
FROM GROUPS TO GROUPOIDS: A BRIEF SURVEY ∗

RONALD BROWN

Bull. London Math. Soc. 19 (1987) 113-134. 1

1 Introduction

A groupoid should be thought of as a group with many objects, or with many identities. A precise

definition is given below. A groupoid with one object is essentially just a group. So the notion of

groupoid is an extension of that of groups. It gives an additional convenience, flexibility and range of

applications, so that even for purely group-theoretical work, it can be useful to take a path through

the world of groupoids.

A succinct definition is that a groupoid G is a small category in which every morphism is an

isomorphism. Thus G has a set of morphisms, which we shall call just elements of G, a set Ob(G) of

objects or vertices, together with functions s, t : G→ Ob(G), i : Ob(G) → G such that si = ti = 1. The

functions s, t are sometimes called the source and target maps respectively. If a,b ∈ G and ta = sb,

then a product or composite ab exists such that s(ab) = sa, t(ab) = tb. Further, this product is

associative; the elements ix, x ∈ Ob(J), act as identities; and each element a has an inverse a−1 with

s(a−1) = ta, t(a−1) = sa,aa−1 = isa,a−1a−1a = ita. An element a is often written as an arrow

a : sa→ ta.

•
a

//•
b

//• •
ab

//•
sa ta = sb tb sa tb

Groupoids were introduced by Brandt in his 1926 paper [11], although he always used the extra

condition that for all x,y in Ob(G) there is an a in G such that sa = x, ta = y - such a groupoid we

nowadays call connected or transitive. Brandt’s definition of groupoid arose out of his work for over

thirteen years [6, 7, 8, 9, 10] on generalising to quaternary quadratic forms a composition of binary

quadratic forms due to Gauss [63]. Brandt then saw how to use the notion of groupoid in gener-

alising to the non-commutative case the arithmetic of ideals in rings of algebraic integers, replacing

the classical finite abelian group by a finite groupoid [12]. This latter theory has been considerably

generalised and refined by a number of writers-further references may be found in [85, 104, 128].
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For a recent discussion of the quadratic form problem, see [81, 91, 92]. At about the same time as

Brandt’s work, Loewy [98] introduced similar ‘compound groups’ to describe isomorphisms between

conjugate field extensions. His ideas were developed by Baer in [4]. The most recent account of the

use of groupoids in classical Galois theory seems to be that by Michler in [105]. We say more later on

the use of groupoids in the Galois theory of rings.

The topic of groupoids continued to be known through further work on the ideal theory of non-

commutative rings, and the notion of order, particularly by K. Asano (compare [85]). I have heard it

remarked that Brandt’s axioms for groupoids influenced2 Eilenberg and Mac Lane in their definition

of a category [55]. As categories became generally accepted in the 1950s, interest in groupoids

broadened, since the invertible elements of a small category form a groupoid. The use of groupoids

was expanded greatly by Ehresmann from 1950 in various main areas, for example: in fibre bundle

theory, with his groupoid EE−1 associated to a principal bundle E (this groupoid is also formulated

below as G(E)); in differential geometry, with the use of the groupoid EE−1 for studying higher order

connections; in foliation theory, with the groupoid of germs of a pseudo-group; in differential topology,

with groupoids of jets; and in his use of groupoids of operators for discussing species of structures

and of local structures. For an assessment of the contributions of these ideas to mathematics, the

reader should turn to Ehresmann’s Oeuvres compl̀etes et commentèes [54] and the commentaries and

comments there. Groupoid techniques in foliation theory were developed by Haefliger [70], and then

many others - see the survey [96], the bibliography [66]. This and other uses of topological groupoids

are noted in the bibliographies to [21, 22]. Abstract groupoids were applied by Dedecker in a series

of papers on non-abelian cohomology (see [47]).

The situation now is that groupoids have been used in a wide variety of areas of mathematics, from

ergodic theory and functional analysis to homotopy theory, algebraic geometry, differential geometry,

differential topology and group theory. However, this wide and considerable use is not so well-known,

even to those using groupoids in their own speciality, and this has perhaps made it easier to form a

dismissive attitude. It seems timely therefore to attempt some overall survey.

A complete account of the use of groupoids is out of the question, because the ramifications are so

wide. This brief survey is written as something of a personal account, and reflects my own interests.

But it does give an opportunity for various threads of uses of groupoids to be drawn together, so that

they may be followed to entry points in the literature. I hope that this will give a starting point for

readers to perceive and assess past and current uses of groupoids, and so help them to judge the

potentiality of new applications.

2 Examples

There is always room for argument about whether and how to generalise an algebraic structure, while

maintaining both the force of the original motivating examples and the character of the theory. For

example, the theories of monoids or of semigroups are dissimilar in many ways to that of groups. We

would want to justify the argument that the theory of groupoids does not differ widely in spirit and

aims from the theory of groups.

2I asked Eilenberg about this and he denied it, saying that if they had thought of it, they would have used it as an

example. Yet groupoids were well known in Chicago at the time.
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In the theory of groups, two motivating examples are symmetry groups, that is, groups of automor-

phisms, and groups derived from paths in a space, that is, the Poincaré or fundamental groups. We find

that these examples generalise to give ‘symmetry groupoids’ and fundamental groupoids. In the latter

case, it has been known for at least 40 years that the fundamental groupoid is convenient for handling

change of base point for the fundamental group. The recognition of the utility of groupoids for han-

dling ideas of ‘variable symmetry’ (see Example 4 below) is more recent. Both types of groupoids give

gains in flexibility over the corresponding groups, and without any consequent loss.

The following give some of the basic ways in which groupoids arise.

EXAMPLE 1. A disjoint union G =
∐
λGλ of groups Gλ, λ ∈ Λ, is a groupoid: the product ab is

defined if and only if a,b belong to the same Gλ, and ab is then just the product in the group Gλ.

There is an identity lλ for each λ ∈ Λ. The maps s, t coincide and map Gλ to lambda, λ ∈ Λ.

EXAMPLE 2. An equivalence relation R on X becomes a groupoid with s, t : R→ X the two projections,

and product

(x,y)(y, z) = (x, z).

whenever (x,y), (y, z) ∈ R. There is an identity, namely (x, x), for each x ∈ X. (This example is due to

Croisot [42].) A special case of this groupoid is the coarse groupoid X×X, which is obtained by taking

R = X × X. This apparently banal and foolish example is found to play a key role in the theory and

applications. At the opposite extreme to the coarse groupoid X× X is the fine groupoid on X; this can

be considered as the diagonal equivalence relation on X, or alternatively as the groupoid X consisting

only of identities, namely the elements of X.

This consideration of an equivalence relation as a groupoid also suggests the utility of groupoids

for studying quotienting constructions, particularly in cases where the quotient set X/R cannot carry

the appropriate structure. For a discussion of this in the case of differential manifolds, see [58].

EXAMPLE 3. Let the group G operate on the set X on the right. All of us find it convenient to picture

such an operation by the diagram

x •
g

//• xg g ∈ G, x ∈ X.

The arrow here is based at x and so is more accurately labelled (x,g). This suggests defining a product

(x,g)(xg,h) = (x,gh);

it is easily checked that this product gives a groupoid with object set X and s : (x,g) 7−→ x, t : (x,g) 7−→

xg. There is no consistent terminology for this groupoid: I like the term semi-direct product groupoid,

and so the notation X⋊G, because this groupoid is a special case of the semi-direct product groupoid

obtained from an action of a group, or more generally groupoid, on another groupoid [16]. A term

suggested by Pradines is actor groupoid. Note that for this example, there is an identity (x, 1) for each

x ∈ X. This construction is due to Ehresmann [52].

Thus we find that a set X, a group G, and an action of G on X, can all be considered as examples

of groupoids. This common viewpoint is found to be convenient in a variety of areas of mathematics.



FROM GROUPS TO GROUPOIDS 120

EXAMPLE 4. Groups occur naturally as automorphism groups, or symmetry groups, of various struc-

tures; and this is a fundamental observation behind Klein’s famous Erlangen Programme: study a

geometry by means of its group of automorphisms. It has more recently been found fruitful to consider

not just one geometry, or one structure, but indexed families E = {Ex}x∈B of structures, often thought

of as constituting a ‘bundle’ E over B, with projection p : E → B, and with Ex = p−1(x). The ‘sym-

metry’ of such a gadget is appropriately expressed by the groupoid G(E), with object set B, and with

elements consisting of all isomorphisms Ex → Ey for all x,y ∈ B. For x in B, the group G(Ex) of

automorphisms of Ex expresses the ‘symmetry’ of Ex. These ‘varying symmetries’ are encompassed in

the groupoid G(E). An isomorphism Ex → Ey allows one to define an isomorphism G(Ex) → G(Ey)

of groups, and so gives ‘transport of symmetry’. Perhaps G(E) should be called a symmetry groupoid.

This idea is at the root of many applications of groupoids pioneered by Ehresmann in differential

geometry [54]. If p : E → B is a principal bundle with group H, then G(E) is to consist of the

admissible maps Ex → Ey, x,y ∈ B, that is, the homeomorphisms commuting with the action of the

group H. If p : E → B is locally trivial, then the trivialisations determine a topology on G(E), or

even, in the differentiable case, a differential structure. For references to the literature in this area,

see [21, 22, 99].

The use of groupoids for studying order-disorder structures in crystals [48, 59] suggests further

possibilities for the general analysis of ‘variable symmetry’ – see [60] for a recent article.

Another application occurs in the theory of formal groups and is due to Landweber [95]. For any

augmented, supplemented, commutative algebra A over a field k, the set of isomorphisms of formal

groups over A forms a groupoid FGL(A). This defines a functor FGL from the category Algk of such

algebras over k to the category of groupoids. It is important that this functor is representable:

FGL(A) ∼= Algk(P,A).

The fact that FGL(A) is a groupoid gives the algebra P the structure of Hopf algebroid. The term

is due to H. Miller, and the book [122] gives a good account of the uses in stable homotopy theory,

also developed by Morava [l08]. In fact a more descriptive term would be ‘Hopfoid algebra’ since it

is the diagonal map A → A
⊗
A of the usual Hopf algebra which is generalised from a cogroup to

a cogroupoid structure, [122, pp. 306-307]. Further, their term ‘algebroid’ has also been used by B.

Mitchell since 1972 for an ‘algebra with many objects’–for a recent paper see [106].

A recent application of groupoids is in combinatorics by Joyal [86] using species (French: espèces,

German: Gattungen) of structure. The term is due to Bourbaki [5]; its aim is to give a general

description of the kind of structures which occur in mathematics, so there are species of structure

of order, of topology, of vector space, of complex analytic manifold of dimension n, and so on. In

particular, if E is a set then there is a set M(E) of structures of a given species M on E. An important

property of species of structures is transportability – if t : E → F is a bijection of sets, then t induces

a bijection M(E) → M(F) of the structures of a given species. This idea is abstracted by Ehresmann

[52] using the notion of a category operating on a set. Joyal [86] follows the spirit of Ehresmann’s

work, but in less generality, and defines a species to be simply an endofunctor M : B → B, where

B is the groupoid of finite sets and bijections between them. He defines two generating series for a

species, and relates constructions on such generating series such as product, sum and substitution, to

categorical constructions on species. The point is that in combinatorics one often wants to compute

the number of structures of species M on the standard set [n] = {1, . . . ,n}. However, in carrying out

an argument the standard set [n] may appear in a non-standard way, for example as X = {xl, . . . , xn}.
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A relation between M(X) and M([n]) is determined by a non-canonical bijection X −→ [n]. The use

of species enables one to keep track of all these non-standard forms of the standard set, together with

their labellings. For further work, see also [l09].

EXAMPLE 5. The fundamental, or Poincare, group πl(X, x) of a space X with base point x is well-

known. However, there are several pressures to replace the base point x by a set A of base points

in X, where A could be X itself, and so obtain the fundamental groupoid 1rl(X,A) on the set A. The

identities of this groupoid correspond to the elements of A, and an ‘arrow’ x→ y is a homotopy class,

relative to the end points, of paths (I, 0, 1) → (X, x,y), with product induced by the usual composition

of paths:

x

y

z

3 Applications of the fundamental groupoid

My own introduction to the use of groupoids came with this last example, in 1965. I was writing

a topology text [14], which was to include the Van Kampen Theorem on the fundamental group of

a union of spaces. I wanted a version of this theorem which would imply the determination of the

fundamental group of the circle, and was dissatisfied with the length and tedium of my then current

exposition, using nonabelian cohomology. I came across the paper [76] of P. J. Higgins which defined

presentations and also free products with amalgamation of groupoids. This suggested inserting an

exercise on expressing the fundamental groupoid πlX = πl(X,X) as a free product of the groupoids

πlU,πlV , amalgamated over πlW, when X is the union of open sets U,V with intersection W. It then

seemed desirable to write out a solution to the exercise; to my surprise, the solution had the qualities

of clarity and concision which I had hoped for, but had been unable to obtain, in my previous version!

The problem addressed by Van Kampen in 1933 [143] would be expressed in modern form as

follows. The space X is given to be the union of open sets U,V with intersection W: determine the

fundamental group πl(X, x) in terms of information on U,V ,W and the inclusions W → U,W → V .

Notice that Van Kampen did not assume, as did Seifert in an earlier result for simplicial complexes,

that U,V ,W are connected; so a typical diagram for the situation could be:
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The difficulty is: where should we put the base point x? It seems reasonable to take x in W, but

in which of the many components of W should x lie? One way of coping with such a problem of

decision is to avoid it altogether. So we choose a set A of base points, one point in each component

of W, and attempt to compute the fundamental groupoid πl(X,A). This strategy of avoiding decision

turns out to be optimal: the groupoid πl(X,A) is the free product of the groupoids πl(U,A) and πl(V ,A)

amalgamated over πl(W,A). From this, one can in principle compute the group πl(X, x), by choosing

trees in each component of πl(U,A) and of πl(V ,A). These choices lead to the particular formulae

written down by Van Kampen (compare [14a, 8.4.1]). Also, the proof [14] of the determination of

πl(X,A) is simpler than previous proofs of the ‘Van Kampen Theorem’ for U,V ,W connected. So

one obtains a simpler proof of a more powerful theorem; which can’t be all bad. The most general

formulation to date of this theorem on the fundamental groupoid is in [36]. Other texts which have

followed this approach are [39, 78, 160]. Somewhat earlier, Crowell and Fox in [43, p. 153] took the

view that

a few definitions like that of a group, or a topological space, have a fundamental impor-

tance for the whole of mathematics that can hardly be exaggerated. Others are more in

the nature of convenient, and often highly specialised, labels which serve principally to

pigeonhole ideas. As far as this book is concerned, the notions of category and groupoid

belong in this latter class. It is an interesting curiosity that they provide a convenient

systematisation of the ideas involved in developing the fundamental group.

It is this kind of viewpoint, emphasising the algebra we know rather than that which might evolve,

which perhaps has led people to fail to see properly the advantages of an algebra which models the

geometry more appropriately than the usual algebra of groups. However, the earliest use of the term

‘fundamental groupoid’ which I have been able to find is in Fox’s paper [61]. The difficulty there can

be in seeing that the groupoid approach provides not only a conceptual tool, but one which guides

specific calculations, is shown in some remarks from A. Grothendieck’s discursive venture towards a

non-abelian cohomology theory, from which it is worth quoting at length ([68, p. 194-195]):

From Y. who looked through a lot of literature on the subject, it strikes me (agreeably of

course) that nobody yet hit upon ‘the’ natural presentation of the Teichmiiller groupoids,
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which kind of imposes itself quite forcibly in the set-up I let myself be guided by. Techni-

cally speaking (and this will rejoice Ronnie Brown I’m sure!), I suspect one main reason

why this is so, is that people are accustomed to work with fundamental groups and genera-

tors and relations for these and stick to it, even in contexts when this is wholly inadequate,

namely when you get a clear description by generators and relations only when working si-

multaneously with a whole bunch of base-points chosen with care-or equivalently working

in the algebraic context of groupoids, rather than groups. Choosing paths for connecting

the basepoints natural to the situation to one among them, and reducing the groupoid to a

single group, will then hopelessly destroy the structure and inner symmetries of the situa-

tion, and result in a mess of generators and relations no one dares to write down, because

everyone feels they won’t be of any use whatever, and just confuse the picture rather than

clarify it. I have known such perplexity myself a long time ago, namely in Van Kampen

type situations, whose only understandable formulation is in terms of (amalgamated sums

of) groupoids. Still, standing habits of thought are very strong, and during the long march

through Galois theory, two years ago, it took me weeks and months trying to formulate

everything in terms of groups or ‘exterior groups’ (i.e. groups ‘up to inner automorphism

’), and finally learning the lesson and letting myself be convinced progressively, not to say

reluctantly, that groupoids only would fit nicely. Another’ technical point’ of course is the

basic fact (and the wealth of intuitions accompanying it) that the Teichmiiller groups are

fundamental groups indeed,-a fact ignored it seems by most geometers, because the nat-

ural‘spaces’ they are fundamental groups of are not topological spaces, but the modular

‘multiplicities’ Mg,v – namely topoi! The ‘points’ of these ‘spaces’ are just the structures

being investigated (namely algebraic curves of type (g, v)), and the (finite) automorphism

groups of these ‘points’ enter into the picture in a very crucial way. They can be adequately

chosen as part of the system of basic generators for the Teichmiiller groupoid Tg,v The lat-

ter of course is essentially (up to suitable restriction of base-points) just the fundamental

groupoid of Mg,v. It is through this interpretation of the Teichmiiller groups or groupoids

that it became clear that the profinite Galois group GalQ/Q operates on the profinite com-

pletion of these and of their various variants, and this (it turns out) in a way respecting

the manifold structures and relationships tying them tightly together.

Another use of the groupoid π1(X,A) is due to P: J. Higgins and J. Taylor [80]. Let the discrete

group G act on the space X. The problem is: compute the fundamental group π1(X/G, ∗) of the orbit

space X/G at some base point ∗. As an example, let X be the unit circle of complex numbers z with

|z| = 1, let G = Z2, and let the action be reflection z 7→ z̄. Then the orbit space X/G is essentially a

semicircle, so that π1(X/G, 1) = 1. However, π1(X, 1) = Z, with action n 7→ −n, so that the quotient

of Z by this action is Z2, and not 1. Why has this approach given the wrong answer?

Notice that in this example we chose as base point the complex number 1. But the geometry of the

action makes no distinction between +1 and -1, and these are the only fixed points. So we had better

avoid a decision, and, using the induced action of Z2, consider the quotient not of the group π1(X, 1)

but of the groupoid π1(X, {±1}). This quotient groupoid does have trivial vertex groups, as required.

More generally, for ‘reasonable’ actions of a group G on a CW-complex X, we have an isomorphism

π1(X,A)/G ∼= π1(X/G,A/G),
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provided that A is G-invariant, so that A/G is defined, and that A meets each component of the fixed

point set of each element of G [80].

The ‘orbit groupoid’ π1(X,A)/G of the groupoid π1(X,A) with the action of the group G is, of

course, obtained from the groupoid π1(X,A) by imposing the relations αg = α for all α ∈ π1(X,A),g ∈

G. This makes sense because presentations for groupoids can be defined in a similar manner to

presentations of groups [76]. An explicit construction of this orbit groupoid is more complicated

[80]–it is3 a quotient groupoid of the semi-direct product π1(X,A)⋊G.

Another application to group actions is for a proof of a theorem of Macbeath and Swan giving an

exact sequence of the form

1 → N→ π1(X, x) → Γ → G→ 1.

Here G is a group acting on the space X, which is assumed to have a path-connected open set V

containing x whose translates by G cover X(thus V is a fundamental domain for the action). The group

Γ has generators [g] for g ∈ G such that V ∩ gV 6= ∅, and relations [gh] = [g][h], whenever g,h ∈ G

and V ∩ gV ∩ hgV 6= ∅. The papers [1, 123] show that this theorem is related to a description of the

fundamental groupoids of the nerve and of the classifying space of the cover {gV : g ∈ G} of X.

There is a subtle question of the description of an orbit space of a manifold under the action of

a pseudo-group, and the definition of a suitable concept of’ geometric’ fundamental group, different

from the generally uninteresting topological one. This is discussed by van Est in [58]. The role of the

fundamental groupoid in this situation is emphasised in [58] and [118]. The latter paper characterises

the fundamental groupoid by a suitable universal property among the groupoids which are ‘locally

coarse’, there called ‘Galois groupoids’. Related work is in [144].

4 The category of groupoids

It is now time to say more about the formal, algebraic properties of groupoids.

A homomorphism of groupoids G,H is essentially a functor, that is, it consists of a pair of functions

f : G → H, Ob(f) : Ob(G) → Ob(H), preserving all the structure. So one obtains a category Gpd of

groupoids and homomorphisms. If G is a groupoid, and x,y ∈ Ob(G), then we write G(x,y) for the

set of elements a in G with sa = x, ta = y, and we write G(x) for G(x, x). The product on G restricts

to a group structure on G(x), and this group is called the object group or vertex group of G at x. The

groupoid G is transitive or connected if G(x,y) 6= ∅ for all x,y in Ob(G). In this case, the groups G(x)

are all isomorphic, and indeed are conjugate, in the obvious sense, in G. In order to emphasise the

topological analogy, some authors like to write π1(G, x) for the vertex group G(x).

The definition of subgroupoid presents no problem and we assume it is understood. A subgroupoid

need not contain all objects and indeed may be empty. This contrasts with the usage for subgroups.

The maximal, transitive subgroupoids of a groupoid G are called the components of G. The set of

components of G is often written π0G. Note that in the case of the groupoid X⋊G of Example 3, the

vertex groups are essentially the groups of stability of the action, and the components are essentially

the orbits of the action.

The classification of groupoids up to isomorphism was early on found to be reducible to the class-

ification of groups. First, any groupoid G is clearly the disjoint union of its components. Second, if

3Full details of this may found in “Topology and groupoids”, R. Brown, (2006).
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G is transitive, and x ∈ Ob(G), then there is a non-canonical isomorphism of G to the product of the

group G(x) and the coarse groupoid on Ob(G):

G ∼= G(x)× (Ob(G)×Ob(G)). (*)

Such an isomorphism is obtained by choosing elements Ty ∈ G(X,y) for all y ∈ Ob(G) and then

sending

a 7→ (τyaτ
−1
z , (y, z)),y, z ∈ Ob(G),a ∈ G(y, z).

The isomorphism (*) gives also a retractionG→ G(x); the existence of (*) is a basic fact on groupoids.

The isomorphism (*) should not lead mathematicians to draw the moral that ‘groupoids reduce

to groups’. Indeed, it can be pointed out that we have long passed the day when the classification of

objects up to isomorphism could be considered the sole purpose of mathematics. For example, finite

dimensional, real vector spaces V are classified up to isomorphism by the number n = dimV . This

does not mean that the term’ real vector space’ can be conveniently excised from the mathematical

literature! As one illustration of this, the classification of real vector spaces with p endomorphisms is

interesting for p = 1, difficult for p = 2, and unsolved for p = 3. (I am grateful to A. HelIer for this

trenchant expression of view.)

In a similar manner to the use of vector spaces, one finds that it is in studying morphisms of

groupoids, and the relationships between various groupoids, that the theory of groupoids obtains its

power and flexibility. One of the features of groupoids is the variety of types of homomorphisms. For

groups, we have basically monomorphisms, epimorphisms, isomorphisms. For groupoid homomor-

phisms we have similar terminology to that for functors, namely faithful, full, representative, and also

a variety of other types such as quotient, universal, covering [78], fibration, and discrete kernel [15].

See [45] for a discussion of congruences in groupoids. It may disturb people to learn that the first

isomorphism theorem fails for groupoids. But in fact these apparent difficulties and complications

lead to a theory richer than that of groups, and with wider uses.

To determine the fundamental group π1(X, x), x ∈ A, in the Van Kampen situation considered

above, one has to use the isomorphism (*) on each component of π1(U,A), and of π1(V ,A), and anal-

yse the effect of all the choices that have been ’made. This technique of making various appropriate

choices of isomorphisms of the type of (*) is a basic tool in P. J. Higgins’s applications of groupoids

to subgroup theorems in group theory [78]. (Similar methods were used earlier by Hasse [72].) For

example, in the proof that a subgroup of a free group G on X is free, the isomorphism (*) is obtained

from the choice of a maximal tree in a generating graph X̃ for a free groupoid G̃ covering G (see

below); the choice of this tree in X̃ is equivalent to the classical choice of a Schreier transversal.

It seems fair to suggest that these methods give the first real applications of a theory of groupoids

–the earlier applications to the arithmetic of ideals seem by contrast only descriptive, and once the

groupoid of ideals has been obtained, not too much is done with it.

Consider again the coarse groupoid X × X, and the particular case when X = {0, 1}. The groupoid

I = {0, 1} × {0, 1} has two objects 0 and 1, and non-identity arrows ι : 0 → 1 and ι−1 : 1 → 0, say. It’s

vertex groups are trivial. So we can think of I as consisting of two distinct but trivial groups, and the

unique isomorphism ι between them! Note that if a is an element of a groupoid G, then there is a

unique homomorphism: f : I → G of groupoids such that f(ι) = a; so I plays for groupoids the role

that the infinite cyclic group Z plays for groups. Homomorphisms I → G, for G a finite cyclic group,

give easy examples of the failure of the usual isomorphism theorems of group theory.
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Another feature of I is that, with the two inclusions {0} → I, {1} → I, it has properties analogous

to the unit interval in the homotopy theory of spaces. So it is easy to write down a corresponding

homotopy theory for groupoids, with notions of homotopy equivalence, covering morphism, fibration,

exact sequence, and so on [15, 88, 89]. As an application, the basic results on covering spaces can be

summarised as saying that for reasonable spaces X there are equivalences of categories (compare [62,

Appendix 1; 15]).

(covering spaces of X) ∼ ( covering groupoids of π1X)

∼ ( operations of π1X on sets )

∼ ( functors π1X −→ ( sets )).

(These last two equivalences are essentially due to Ehresmann – compare [54, Partie II-l Comment

129.2].) Indeed the construction of covering spaces is nicely expressed in terms of the problem of

topologising the object set of a covering groupoid G of the fundamental groupoid π1X [14]. Fibrations

of groupoids [15] occur naturally in a number of ways in group or group action theory; the resulting

exact sequences give results on the original group theoretic situation [74, 25, 26]. We should also

refer to the neglected paper by P. A. Smith [137] where a covering morphism is called a regular

homomorphism.

One of the irritations of group theory is that the set Hom(H,K) of homomorphisms between groups

H,K does not have a natural group structure. However, homotopies between homomorphisms of

groupoids H,K may be composed to give a groupoid HOM(H,K) with object set Hom(H,K). It is easily

checked that for any groupoids G,H,K, there’is a natural bijection

Hom(GxH,K) ∼= Hom(G,HOM(H,K)).

This bijection is part of a groupoid isomorphism

HOM(GxH,K) ∼= HOM(G,HOM(H,K)).

This isomorphism is useful even when G,H,K are groups. It has a generalisation to the case of

groupoids over a given groupoid, [40, 84].

An application of this generalisation is pointed out in [24], as follows. Let f : A → B be an

epimorphism of groups. Suppose B has a presentation B = colimλ Bλ as a colimit over a connected

diagram. Let Aλ → A be the pullback of the canonical map Bλ → B by f. Then the canonical map

colimλAλ → A is an isomorphism. It is not easy to see how this result can be proved within the

framework of group theory.

As another application of the groupoid I, note that if A is a group, then the groupoid A × I

can be regarded as consisting of two copies of A and an isomorphism between them. An HNN-

extension of groups G∗θ, where B is an isomorphism A → B of subgroups of G, can be described as

an amalgamated sum (pushout) of groupoids
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A× {0, 1}
ψ

//

��

G

��

A× I // G∗θ

where ψ sends (a, 0) 7→ a, (a, 1) 7→ θa..

Thus the groupoid I, which at first sight seems unworthy of notice, plays a key role in the theory

of groupoids, and in applications. A failure to extend group theory so as to include the use of I), on

the grounds that I) is a trivial object of only formal interest, is analogous to failing to use the number

0 in arithmetic, a failure which in fact held back mathematics for centuries. Of course, if you allow I,

then in effect you allow all groupoids since any groupoid is a colimit of a diagram of copies of I, in

the same way as any group is a colimit of a diagram of copies of Z.

5 Some applications

As explained above, special cases of groupoids are sets, groups, and equivalence relations. These

have wide applications! -It is not so well-known how widespread are the uses of groupoids over

and above these examples. Here we indicate some of these uses; a wider impression is given in

the references. Groupoids were brought into the Galois theory of rings by Villamayor and Zelinsky

[145, 146]. The following quotation is from [145, p. 722]: ’Our approach actually interposes be-

tween a subgroup and its associated fixed ring a certain groupoid composed of all the isomorphisms

between components of S that can be induced by automorphisms in the subgroup. The standard

group-to-algebracorrespondence is split into the composite of a many-to-one correspondence from

groups of automorphisms to groupoids of isomorphisms, followed by a one-to-one correspondence

from groupoids to algebras. The correspondence group → groupoid is one-to-one exactly on the fat

subgroups of the automorphism group.’ See also [101, 102].

The semi-direct product groupoid X ⋊ G associated to a group action of G on X arises in combi-

natorial group theory, particularly for subgroup theorems. If H is a subgroup of a group G, then in

general the set G/H of right cosets has no canonical group structure. However, G operates on the set

G/H and so the semi-direct product G̃ = (G/H)⋊G can be formed. Its vertex group G̃(H) at the coset

H is isomorphic to H. So the strategy for subgroup theorems is to lift a presentation of the group G to

a presentation of the groupoid G̃, and then to choose a retraction G̃→ G̃(H), in a manner appropriate

to the presentation of G̃, to obtain a presentation of G̃(H) and so of H [44, 78]. This strategy also

gives results for topological groups [23, 110].

Another use of X⋊G is in ergodic theory. G. W. Mackey describes in [100] his route to the use of

groupoids. The starting point was the question: granted that a transitive action of a group G on a set

X corresponds to a conjugacy class of subgroups of G, what then corresponds to an ergodic action of

G on X? He invented the term ‘virtual subgroup.’, and this concept or analogy was finally expressed

in terms of the groupoid X ⋊ G described above. In order for the action to be ergodic, G and X must

have Borel and measure structures, and these structures are inherited by X⋊G. The idea of conjugacy

class, is expressed by a definition of equivalence in which homomorphisms defined almost everywhere

are also allowed. This study now has an extensive literature of which [119, 120, 121, 151] is a

selection. Mackey told me of his work after I had given a talk on groupoids at the British Mathematical
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Colloquium in 1967. This meeting suggested to me that the groupoid concept had much more to it

than I had envisaged, and so was a spur to further work.

Topological groupoids have a theory of Haar measure, or transverse measure, which was con-

sidered by my student A. K. Seda in his 1974 Ph.D. thesis [132] and by a number of other writers

(compare [124, 125]). There is for such groupoids a notion of convolution algebra,. and the resulting

C∗–algebras have been powerfully exploited by A. Connes and ”others [41]. For example, they lead

to an index theorem for foliations, generalising the Atiyah-Singer index theorem. The Introduction

to [90] gives a succinct summary of the uses of groupoids in Connes’ theory. J. Renault writes [127]

some comments on the history of convolution algebras: ’They seem to be as old as operator algebras

themselves. Earlier examples by von Neumann included not only group algebras but also the group

measure construction. In ”Harmonic analysis on groupoids” ([148]) J. Westman makes reference to

earlier examples by Dixmier and by Glimm. In fact A. Connes likes to say that Heisenberg discovered

matrix algebra by staring at the Ritz combination principle for spectral maps-an example of groupoid

composition law in contrast with the group law of harmonics.’

It is quite possible to have a topological groupoid G with a non-discrete topology but for which

each vertex group has the discrete topology. This is common for example with groupoids of germs

with the sheaf topology. Thus the ‘variable symmetry’ described by G with its topology is in no way

encompassed by the family of vertex groups. Also, such a groupoid need not be topologically the sum

of its abstract components.

The use of groupoids runs through much of the corpus of Grothendieck’s work on algebraic geom-

etry. See [87] for one aspect of this, the fact that an eétendue, which is a kind of generalised space,

may also be described in terms of actions of a groupoid. This is related to work of Magid [101, 102].

There are some crucial differences between the theory of topological groupoids and that of topological

groups. As one example, for a group G, a topology on G making G a topological group is defined by

a fundamental system of neighbourhoods ofthe identity, satisfying suitable conditions. The reason is

that in a topological group left translation by an element maps open sets to open sets. This is no

longer true in a topological groupoid G. As observed by Ehresmann [54], it is left translation by a

local section of G which maps open sets to open sets, where a local section σ of G is a map σ : U→ G

where U is open in Ob(G), sσ(x) = x,X ∈ U, and tσ maps U homeomorphically to an open set V of

Ob(G). Pradines has observed (private communication) that it is this fact ’which leads to the holon-

omy groupoid of a differential piece of a groupoid (as announced in [114], which also includes results

on monodromy groupoids). Diverse uses of differential groupoids have been surveyed by Pradines

in [115] and an account of uses in differential geometry is given by Mackenzie in [99]. For some

applications of groupoids in the framework of synthetic differential geometry, see [93, 94].

The papers [21, 22] give a bibliography of over 80 papers on topological and differential groupoids.

A major area of application of topological groupoids is, following Ehresmann, to foliation theory, using

either the holonomy groupoid, or the classifying space (see below) BΓ where Γ is the topological

groupoid of germs of elements of a pseudo-group. This area deserves a complete survey of its own,

but here we mention also the Bibliography [66], [144] and the articles in [116], for example [58, 71].



FROM GROUPS TO GROUPOIDS 129

6 The classifying space of a topological groupoid

The nerve of a small category C is the simplicial set NC such that NnC is the set of functors

{0, 1, . . . ,n} → C,

where {0, 1, . . . ,n} is regarded as the category of pairs (i, j) where i 6 j and composition is (i, j)(j,k) =

(i,k). This definition of nerve is due to Grothendieck, who also characterised simplicial sets of the

form NC. If G is a groupoid, then G is also a category, and so its nerve NG is defined. (In fact NG

has more structure, namely it is a ‘simplicial T -complex of rank 1’, as shown by Dakin, [46]. See also

Ashley, [2].)

The geometric realisation |NG| of the nerve of the groupoid G is called the classifying space BG of

the groupoid G. It is a CW-complex, with one vertex for each element of Ob(G), one component for

each component of G, and the fundamental group π1(BG, x), x ∈ Ob(G) is isomorphic to the vertex

group G(x). Further, πl(BG, x) = 0, i > 1. It is well-known that if X is any CW-complex then there’is

a natural bijection

[X,BG] ∼= [π1X,G]

between the set of (free) homotopy classes of maps X− → BG and the conjugacy classes of homomor-

phisms of groupoids π1X→ G.

This formula allows for a neat proof of a result of Gottlieb [67]. Let Y be a finite CW-complex,

and let (BG)Y denote the space of (unpointed) maps Y → BG. Then for any CW-complex X there is a

sequence of natural bijections

[X, (BG)Y ] ∼= [X× Y,BG]

∼= [π1(X× Y),G]

∼= [π1X× π1Y,G]
∼= [π1X,HOM(πlY,G)]

∼= [X,B(HOM(π1Y,G))].

It follows that (BG)Y is of the homotopy type of B(HOM(πlY,G)). Note that if Y is connected,

G is a group and f : Y → BG is a pointed map, then the vertex group of HOM(π1Y,G) at f∗ is the

centraliser of f∗(π1(Y)) in G, which is the result of [67].

If G is a topological groupoid, then its nerve NG becomes a simplicial space. The realisation

BG = |NG| is still defined, but is no more a CW-complex [136].

The applications of this classifying space are legion. In the case G is a topological group, BG

classifies principal bundles with group G. We mention some uses of the groupoid cases. When G is the

groupoid of germs arising from a pseudo-group Γ , BG then classifies Γ–structures (see [66, 70, 96]).

Also, the cohomology of BΓ gives rise to characteristic classes for foliations [66].

If G = X⋊H, the semi-direct product topological groupoid arising from an action of the topological

group H on the topological space X, then BG is also known as the homotopy limit of the action [140].

It is known that BG is of the homotopy type of the space X ×H PH, where PH− → BH is a universal

principal H-bundle. The equivariant cohomology of the H-space X is defined to be H∗(X×HPH) [154],

and is thus simply H*(BG) (compare [136, 153, 158]).
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In [51] it is proved that if π is a finite p-group, and G is a compact Lie group, then HOM(π,G),

with its structure as Lie groupoid, has the property that the natural map B(HOM(π,G)) → (BG)Bπ is a

strong mod p equivalence. In [152] it is proved that Bmaps certain pushouts of topological groupoids

or categories to homotopy pushouts, and this result includes some classical ones, such as descriptions

of ΩΣX in terms of free topological monoids or free topological groups.

7 Structured groupoids

We have already met groupoids with various additional elements of structure. In order to describe

uniformly these various kinds of structured groupoid, it is convenient to define a groupoid object

G internal to a category C. The definition is analogous to that given above for a groupoid in the

category of sets, except that G, Ob(G) are to be objects of C, while s, t, i, the inverse map, and the

multiplication, m, are all to be morphisms of C, where m is defined on the pull-back of s, t, which

is assumed to exist. The axioms for a groupoid are expressed in a standard way using diagrams in

C. For example, one finds in [3, 64] the definition of an algebraic groupoid as a groupoid object in

the category of algebraic.spaces. In fact the general notions of structured category and structured

groupoid were defined and developed as long ago as 1963 by Ehresmann [54]. See also [155, 156].

The Examples 1,2,3 of §1 will normally transfer to the structured situation. For example, a set

(topological space, differential manifold, algebraic space) X gives rise to a coarse groupoid (topologi-

cal groupoid, differential groupoid, algebraic groupoid) X× X

For a structured groupoid G there is no reason for there to be the isomorphism (*) of Section

4 which preserves the structure. If such exists, the structured groupoid is called trivial, in analogy

with a trivial principal bundle. In the topological and differential case, there are useful notions of

local triviality but there are also lots of good examples of differential groupoids without this property.

It is usually the case that constructions for manifolds extend to locally trivial differential groupoids,

and, although they may not extend to all differential groupoids the attempt to do so usually leads to

interesting questions.

A major source of examples of structured groupoids in Ehresmann’s work was from topology and

differential topology so giving rise to topological groupoids and differential groupoids. This interest

was paralleled in the Soviet Union, though at a later date, in the work of A. V. Vagner [141, 142]. They

were both interested in the relations between groupoids and what the geometers called pseudo-groups

–these were called generalised groups by Vagner; but among semigroup theorists these are called,

following Petrich, –inverse semigroups. An inverse semigroup defines in a natural way a groupoid

with an additional partial order structure–these were called inductive groupoids by Ehresmann [52].

See [129] for an account of the relations between groupoids.and inverse semigroups, and [130] for

a survey of the relations between abstract inverse semigroups and those arising from sets of partial

transformations.

Localic groupoids are central to topos theory. Here a localic groupoid is a groupoid object in the

category of locales, a category which generalises the category of lattices of open sets of topological

spaces and the maps f−1 induced by continuous maps f For every topos E there is a localic groupoid

G such that E is equivalent to the category of étale spaces E over Ob(G) together with a continuous

action of G on E over Ob(G). If the topos has enough points (as do most of the toposes arising in

algebraic geometry, for instance), G can in fact be taken to be a topological group. Moerdijk shows
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in [107] that this representation of a topos can be extended to maps of to poses, which makes the

category of toposes a category of fractions of a category of localic groupoids.

Ehresmann’s work on structured categories and groupoids also led to notions of categories struc-

tured by categories, that is, to double categories, and so to n-tuple categories [54]. The existence of

such definitions, and the basic example of a double category, namely the double category 2C of com-

muting squares in a category, were important to the writer in 1965-72 in contemplating the possibility

of extending the Van Kampen Theorem to dimension 2.

It is clear that the definition of a groupoid object makes sense in any category with pullbacks, and

this includes many standard categories of an algebraic character in the usual sense, for example such

categories as those of groups, rings (without 1), Lie algebras, and many others. So we can consider

a set with two compatible structures, one a groupoid structure, and the other, for example, a ring

structure.

Here again we see a complete contrast between groups and groupoids. A group internal to the

category of groups is just an abelian group –this is a well-known fact which leads to the suggestion that

a ‘higher dimensional group theory’, based on intuitive ideas of composing squares or cubes instead

of paths, cannot exist. Similarly, a group object internal to rings is a ring with zero multiplication. In

general, group objects internal to the standard algebraic categories are ’abelian’ in some way.

The situation is quite different for groupoid objects. A result published in [37], but known much

earlier, is that a groupoid object internal to groups, which we call here a cat1-group, is equivalent to a

crossed module, which is a homomorphism µ :M→ P of groups, together with an action (m,p) 7→ mp

of P on M satisfying the two rules:

(CM1) µ(mp) = p−1(µm)p,

(CM2) m−1nm = nµm,

for all m,n ∈M,p ∈ P. Examples of crossed modules are:

• an ordinary P-module, when µ = 0;

• a normal subgroup, when µ is an inclusion;

• the inner automorphism map χ :M→ AutM, for any group M;

• any epimorphism µ :M→ P with central kernel;

• and the map of fundamental groups π1F→ π1E for any (pointed) fibration F→ E→ B.

So there are lots of good examples of crossed modules: The notion is due to J. H. C. Whitehead

[149], the name being used in [150]. Surveys of their use and relationships with classical notions of

homotopy theory and homological algebra are given in [17, 18, 30, 31].

The equivalence between crossed modules and catl-groups is given as follows. Let µ : M → P

be a crossed module. Let G = P ⋊M be the semi-direct product group, using the action of P on M,

and let s, t : G → P be the maps (p,m) 7→ p, (p,m) 7→ p(µm) respectively. Condition (CM1) on a

crossed module is equivalent to t being a homomorphism of groups. The formula g ◦ h = g(sh)−1h,

when tg = sh,g,h ∈ G, defines a category structure on G with s, t as initial and final maps. This
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category structure is compatible with the group structure if and only if (CM1) and (CM2) hold. This

compatibility condition is also equivalent to [Ker s, Ker t] = 1, as shown in [97]. Conversely, given the

catl-group s, t : G → P, then the restriction of t to Ker s → P can be given the structure of crossed

module. This procedure applies to other situations than groups –see [113] for a general discussion.

If µ : M → P is a crossed module, then Kerµ is an abelian group, that is, a group internal to the

category of groups. Thus we see how the theory of groups with an algebraic structure is a pale shadow

of a rich theory of algebraically structured groupoids.

Crossed modules are also equivalent to double groupoids with connections [38]. These model well

the idea of using squares instead of paths, so that one can form compositions of the type

(**)

In this way double groupoids allow for ‘an algebraic inverse to subdivision’. It turns out that in

double groupoids with connection the composition (**) can be translated into a linear composition,

but there will be several ways of doing this. The resulting algebra will be of a more familiar kind, but

the geometry will be lost. I like to think that, for this reason, a general advance from 1-dimensional to

2- and n-dimensional algebra could become widely significant. This can be put in the more provocative

way: n-dimensional phenomena require for their description n-dimensional algebra. Double categories

with connection are applied to homotopy theory in [138]. One practical use of double groupoids is

that they allow for a proof of a 2-dimensional Van Kampen type theorem for crossed modules [27]

which yields some new homotopy computations in dimension 2 (see also [19]). Similar remarks apply

to all dimensions, using ω -groupoids [28, 29]; these have interrelated structures in all dimensions,

with n groupoid structures in dimension n, corresponding to the gluing of n-cubes in the n different

directions. There is a fundamental ω -groupoid functor ρ on filtered spaces, and this satisfies a van

Kampen type theorem. The proof in [29] requires precisely the idea of having an algebra which

appropriately models subdivision. As noted in [29], this generalised van Kampen theorem implies the

relative Hurewicz theorem.

Just as a group or groupoid G has a classifying space BG [136], so also does anyω -groupoid. This

functor B : (ω -groupoids)→ (spaces) gives ω -groupoids as algebraic models of certain homotopy

types, and so allows a Van Kampen theorem forω -groupoids to yield information on homotopy types.

For a survey of this area, see [18]. One should mention here also the ‘hyper groupoids’ of Duskin and

Lawvere, which are used in [65] to give realisations of general cohomology classes.

It turns out that ω -groupoids do not model all homotopy types. J.-L. Loday has introduced the

notion of catn-group(originally, n-cat-group [97]), which can be defined inductively as a groupoid

object internal to the category of catn−1-groups, where catl-groups are defined above. So a catn-
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group should be thought of as a group with n compatible groupoid structures. For such an object G,

Loday has defined a classifying space BG such that π1(BG) = 0 for i > n + 1. To anyone familiar

with simplicial sets, the definition of BG will seem the simplest possible: G has n + 1 compatible

groupoid structures, one of them in fact a group structure; taking the nerve for each structure gives

an (n + l)-simplicial set; the geometric realisation of this is BG [97]. Loday and R. Steiner have

also proved that if X is a pointed, connected CW-complex with π1X = 0 for i > n + 1, then X is

of the homotopy type of BG for some catn-group G [97, 139]. This demonstrates how complicated

catn-groups can be. Guin-Walery and Loday have given an equivalence between the categories of

cat2-groups and of crossed squares (see [69]). Ellis and Steiner [57] give an equivalence between the

categories of catn-groups and of ‘crossed n-cubes of groups’, thus giving a subtle, n-fold version of

crossed modules. Loday and I have proved a van Kampen theorem for catn-groups [32, 33], which

generalises the major part of the van Kampen theorem for ω -groupoids. The case n = 2 leads to

some new algebraic constructions, such as a non-abelian tensor product M⊗N of groups M,N each

of which acts on the other. The rather tight description of catn-groups as crossed n-cubes leads to

some new computations in homotopy theory [57] and in algebraic K-theory [56].

8 Conclusion

In this last section I would like to draw some wider morals and make some possibly outrageous spec-

ulations. First, it seems that the transition from group to groupoid often leads to a more thoroughly

non-abelian theory. This is seen in the von Neumann algebra of a measured groupoid, which has also

been thought to be appropriate for quantisation in physics [90]. It is perhaps more clearly seen, in the

algebraically structured groupoids, as above. It is clearly the key aspect of Brandt’s original examples.

Another example is the non-abelian tensor product of groups, referred to above.

Second, the concept of groupoid is a long way from being recognised as a fundamental concept

in our mathematical culture, but this reluctance is diminishing, as is shown by this survey. In due

course, groupoid methods will seem as natural as, say, principal bundles, which in fact they often

conveniently replace (compare [99]). At present, it has sometimes been recognised that groupoids

form an interesting generalisation of groups. Perhaps in another decade it will be agreed that groups

are interesting examples of groupoids! Indeed F. W. Lawvere has suggested in conversation that the

word group should simply be extended to cover groupoids.

The speculations I would like to make concern the use of multiple groupoids. We have already

seen that the use of the usual groupoids allows for a more flexible and powerful approach to both

fundamental groups and ideas of symmetry. Also, higher dimensional groupoids have led in homotopy

theory to new results and calculations which seem unobtainable by other means [19, 33, 34, 57]. In

view of the fundamental nature of our ideas of symmetry, I expect that multiple groupoids will lead

to a formulation of ideas of ‘higher order symmetry’, or ‘symmetry of symmetries’ and methods of

calculation for these.

This is more a programme than a conjecture in the usual sense. It seems a little tricky, since several

workers have thought about it in terms of generalising to dimension 2 the covering space approach to

Van Kampen’s Theorem [49], without coming up with a clear answer. This last problem is important

because of the relationship of covering spaces to Galois theory and problems of descent in algebraic

geometry [103]. I hope the description of ‘higher-order symmetry’ will not take anything like the 9
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years that it took of staring, off and on, at diagram (**), before a 2-dimensional van Kampen the-

orem was found! I find such attempts to bring concepts out of the dark, even without a clear idea

of applications, an attractive occupation. Also, in view of the ‘unreasonable success of mathemat-

ics’, these conjectured higher order symmetries should prove fundamental to further progress in our

understanding of nature, for example of some physical processes.
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NOTES ADDED IN PROOF

§1.The groupoid EE−1 of a principal H-bundle is defined as the orbit groupoid (E × E)/H, and is

isomorphic to the groupoid G(E) of §2, Example 4.

§2, Example 2, The terminology here is not standard, and X is also called the null or discrete groupoid

on X, while X× X is also called codiscrete, simplicial, or a tree. It is important to have a terminology

which is appropriate also for topological and Lie groupoids.

§2, Example 3. The groupoid X ⋊ G is also called the translation groupoid. Another possible term is

affine groupoid. The definition of X ⋊ G was essentially given in 1932, for the transitive case, on p.

28 of [159].

§3. The path-groupoid is, in effect, defined on p.107 of [159].

§6. J.-P. Meyer and M. Zisman have pointed out that B(X⋊H) is homeomorphic to X×H PH. Zisman

has supplied a proof, and Meyer notes that it follows from Corollary 4.4 of [157].

§7. J. Virsik has pointed out that the book [156] is a good source for many of Ehresmann’s ideas –for

example there are chapters on inductive groupoids, and on species of structure, as well as results on

quotient groupoids and free categories and groupoids.
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91 (1924) 300-315.

[8] H. BRANDT, ‘Die Hauptklassen in der Kompositionstheorie der quaternärer quadratischer For-
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la catégorie des catégories’, C. R. Acad. Sc. Paris. Sér. A 275 (1972) 891-894.

[41] A. CONNES, ‘A survey of foliations and operator algebras’ Proc. Sympos. ,Pure Maths. 38, Part I

(1982) 521-632.4

[42] R. CROISOT, ‘Une interprétation des relations d’équivalence dans un ensemble’, C. R. Acad. Sci.

Paris Ser. A 226 (1948) 616-617.

[43] R. H. CROWELL and R. H. Fox, Knot theory (Ginn & Co., 1963; Springer, Berlin, 1977).

[44] R. H. CROWELL and N. SMYTHE, ‘The subgroup theorem for amalgamated free products, HN-

Nconstructions and colimits’, Proc. Second Int. Conf. Theory of Groups, Canberra 1973, Lecture

Notes in Math. 372 (Springer, Berlin 1974), pp. 241-280.

[45] R. H. CROWELL and N. SMYTHE, ‘Congruences and geometric amalgamation of groupoids’,

Houston J. Math. 13 (1987), no. 4, 499-525.

[46] M. K. DAKIN, ‘Kan complexes and multiple groupoids’, University of Wales Ph.D. thesis, 1977.5
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