 100 5] et T Loy %0 40y 5]

ab=a; Ty, 2] oy =T 7 &5 2] rH,re1
and so this time, replacing x, y, z.and r in (*) by d; , % d;_, ¥,

d.

41 2 3nd T, a and b are replaced by d;a and d;b. But then (%) is

true by the induction hypothesis and so using Lemmas 1.1 and 1.2 we have
do=1[d  xo & 7y, &, ] r,r-1
=14 (xo, )5 d; z] r+,r-1

= di T [x U & z] r+,r-1

Thus we have proved that all faces of ¢ except the r'th are in

accordance with those of T[x oL Y5 z] r+1,r-1 and so, since both these
elements are thin, it follows by axiom A2 that

c= T[x o y,z] r+1,r-1

But then we have

drdru = drc
= dr T[x op ¥> z] r+1,r-1
= (x oL y) oz
and so (ii) is proved. It now follows that

xor(y o z) = (x o y) o,z

as required.
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83. The Groupoid Structures

We now show that there exist identities and inverses for the laws

of composition o. on (x, 7).

Let x be a member of Xn for some n and suppose dr_lx = a. Write

IEMMA 3.1 l: is a right identity for x with respect to the composition

0 , that is
b o
x or 1a = x

PROOF. Since dr1: = dr Sy 2=as= dr—lx’ x o, 1: is defined and we have

by definition

r o—
X0 l,=4dT [x, Sp-1 9pg x] r+1,r-1

We shall show that

1[x, Sp-1 9y "] rH,r-1 = 5¢% ()
for then it will follow that x L drsrx = X. Since degenerate

simplices - are thin, in order to check (*) it will, by Axiom A2, be

sufficient to check that

diT [x, Sp-1 dr-l xJ r+1,r-1 = di Sp X
for al1 i # r.
Suppose, as an induction hypothesis, that (*) is true for all r whenever

x is replaced by an element of X of dimension less than n. Then we have

isr-ldr--lx = dr-1 °r X

(1) a7 ["’ Sr-1 4y x] r+1,r-1
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(1) 4oy T[x sy o x] rH,r-1 T X =y, s x

Immediately this verifies (*) for the case n = 1 as then the only possible
value of r is 1 and there are no other faces to check.

This begins the induction.

When n > 1, by the induction hypothesis we have also

(iii) if i<r-1, then

4T [x s, 4 * oty reg =T [4;x, 45, 44, _;x] r,r-2

=1[4x, SEPLINPL Y r,r-2

= Sp_1 dix

= di S,.X
and

(iv) if i>r+1, then

4T [=, sr—ldr-lx] rl,r-1 = T [di-f" di-lsr-ldr—lx] r+,r-1

=T di—lx’ sr-ldr—ldi-lx] r+1,r-1

= srdi-lx

= disrx
It now follows, by axiom A2, that (*) is true and this completes the proof

of the lemma.

This proves the existence of right identities; the existence of left

Hentities is deduced in Corollary 3.3.
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IEMMA 3.2 Suppose, for some n21, x and y are n-simplices of the

T—complex (X,T) satisfy.ng d x = d y for some r with 1< r< n.

Then there exists a unigue element a of Xn such that

Xo a=
r y

NOTE. It is more convenient to prove this general lemma in order to
demonstrate the existence of inverses, rather than simply attempt

to prove directly that each element has an inverse.

PROOF. We first prove the uniqueness part of the lemma by means of
induction. As induction hypothesis, suppose that, given members u, v
and w of Xm for some m « n, such that u 0. v=u 0. W for some r, then v = w. _

Now suppose that x 0p @ =Xxo0_ b. We prove that

T[x,a] r+l,r-1 = T [x.b] r+1,r-1 _
by checking that all corresponding faces except the (r-1)'th are equal.

Firstly we have
drT [Jt,a:'lr.’_ll’r_1 =xo0_ a
=d.T[x, b] r+1,r-1
and

dyy T[x 2] r+1,0-1 = X = 9y Tx, 1] r+,r-1

When n = 1, these are the only faces to check and it follows by the

wiqueness of thin fillers (axiom A2) that, in dimension 1,

T[x, a]p{-l’r-l =T [x, b] r+1,r-1

Hence, taking the (r-1)'th face, we have a = b and this begins the
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induction.

If n>1 then for i<r-i we have
dix oy dia = di(x o a)
= di(x o, b)

= dix or-l dib

and so, by the induction hypothesis, dia = dib. It then follows that

d:i. T[x, a] r+l,r-1 = T [dix’ dia] r,r-2

=T [dix’ dib] r,r-2

=d T[x, v]

Similarly, for i> r+1 s we have

di-lx o, di-la =d,_, (x ora)

= di-—l (x orb)
= di-lx °r di-lb

from which it follows, by the induction hypothesis, that di-

We then have

d; T[x, a] r+l,r~1 =T [ dj 1% di-la] r+1,r-1

=1{e % a;_b] ™ ,r-1

=4 T [x, t;]H-l,r--l



Now, using axiom A2, it follows that

T[x a] ~1,r-1 = T [ l£‘1~+1,r-1

and so, taking the (r-1)'th face, we have a = b.

induction and thus we have proved uniqueness.

This completes the

Next we show the existence of a as shown in the lemma. Again we use

induction. Suppose that the lemma is true whenever x and y are of dimension

less than n. Then there exist (n-1)-simplices a, for Osign with

i # r,r-1 such that

dix o1 a = diy i< r-1

dix o, a; = diy isr
We check that
di aJ. = dj—l a;
for all i and j with i<j and i,j # r-1,r,r+l.
Firstly, if i <j<r-1, we have

di(djx .4 aj) =d.d.y

= dj—l diy
=4 ,(dxo ) ay)

vhich, by Lemma 1.2, is equivalent to

didjx °r-—2 diaj = dj_ldix °r-2 dj-l

(*)

a,.
b 8



But d d x = d:J 1 dlx and so, by the uniqueness part of the lemma which
we have already proved, it follows that

diaj = dj-l ai

Secondly, in the case i<r-1, j>r+1, we have in a similar fashion

didjx 0.y dja;= di(djx o, aj)

J
==-di cl‘j y
=clj__1 diy

=djq(dxoy ay)

gd fil r—1 3-11

Again didjx = dj-ldix and so, by the uniqueness part of the lemma, we

have

diaj = dJ._1 ai

Finally, if j>i>r+1, then we have

didjx o, diaj = di(djx oL aj)

= didjy

= dj-1 di y

= dJ-l(dix o, ai)

d dxordJ_ll
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and since didjx = dj-l dix, it follows that

diaj = dj-lai

This completes the check that (*) is true.

Now set

Tle;x, a] r,r-2

Yy

Tl % ay ] r+1,r-1

We check that the Ti form a horn in X, that is diTj =d

and i, j # r-1. There are a number of cases.
Case 1 : i<j<p-g

4,7, = 4T [djx, a

i j] T,r-2

=T [didjx, d

=T|d.

j-1 dix, d

=4rleyx el

iaj r-1,r-3

i<r-1

~+1

i>r+

j=1

§=1%id re1,r-3

T, for i < j
1
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a

=4d.,x .
i

1 0r-1
=da T [dix’ a‘i:l r,r-2

=d.
j=1 Ti

Case 3 : i<r-1, j =r+l

j=1 i
Case 4:i=r, j=1H
lej = drx
= dry
=4 N

Case § : i<r-1, j>rH
4T, =4 tLa m 2]

=rlaag % ey ]

=14, 4% dj-zal r,r-2

=4, [ 2] r,r-2

=4 T



Case 6 : i =r, j>r+1
4T, =d_ 'r[dj_lx,

=digxopas
=4 T

Case 7 : i=r+1, j> rtl

Case 8 : > id> r+1

J
=T | d,

=T Edj_z d_.x, d

B S

a._ ]

r+1,r-1

475 =4[ d x, a ] r+1,r-1

-1 45o0% di—laj-lj r+1,r-1

j-2ai-1] r+1,r-1

451 T [di-f" ai--1] r+,r-1

This completes the check that the Ti form a horn in X, Let T be the

unique thin filler of this horn and set

a= dr-lT

Then we have for i< r-l1

dia = didr-lT

d_,d.T

dr-2 Ti



and for i> r+i1

d.a=4d.d T
i ir-1

=dg 9 T

=d; Tin

=d.; lex ] r+,r 1

= a.
1

Hence the faces of T are given by

rT [dix, dia] r,r-2 i<r-1
a i=r-1

2 =4y -
x i=r+1
L T di—lx’ di_la] r+1,r-1 i>r+H

But it now follows that T must be the unique thin element with these faces

(for i # r) whose existence is asserted by Lemma 1.1, that is

T="T[x,a] P, ool



and so we have

xo, a= dr T[x; a]r-i-l,r-l

=drT
=Y

To complete the induction, we need to check the existence of a in

the case n = 1. This is trivial, for r must be equal to 1 and we set

a = doT(': Yy, x)

Then by the uniqueness of thin fillers, it follows that x 0,a=y.

This completes the proof of the existence of a and of the lemma.

We now deduce the existence of left identities for or. Let x be

a member of Xn for some n and suppose drx = b.

COROLLARY 3.3 Iy =s b is a left identity for x with respect to

0 that is

1!‘ X=X
b &
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PROOF. By Lemma 3.1, 1; o 1; = 1§ and so, using Lemma 2.1 (associativity),

we have

r r r r
1, or(lb o, x) = (1b L lb)or x

But now, by the uniqueness part of Lemma 3.2, it follows that lg O, Xx=x

COROLLARY 3.4 Let x be a member of}u and suppose that for some r,

t . .
a=dxand b=4d 1x. Then there exists a unique element
LY &=

x‘l of X such that

xo x ! = 1F

a
-1 S o
b 4 °r X = 1b

Note, of course that x ' is dependent on r.
PROOF. The existence of a umique x ! such that x o 1= 1: is given

by Lemma 3.2. Using Lemma 2.1, we then have

-1 B -1
x or(x o x) = (x o x ) o X

i
by
o
[

o

But then, by the uniqueness part of Lemma 3.2, it follows that
-1 = 1T .
x o, x 1b as required.
Collecting together all these results, we have now shown the existence
of the canonical groupoid structures 0. on each Xn and we have proved the

theorem stated at the beginning of the chapter.



CHAPTER 4

Homotopy Groups of T-~Complexes and the Crossed Chain Complex

In this chapter we give some results on the homotopy groups of a’

T-complex and the associated T-filtration. We show how certain relative

homotopy groups of the T-filtration give a Crossed Chain Complex as

originally defined by Whitehead [11] and called by him a Homotopy System.
A crossed chain complex is a higher dimensional extension of the crossed
modules used by Brown and Higgins [2] to obtain results on the second
relative homotopy groups TTZ(X, A). The reason for setting up this
machinery is that we suggest it may be possible to use these methods in

order to obtain results on higher dimensional relative homotopy groups.

1. Some results on the homotopy groups of a T-complex

Suppose that X is a T-complex. By the homotopy groups of X, we
mean the homotopy groups of X as a simplicial set and we assume that these
are constructed as in May [ 7] . Thus if * is a base point for X then we
let % denote also the simplicial subset generated by the base point |

and define Xn(*), for each n> 0, to be the set of all x & Xn

satisfying d.x = * for all i. Then TTn(X, *) = Xn(*)/~ where x~ y

if there is a homotopy, as described by May, from x to y. Similarly,

if A is a subcomplex of X, then Xn(A,*) denotes the set of n-simplices

x of X satisfying dix = ¥,i21,and doxe An—l' The relative homotopy
group nn(X, A, ¥) is then defined to be Xn(A, #)/~ where x ~y if there
is a homotopy rel A (see May) from x to y. For brevity we shall suppose

in this section that the base-point * is fixed and write ‘!Tn(X) instead of
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T\'n(X,*) and TTn(X, A) instead of TTn(X, A, ¥),

PROPOSITION 1.1 Suppose that for some r > 1, every r~simplex of the

T-complex X is thin. Then

‘!Tr(x) =0

PROOF. By definition, ﬂr(x) = xr(*)/~ and we have
X.()={xeX : dx=*for all i}

d.x = * for all i}

But there is only one thin simplex of Xr with all faces %, namely the

degenerate simplex * belonging to Xr' Thus Xr(*) = {*} and so '\Tr(X) =0,

COROLIARY 1.2 Suppose the T-complex X has rank n,. TheaniQ!) is zero

for all i> n.

PROOF, By definition, Ti = Xi for all i > n and so the result follows
from Proposition 5.1 avece .

In certain special cases, we obtain K(TT, n)~complexes [7] s the
simplicial analogue of the CW K(W , n)-spaces of Eilenberg and Maclane,

where all homotopy groups except the n'th are zero.

COROLLARY 1.3 Suppose that the only non-thin elements of the T—complex X

lie in dimension n. Then X is a K(TT , n)-complex,
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PROOF. Simply apply Proposition }.1 in all dimensions except n,

We now give a result on the homotopy groups of the filtration
{in} of the T-complex X analagous to a similar result in topology on
the homotopy groups of the n-skeletons of a CW—complex (see [10J s Theorem 6.11).
Let i : X2 =X be the inclusion of the T-complex (Xn s 'I'n) into the
of- Chfb'
T-complex (X, T) (see Corollary 2.5), then we know that for each

r 21, i induces a morphism of groups i, : “r(in) — 'ﬁr(X) (see

41 or [7]).

THEOREM 1.4 The induced morphism

1y 1 T E) —T )

is an isomorphism for r< n and an epimorphism for r = n.

PROOF. By definition we have
TE) =T )/~
T(D) =X (x)/~

where the relations ~ are as stated earlier. Now for r < n, the restriction
of i gives an equality i:(*)"xr(*), since by definition i‘; =X when

rg n. It follows that i, is surjective and hence an epimorphism whenever
r < n. Further, by definition the relations ~ on the r-simplices of

X° and X depend only on the existence of (r+1)-simplices . Hence, if

r €< n, since we then have f;l-l = xr-l-l’ it follows that the relations ~ on

i;_‘ and xr are identical. Thus for r < n, i, is a bijection and hence

an isomorphism.
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Since, by Corollary 3.2, ’n’r(in) is zero for r > n, we have shown

that X* has the bomotopy groups we would expect it to have.

82. The Crossed Chain Complex associated to a T~Complex

We now show how a T—complex gives rise to a Crossed Chain Complex

and in particular to a Crossed Module (we shall define these concepts

later). First we need to state some further results on the homotopy
groups of a semi-simplicial set.

Suppose X is a Kan complex and A is a sub Kan cemplex of X.
Suppose further that * is a base point lying within A. We follow
Lamotke [ 4] in describing how the group T (X, *) acts on each
homotopy group T\'n(Xl %) for n 1 and how the group TI’I(A, *) acts on
each relative homotopy group T\’n(x, A, *) for n 2 2.

First we describe the action of 1\-1(1, *) on '\Tn(X, #). In order

to do this we need to describe a more general construction following

Lamotke. Suppose that w & Xl. There exists a map

o(w) : "Tn(X,dlw) —_— T\'n(x, dow)

where o(w)a for a a member of ‘lTn(X,dlw) is constructed as follows :
let a =(x] aud regard x as a map (AS AP —s (x, dlw) where
by dlw we really mean, by abuse of notation, the subcomplex generated
by the O-simplex dlw. Further regard w as a map w : I — X where
I= Al. Define a map

f: A%x T U &% 0 —>X



-50-

by f(u,t) = w(t) for allu € An and t € T and f(u, 0) = x(u) for all

u e A"

o dow z
By the Homotopy Extension Property (HEP) (see [4] ), f extends to
£f' : A x I =X, and f*(A" x 1) is the n-simplex we require. Define
o(w)a to be the class of this simplex in 'ﬂ'n(X, dow). Lamotke proves

that o(w)a is well defined and satisfies the following propesition.

PROPOSITION 2.1 [ 4] The map

o(w) = Tfn(x,dlw) ———)’TTn(X,dow)

is a homomorphism satisfying

o(dor)‘ o (dzr) = o(dlr)

for any member r of Xz. Further o(w) depends only

on the homotopy class of w.

For the proof see [ 4] .
It follows from the above proposition that if b GTTI(X, *) then

we have a well-defined homomorphism o(b) : 'ﬁn(x,*) ——>'Wn(x,*)



PROPOSITION 2.2 [(4] The map
Tfn(xy *) x T‘.l(x’ *) _—>T‘n(x) *)

(a, b) > o(b)a

constitutes a group operation of 'lTl(X, *) on

vu(x, #) for each n2 1., If a, be’\‘jl(X‘, #) then

o(b)a = b~ la b

For the proof, see [4] .

In a similar way to the above, Lamotke also describes the case of
the relative homotopy groups 'ﬂ'n(x, A, *), Suppose that w is a 1-simplex

of A. We may define a map
o(w) : T\'n(x, A, dlw)—b'“'n(X,A, dow)

as follows : let a € '\Tn(x, A, dlw) and suppose that a =[x] . Regard

a and w as maps ( A%, A", /\g) - (X, A, dlw) and I - A respectively.
Define the map
f:/\zx I v A’x 0 —>A
by f(u, t) =w(t) for all u & /\; and t € I and f(u, 0) = x(u) for all
u EAn.




-52~

By the HEP, f extends to a map f' : Anx I— A, and we further extend

f! to give
g: A" T U APx 0 —aXx

by defining g(u, 0) = x(u) for all u € A®. Then using the HEP a
second time, g extends to g' : A x I —»X and g'( A%x 1) is the
n-simplex we require. Define o{w)a to be the class of this n-simplex
in T (X, A, d w). Lamotke shows that o(w) is well-defined and

satisfies the following proposition.

PROPOSITION 2.3{ 4] The map
o(w) : Tfn(X,A,dlw)—>TTn(X,A, dow)

is a homomorphism satisfying

a) OLdCr) O(dzr) = o(dlgl for all r € Az

b) o(w) da = do(w)a where d is the boundary homomorphi sm
M (K A dy) =TT (4,dw).

Further o(w) depends only on the homotopy class of w.

Similar to the absolute case, it follows from the above proposition
that if beT\'l(A,*), then we have a well-defined hemomorphism o(b)

o(b) : 'ﬂn(x,A,*)—-ﬂr n(X,A,*).
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PROPOSITION 2.4 [4] The map

TTn(x: A: *)XTTI(A) *) ‘}.ITD(X’ A, *)
(a, D) o 3 o(b)a

constitutes a Eroup operation of

“ITIQL *)on W (X, A, %) for each n> 2. If

a, b eTTZQL A, *), then

o(db)a = p~! ab

where d is the boundary homomorphism T

2@; 4, *)"’vl_@, *)'

This completes the results on the homotopy groups of a Kan-complex

which we shall need to make use of,

DEFINITION 2.5[ 9] A Crossed Module (A, B, d)
groups d :

consists of a morphism of

A~>B and a group operation of B on the right of A, written

(2, b) > a® for a€AandbeB satisfying

(i) aa®) = b Y4(a)p

da -1

(ii) 3, =aTa a for a, a, € A,

In a2 moment we shall show that the action of T4

L (4, %) onTTz(X, A, *)
gives d :

Tl'2(X, A, *)-—)TTI(A, *) the structure of a crossed moéule.
First we note that Brown and Spencer in [3] have defined the notion of

a morphism of crossed modules as follows:
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1 1 1

DEFINITION 2.6 [3 ] A morphism (f, g) : (A, B, d)—> (a4, B, al) of
. 1

crossed modules consists of morphisms of groups f : A=» A~ and

g : B —» B! satisfying
. 1
(i) gd=af

(i) £(a°) = £(a)E(P)
for all a € A and b € B,

We thus have a category of crossed modules which we shall call C.

PROPOSITION 2.7 Let X be a Kan complex, let A be a sub Kan complex of X

and let * be a base-point belonging to A. The action

of 'ITIIA, *) onTTZQQ, A, ¥) together with the boundary

homomorphism d : T\'zLX, A, *)-—PTTILA_, *) constitutes

a crossed module.

PROOF. We have to check conditions (i) and (ii) of Definition 2.5,
Condition (ii) is given in Proposition 2.4 and condition (i) follows
from Propositions 2.2 and 2.3, for by Proposition 2.3 part (b) we have
d o(b)a = o(b)da where a e —\\'Z(X, A, *) and b & TFI(A, *) and by
Proposition 2.2 we have o(b)da = b-ld(a)b.

For the purposes of our next chapter, we are interested in a
particular crossed module, where we use the T-filtration X =£in§ n>1
or rather the bottom two members of it, to construct the crossed module

Ty, 1, %) = (x!, )
where # ig a base point for the T-complex X. We now show that the homotopy
groups used in the above crossed modules are simply vertex groups of
the groupoid structures existing on X2 and Xl. Let XZ{*} denote the

vertex group of Xz together with its groupoid structure 0, consisting of

elements x satisfying dlx = dzx =%, Let X, { *} denote the vertex
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group of Xl together with its groupoid structure consisting of elements x

based at #, that is satisfying dox = dlx = *,

PROPOSITION 2.8 The morphism of groups

4:ME, T, 1, @, %

is precisely the face map

d, : X, {1} —;xl {#}

PROOF. By definition we have

&, T, ) =BG, %/ ~ rel B
and
=2 =1 =2 1 .
xg(x » ¥) = {xeX] : d xe 1!, dx =% i21}

={xé X, : dx € X, dix=*,i21}

= 2{*}

Further, if x ~y rel X in }2, then there exists a homotopy w from x to Ys
that is a simplex w of E:Z; such that d°w is a homotopy u from dox to

doy in il, dlw = *, dzw = X, d3w =Y. Since u is a 2-simplex of il,

it must be thin and hence, since dou =% w=sd,x “.Jog-Further, since w is
a 3-simplex of fz, it is thin and so w r.-T(/\aN) :T(S.&ox, ¥yx,~3
= S5;>x. K follows that x = 4—3\# =Y. |

Also, by definition,

W E, =T (%)



and

o1, =1 _ .
X (%) ={xeX : dx =%, i» 0]}

={xex : d;x =%, i 20}

=X, {*}

If x~y where x and y belong to i: then there exists a homotopy u from
x toyin il, that is a simplex u of i; such that dou = ¥, dlu = x,
dzu =y. Since u is a 2-simplex of x! it must be thin and hence, since
dou = ¥, degenerate. It follows that x = ye.

Finally, by definition the morphism d is, in this case, the face map do'

In Chapter 5 we shall give an explicit description of the action of
XI{*} on Xzi*} " involved in the above crossed module. To complete this
chapter, we define the higher dimensional extension of a crossed module,

namely a crossed chain complex and show how a crossed chain complex

T.(X) is obtained from the T-filtration X. The following definition

extends the notion of homotopy system as defined by Whitehead{9].

- The name is due to R. Brown.

DEFINITION 4.9 A Crossed Chain Complex consists of a family C ={ C';} n> 1

of groups, abelian for n > 3, together with morphisms d : Cn--> Cn-l for
D22 such that d° = 0 and such that the following conditions hold .
a) d: c, — C, admits the structure of a crossed module
b) each C,» forn>2, isa Cl/dcz—module

c) for eachn> 3, d: c,— C,—1 1s an operator homomorphism,
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that is, if a e C, and 3 denotes the class of a in cl/dcz,

then, regarding a and 2 as operators,

da =3d for n >4 and d3 = ad for n = 3.

We define the crossed chain complex (X, *) associated with the
T-filtration X =§{X°} _ > 1 and a fixed base-point * of the T-complex X
as follows : lc?t W*(z, *) be the collection of homotopy groups
{TT n(i'n, fn-l, *)}n s 1» Where, in the case n =1, we understand
w l(il > X°, *) to mean the absolute homotopy group T!'l(il s ¥), together
with morphisms d :Trn(i'n, in-l, *)—)TTn_l(i‘n_l, in-z, #) for each n

defined in the following manner : for each n2 2 we have a boundary
homomorphi sm d :Wn('in, in'l, *)—’T\’n_l(i'n.l, *) and for each n & 3

there is an induced map j,, : 'lTn_l(in-l, *)—»T\'n_l(;(n-l, in-z, *) where

j is the inclusion of pairs (i’n-l, i'n-z). When n> 3, we define d to be
’ -n- - -

the composite j 4 : Tl’n(in, x° 1, *)-)Wn-l(? 1, Fa 2, *) and when n = 2

we define d to be the map ' 'ﬂz(fz, il, *)—-)'\Tl(il, *),

We already kmow that d :Tr, (%, T, *#)>T (X', *) admits the

structure of a crossed module, we must show further that there is an

operation of Tfl(il, *)/d'n'z(iz, fl,*) on Trn(l-in, -in-l) for each n > 3

such that each d is an operator homomorphism with respect to this operation.
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Suppose n » 3, and let i : 21—93"'1 be the inclusion so that we have

an induced morphism i, :Tl'l(il, *)-»T\’l(in-l, *). By propositions 2.3

and 2.4, we know that there is a group action of 171(?1-1, #) on T\'n(fn, in-l,*).
written o(b) :‘ﬁn('xn, -X-n—l, *)%Wn(in, fl—l, *) for b a member of

T[l(i'n-l, #), If we irll-l ’represents b then the morphism o(b) is induced

by the morphism o(w) :Tl'n(-km, in-l, _*)-’Tfn(i'n, in-l, #) of Proposition 2.3
Define an operation of Tfl(il, #) on Tfn(fn, ;i *), written x° for
x e (& I, %) anav e T (L, %), vy

xb = o(i*b)x

Since i, is a group homomorphism, it follows that this is a group operation.

Next, in order to obtain an operation of the factor group
T 1(21, *)/dTrz(-fz, x! ¥) on Tl'n(in, En-l, *), we must check that,
under the above operation, operating by an element of d'\Tz(X'z, XI, *)

gives no change. Suppose, then,that a € TVZ(-X-Z, X.I, *) and that

2,351 . <1
a= [v] for some v & xz(x s> #). Then dov is an element of Xl(*)
representing da in T\'l(il, *) and d;v=4d,v =%, But d v also represents

i da in '\Tl(i'n"l, *) and so,if x € T\'n(i'n, in"l, *), we have
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xda' = o(i*da)x = of dov)x

Now by Proposition 2.3, O(dOV)Q (dzv) = °(d1") and since d,v = d,v (=%)

it follows that o(dov) must be the identity. Hence xda = Xx.

It follows from the above that Tl'n(.Xn, in-l, %) has the structure
: /

of a 'Wl(il, *)/rrz(iz, il, ¥)- module for each n 3 3 and we have

PROPOSITION 2.10 H*LX, %) is a crossed chain complex.
PROOF. We have already shown that d :T\'Z(iz, il, *)-'TTI(-X.I, #) admits

the structure of a crossed module and that, for n 2 3, Tl'n(.Xn, in-l, *)

: SN 2 3 . :

is a TTI(X s )/d'ﬂ"z( s> X', *)-module. It remains to check that

¢ =0 and that, for each n2 3, d :Tfn(in, in-l, # > n_l(in'l, _Xn-z, *)

is an operator homomorphism.

The fact that d2 = 0 follows from the following diagram of exact

sequences of pairs.

“n(in’ iﬂ_l: *) _d*wn-l(in-l’ *)

I~ =
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When n > 3, we have d2 = j*cfj*d' and, by exactness, d’j* = 0., When

2 4! — 2
n=2, d'=dj,d and so, similarly, d° = 0.

In order to check that d is an operator bomomorphism, suppose that
x eTl'n(in, in"l, *) for some n > 3 and that b € TTl(il, *). Let b
denote the class of b in the factor group Wl(il, *)/dT\'z(iz, 3! *) ang

suppose that b = [u] for some u € ii(*) then, writing the operation of

T b
b on x as x, we have

a(xP) = (=)
= d(o(i,b)x)
= d(o(u)x)

Now by Proposition 2.3 we know that d(o(u)x) = o(u)dx and so we have

d(xg) =0 (u)dx

In the case n = 3, this is exactly what we require and, when n> 3,

(clx)b is by definition equal to (d.x)b as required. This completes the

proof.,
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We state as a conjecture at thisg point that there is a reverse procedure

for obtaining a T-complex from a crossed chain complex.

In our next

chapter we show in Particular how the nerve functor N of Segal [9]

extends to a functor from crossed modules to T—complexes of rank 2 and we

assume that this can be further generalised. It is a consequence of the

work of the next chapter that the category of T-complexes of rank 2 with

only one vertex is equivalent to the category of crossed modules and,

to generalise, we conjecture that the category of all T—complexes

possessing only one vertex is equivalent to the category of crossed

chain complexes,



CHAPTER 5

T-Complexes of Rank 2

In Chapter 4 we showed how a T~complex gives rise to a crossed chain
complex and in particular to a crossed module. It is the aim of this
chapter to show how the axioms for a T-complex enable us to set up a
method of subdivision of the 2-simplices and how, using this, we can
give a more explicit description of the crossed module. Ultimately, we
wish to prove an equivalence of categories and the difficulty here is
that in order to obtain a crossed module from a T-complex we have to
first select a base-point . In order to eliminate this difficulty we

shall use the notion of a crossed module over a groupoid, due to

R. Brown and P.]J. Higgins,[Z] where we work with a groupoid, rather than

a grdup, and so0 avoid the need to select one particular base-point.,

The main result of the chapter will be that the category orf T—complexes

of rank 2 is equivalent to the category of crossed modules over groupoids.
Many of the proofs in this chapter will be done largely by the use

of diagrams rather than formulae. We make no apology for this since,

in the present state of the work, the diagrams are less cumbersome and

more explanatory than the corresponding formulae would be.

81. Subdivision of 2-Simplicies

Let X be a T-complex. In Chapter 3 we showed how, for each n > 1 s
the set xn of n-simplices of X possesses n groupoid structures. We.
now look at the 2-simplices of X and show how these may be combined
in a more general fashion than by using the groupoid structures.. The
basic idea is as follows : Suppose we are given three 2-simplices

X, y and z of X fitting together under a scheme of the form
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that is x, y and z satisfy certain conditions of equality between their
faces so that they form a horn in X. By filling in the horn formed by

X, y and z with the unique thin filler, we may obtain a new 2-simplex w,
namely the new face of the thin filler. We shall use diagrams of the
above form to denote the simplex w subdivided into X, y and z. In the
case where one of the simplices - x, y or z is thin then, provided there is
no ambiguity in the ordering of the vertices, we shall condense these

diagrams : for example we shall let

v 4
X1y
\ ;Tk

L
-

Recalling that, according to Chapter 3, there are two groupoid structures

on the set X2 of 2-simplices of X, the above diagram in fact denotes

X 0, ¥. Similarly, the diagram

A =
2 | w
N i

denotes z o W.
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if X2 together with its two groupoid structures were to form a
double groupoid in the semnse of Brown and Spencer [3] or a groupoid
version of the double categories of Wyler [12] s then we would need an

"interchange law", that is a law stating that, provided both sides exist,

the identity
(x oy y)oz(z oy W) = (x 0, z)o,(y 0y W)

holds. If one pictures the elements of a double groupoid as squares,
as do Brown and Spencer [3:] » with a horizontal law of composition and
a vertical law of compésition, then the interchange law is easy to
picture,but here, where we are dealing with triangles, it is difficult
to deal with. However we do have the following result oi: which we

shall make extensive use throughout this chapter.

Consider a diagram of 2-simplices of the form

(%)

with some particular orientation of the simplicés.. There are two ways
of composing such a diagram : one either first composes x with y and
z with w and then fills in the resulting horn with a thin filler and
takes the new face, or alternatively one first fills the horn formed by
¥y, w and v and takes the new face, which we will denote by a, and then

one fills in the horn formed by x, z and a and, again, takes the new face.
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IEMMA 1.1 Either method of composing a diagram of the form (%) vields
the same resultggg 2—sim21ex.

PROOF. In composing the diagram (*) in both ways, the following five
three dimensional thin fillers arise. In each case the letter beneath

the diagram denotes the fourth face of the filler.

A A A

The four thin 3~-simplices above which determine b, Cy, P and a form a

horn which we may fill with a thin 4-simplex. By axiom A3 of the

definition of a T~complex, it follows that the new face of this 4-simplex

8$2. The crossed module over a Eroupoid associated with a T-complex

We now define the notion of a crossed module over a groupoid, due
to R. Brown and P.J. Higgins, and give an explicit description, in
terms of diagrams of the type described in §1, of the way in which we

can obtain a local crossed module from a T-complex.
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DEFINITION 2.1 A crossed module C over a groupoid consists of a groupoid

(J1 with objects Co and, for each pe Co’ a- group Cz(p) and a morphism
d: Cz(p)—b Cl(p) = Cl(p, p). For each a € Cl(p,q), there is an induced

morphism a, : Cz(p)-écz(q) with 1 being the identity and (a.al)* = ai a.

Further C satisfies the axioms
(c1) da (x) = a~(dx)a x €C,

(€2) x) =y x5y x yec,

We may obtain a category C of crossed modules over groupoids by defining
a morphism f : C—~» D to be a triple (fz, £s fo) : (CZ’ C,» Co)—> (DZ’ D, Do)
where (fl’ fo) is a morphism of groupoids and f, is a collection of morphisms of

groups f, : Cz(p)—> Dz(fop) for each p e C, satisfying df, = f.d and

£

o3y = (fla)* 1&‘2 for each a & Cl'

Now _l-eth Be a T-complex and regard the set Xl as a groupoifi with
the composition described in Chapter 2 and the set X2 as agroupoid
with the law of composition Oye For brevity, in this chapter we shall
write o for 0, - Note that, if we wished, we could equally well use the

i

composition o 1°

First we define a partial operation of the groupoid Xl on the groupoid

xz as follows : if x exz and a éXl are such that dla. = dodox’ then define

X = T(a-l, d,x, =) o x 0 T(a, -, dlx)



-67-

that is diagramatizally

T/ = \T
> —>— >
k- ‘ A'ox' o,

The following proposition is immediately obvious.

PROPOSITION 2.2 If x and y belonging to X, and a and b belonging¥to

gl are composable as necessary, then

(i) x! = x where 1 is a suitable identity in Xl

(ii) x;b - (x?)E

(iii) (xoy)*=x*0y®

(iv) do(x?) = a_l(dox)a

PROOF. The only non-trivial part is (ii) and this follows immediately

from axiom A3 of the definition of a T-complex.

Next, given a pair a and b of 1-simplic of the T-complex X
such that dja = dlb, we can define a map ¢g,b : xz(a)-a-xz(b), where

12(a) and xsz) are the vertex groups of the groupoid X, at the points a
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and b, by

(1) ¢b,c ° ‘a, b= ¢a,c

shows respectively that ¢a b is a homomorphism and that (i) is satisfied.
3
For (ii), note that, for any a € X, ¢a o is the identity for X,(a) as the
3
thin filler used to construct ¢a o 1s degenerate, and apply (i). The
2

proof of (iii) is by successive applications of Lemma 1.1 as follows :
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Given the T-complex X, we can now construct the crossed module
C(X) over a groupoid associated with X. We define the groupoid C(X)1
to be the set Xl of l-simplices of X together with the induced groupoid
structure defined in Chapter 2, Thus C(X)o is the set of O-simplicies
X of X, For each p of C(X)o, we define the group C(X)z(p) to be the
vertex group X2(s°p) of the groupoid X, where the law of composition on
X, is o = 0, Then for each p of C(X)0 we have a morphism d: C(X)z(p)

2
—90(X)1(p) which is just the face map d .

Next if p and q belong to C(X)o and a € Cl(x)(p,q) then we define
a map
ay # C,(X)(p) —C,(X)(q)
by

a, (x) = ¢a, (x*)

14

where ly is the identity 5,4 of the groupoid Xl. Pictorially this is
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or equivalently, by Proposition 2.3 (iii),

1o 43
b &
>

I3
2%

PROPOSITION 2.4 C(X) is a crossed module over a groupoid.

In order to prove this proposition we shall need the following lemma.
LEMMA 2,5 If the 2-edmplices

and

L 4

where t is a thin 2-simplex, are equal, then, on replacing t

by any 2-simplex z with diz = dlt and d,z = d‘t, the equality

2
remains true.

We leave the proof of this lemma until later.
PROOF OF 2.4 Firstly a, is a homomorphism since each ¢a b is a homomorphism
3
and we have (x 0 y)® = x* 0 y*. The proof that a, is an identity

whenever a is an identity is trivial and given a, b € C (X)1 such that
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ab is defined we have
bea, (x) = ¢b,1(¢a,1(xa)b)
= ¢b,1 ¢ab,b(xab)
= ¢ab,1(xab)

= (ab),(x)

where we have used Propositions 2.2 and 2.3. Secondly, by definition

of a*(x),axiom Cl1 of the definition of a crossed module over a groupoid

is trivially true, and axiom C2 is proved using Lemma 2.5. We have

(dy), (x) =

by Lemma 2.5
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using Lemma 1.1 successively

PROOF OF 2.5 1In the following diagrams the letter beneath denotes the

2-simplex. Let

The four thin 3-simplices

A A A A

u u u . v

form a horn in X3 and on taking the thin filler of this horn we obtain the
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new thin 3-simplex

-~

Now consider the four thin 3-simplices

éfi x/ f}& ‘fi y’ 55& 2 2z
> > >

v v 1 m

These also form a horn in X3 and on taking the thin filler of this horm

we obtain the new thin 3-simplex

\/3




The thin faces of this 3-simplex are degenerate and so it follows that the

3-simplex itself must be degenerate. Hence 1 = m which is the required

result,

We have thus associated to a T-complex X the crossed module
C(X). This construction is functorial for, given a morphism f : X=b y
of T-complexes, the restriction of f to CZ(X) gives us a morphism of

crossed modules over groupoids. We shall denote the functor by C : I C

83. The nerve of & crossed module over a groupoid

We now give the reverse construction for obtaining a T-complex from
a crossed module. In order to do thig construction we extend Segal's

nerve functor E9] as used in Chapter 2 to crossed modules,

Let C be a Crossed module over a groupoid. The nerve NC of C

is the simplicial set defined as follows' : let NCO = Co, NC1 = C1 and

—— == b . —3 —1
NC2 -—{w (x; a, as a2) txe Cz’ aie Cl, dx = azaoa.1 g

Recalling that 01 is a groupoid over Co we take the obvious face maps and
degenerate elements for NCl. The face maps for NC2 are given by diw = a’i

and the degenerate 2-simplices. are s;a=(1; a, a, 1) ang s;a=(1; 1, a, a)
where the identities are the obvious ones. Next, writing

W, = (xi; a;, a;‘, a:zl), the 3-simplices of NG are defined to be quadruples
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(wo, Wis Vo w3) of 2-simplices satisfying the relations az = a£+4
for 0§ i< j< 2, which simply ensure that the faces s fit together as

required, and also the relation

x, = (a3)(x; 0 x, 0 x1) ()
or alternatively

(ag-l)* (x)) °x, 0 i'.' 0 x'; = 0O

which, in this latter form, is similar to the formula given by the homotopy
addition lemma for the boundary d(t) in T, ( A3’2, A3’1, #*) of the
single generating element t of 'ﬂ's( As, A3’2, ¥). Face maps for NC3

are given by di(wo, Wi Wo, w3) =W, and degenerate elements by

s W = (w, w, sodlw, sodzw)

s, ¥ = (sodow, W, W, sldzw)
S0 = (Sldow’ s,d,w, W, W)
In higher dimensions NC is defined inductively by

MOy = { (xsenes b)) P € NC, dgx, = 4G 1S J‘}

that is, an (n+l)-simplex simply consists of r+2 n-simplices . fitting

together as required. Face and degeneracy maps are the obvious ones,

It is clear that this is an extension of the idea of a nerve of
a category for, if we let the group Cz(p) of the crossed module C be

trivial for each p, then NC becomes simply the usual nerve of the groupoid

Cl.
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PROPOSITION 3.1 The construction NC gives a functor N from the category

of crossed modules over groupoids to the category of

T-complexes of rank 2.

PROOF. Define sets Tn of thin élents by

T1 ={1dent1ty elements of Cl's
T, ={(1; ays 2y, az) 3 NCZ}

= p
Tn NCn nz23

We must show that these satisfy the axioms for a T-complex. Firstly, by
definition all degenerate elements are thin. Secondly, horns in NCo

and NC1 certainly have unique thin fillers and in higher dimensions any n
faces of a p-simplex uniquely determine the simplex and so any horn
automatically has a unique thin filler. 'I'hirdlyj suppose x is a thin
element of NC having all faces but one themselves thin. If

x = (1; a9 855 2 )6 NC, then two of the a; are an identity and so, since
a, 0:a o a'l'1 1, the third must be also. If x = (w > Wys Wy W ) T3
where w, = (x H a:', a;, a, ) then three out of the four X, must be
identities and it follows by the formula (*) that the fourth X, must be

also. In higher dimensions, since then all elements are thin, there is

nothing to prove. Thus NC is a T-complex of rank 2.

Now suppose that f : C—~> D is a morphism of crossed modules over
groupoids then in an obvious fashion f determines a simplicial map
Nf : NC—ND. The only point we need to check is that Nf is well-defined

in dimension 3. Suppose that w = ('wo, Wis Wos w3) is a 3-simplex of
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i

o? a;, a;). Then we must check that condition

NC and that w; = (xi; a
(*) holds for Nf(w). We have Nf(w) = (vo, Vis Vo v3) where
f

_ e ..
v, = (fzxi, fi8,s fi2;, f1a,) and

(£,35)(£%,08,x of x1) = £ (a3) (x,0x,0%")

= f2xo

which is the required condition that Nf(w) be a well~defined 3-simplex
of ND. Nf certainly preserves thin elements and so it is a morphism of

T-complexes. Finally the functoriality of N is obvious.

We end this section with a result on the homotopy groups of NC.
From the way in which we were able to construct a crossed module frc;m
a T-complex in Chapter 4 using homotopy groups, we would expect NC to
have first and second homotopy groups isomorphic to the cokernel and

kernel of the maps d : Cz(p)-> Cl(p). We now prove this.

PROPOSITION 3.2 Let C be a crossed module over a groupoid, then

'nl(NC,p) = coker d : Cz(p)-b Cl(p)
TTZ(NC,p) = ker d : Cz(p)—-b Cl(p)

TTi(NC,p) =0 for 1> 2

PROOF. Firstly Trl(Nc,p) = NCl(p)/N = cl(p)/~ where a ~ b if there
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exists a 2-simplex (x; 1, a, b), that is if ba > € Im d: Cz(p)-*'Cl(p).

Hence TTI(NC,p) is as required. Secondly
W, (NC,p) = NC,(p)/~ == (ker d : C,y(p) —> C,(p))/~

where (x; 1_, 1_, lp) ~ (y; 1

p

p? s lp’ lp) if there exists a 3~simplex w
with dyw = (1; 1p, 1

P

p? lp). But then, by the formula (*), x = y and so
T 2(NC,p) is as required. Finally, since NC has rank 2,

TT'i(NC,p) =0 fori 2.

B4. The equivalence of categories

We now prove the following

THEOREM The category 22 of T—complexes of rank 2 is equivalent to the

category C of crossed modules over groupoids.
We prove the theorem by means of the two Propositions 4.1 and 4.2.

PROPOSITION 4.1 Let D be a crossed module over a groupoid. There exists

- 2 natural isomorphism

Y : ON(D) > D

PROOF. Let d be the homomorphism Dz(p)-a»Dl(p) for each p of the

crossed module D and let the corresponding homomorphism for oN(D) be &
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Now we have by definition
C!N(D)o = N(D)° = Do

CN(D)1 = N(D)1 =D,

GN(D)Z(P) = N(D)Z(lp) for pe D,
:{w (x; a_, lp, lp) : x eDz(p), dx=a°}

We define the isomorphism Y = ( ”fz, 4 12 Y ) be letting “fl and ’\ro
be the identities and letting '\r z(x; as lp, lp,) = x so that '\i’z is
certainly a bijection. Firstly, we check that "i’z is a homomorphism
N(D),(p) = D,(p) for each p Dye Let v, w € ON(D),(p) and let

v=(x; a, 1, 1) and w = (y; b, 1, 1) where we have written 1 instead

of lp for brevity. Then v o w = (z, ab, 1, 1) where z is given by dot

and t is the thin 3-simplex pictured by

4

a
T
alr

By definition of the 3-simplices of N(D) the identity 1 = 1, (xoyo z-l)

must hold and s¢ . =x o0 y. Thus "}‘z(v o w) =Af’2(v) 0 f\f 2(w) as
required.

t
Secondly, Y is required to satisfy d '\}’2 = ’Yld, which is trivially
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true, and also to satisfy "’(za* =(vY 9 ¢ o for any a € GN(D)I.

In other words, if w = (x; b, 1,1) then we must have a,(w) = (a,x; a-lba, 1, 1)

The diagram for a*(w) is

a
and this is constructed in three stages as follows where each diagram

represents a subdivided 2-simplex :

= (u; a-lb: 1, 1)
where 1 =a_(1 0 x o u-l)

so that u = x

-1
o o =(v; a"ba, 1, 1)

where 1 =a (xo0 10 v—l)
b o2

$0 that v = x

v

&y
q-
4
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1

= (z; a_ ba, 1, 1)

where x = (a-l)*(l 0ozol)

so that z = a*(x)

Thus we have a (w) = (a,x; a-lba, 1, 1) as required.

Finally, the naturality of ’\Y with respect to morphisms is trivially

satisfied and this completes the proof.

PROPOSITION 4.2 let X be a T-complex of rank 2. There exists a natural

isomogphism
¢ : NC(X) —> X

In order to facilitate the proof we first state some simple lemmas.

IFMMA 4.3 For any 2-simplex x and 1-simplices b, c and d, the following

equality of 2-simplices holds :

\\ 4
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PROOF Consider the four thin 3=-simplices

~
4y

Y K

_t,
-

where p and q are the 2-simplices - determined by the thin fillers. These

form a horn which we may fill with a thin 4-simplex. The new face of

this 4-simplex has faces as in the diagram

[y

w

CL

But, by axiom A3 of the definition of a T-complex,

this must be a thin

3-simplex and hence it must in this case be degenerate, Thus p = g

which is the required result,

In an exactly similar way we may also prove the following lemmas.
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IPMMA 4.4 For any 2-simplex x and 1-simplices b, c and d, the following

equality of 2-mimplices holds:

\Z

Note that this is the same result as Lemma 4,3 except that the

orientation of ¢ has been reversed.

IEMMA 4.5 For any 2-simpliegs~ x and Y and l-simplex a suitably fitting

together, the following eqﬁality of 2—simplicg§;holds :

|
p|\/""

PROOF OF 4.2 By Theorenm 3.1 of Chapter 1, it is sufficient for us to
define ¢ up to and including dimension 3. We have

NC(X)o = C(X)o =X

NC(X)1 = C(X)1 = 11
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So we define ¢° and 41 to be the identity maps. Further

S— - * —3 1
NC(X)2 = {(x,ao, a5 az) t xe xz(lp) where p e b 2, € Xl, d w ay35a7 }

and we define ¢2 by

¢2(X; 30 355 8,) =

x
-
a.

-
2 A%y
The 3-simplices of NC(X) a.re quadruples of 2-simplices

W, = (xl; a;, al, a, ) satlsfylng a = a‘]+ for i g

Jj and X, (a )
(x ox, o xgl). We define

¢3(w°’ wl’ w 2y W ) T(- = ¢2 1: ¢2 2: ¢

At this point we assert that

RICK AT XN d3) = 0, )

so that we have di¢3 = 4’2"1 for all i as required. We shall prove (%)

later. We can define an inverse for ¢2 b

7 (x) =
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and it follows that ¢2 and ¢3 are bijective. The map ¢2 certainly
preserves thin elements and it now follows from Theorem 3.1 of Chapter
1 that we have an isomorphism ¢ of T-complexes. The naturality of ¢ in

morphisms of T-complexes is immediate,

It now remains for us to check (¥). Suppose that a 3-simplex
{

(wo, Vis Wy, w3) of NC(X) is represented by the diagram

so that w, = (x; f, e, a), Wy = (y; £, d, b), W, = (u; e, d, ¢) and

W= (z; a, b, c).\ Then x = ¢, (z 0 y o u!) and so we have
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We must prove the equality of this with

tr
T —&

P is given in two stages by
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and q is given in three stages by

i o
-y Sl o
ik T T
ca ‘o 2"
™ 9
The first four of these thin 3-simplices form a horn in X3 and

on taking the thin filler we obtain a new thin 3-simplex which is precisely

the thin simplex which determines q. Hence p=

Qe

Using Lemmas 4.4 and 4.5 we now have

(-4

dt cal co. cob™
In an exactly similar way we may show that
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and putting these two equalities together, the proof is concluded as

follows. By quma 4.3 we have

35
e

act el b ! deve R
where we have also slightly altered the shape of the diagram in order to

make the next step clear. Now using Lemma 1.1 successively, together with

the two equalities we have proved above, we have




‘r:' (r{’ 4

= doT(—, ¢2w1,¢2w2,¢3w3
as required.

This completes the proof of Proposition 4.2 and combining Propositions

4.1 and 4.2 gives the equivalence theorem stated at the beginning of the

section.

A particular case is where we restrict ourselves to T=complexes

having only one vertex. Then we obtain the result that the category of

T-complexes of rank 2 pPossessing only one vertex is equivalent to the

category of crossed modules.
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