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Abstract

In this work we simplify, generalize and extend results and methods concerning the rela-
tionships between various Reidemeister numbers, and applications thereof to four different
Nielsen theories (fixed point, ordinary coincidence, semi-index coincidence and root theory).
We do this in two distinct contexts. The first context deals with the relationship between
the Nielsen numbers of the maps involved, and those of representative lifts to regular cov-
ering spaces. We have a special interest in homogeneous spaces. The second context of our
applications, namely to Nielsen theories of fibre-preserving maps, is rather curiously dual to
the first. In both contexts, our results improve on those previously given.

Our main tool is a collection of 8 term exact sequences (of groups and sets) whose in-
spiration and proof comes from the theory of fibrations of groupoids. We give a complete
analysis of our sequences which yields previously unknown upper and lower bounds on the
Reidemeister and Nielsen numbers we are wanting to compute (in one case it sharpens a
previously known lower bound). When the upper and lower bounds coincide, generalizations
of familiar formulas are forthcoming. The process also gives a uniform approach to proofs in
both the underlying algebra (Reidemeister considerations) and to the two distinct contexts
of our applications to the four Nielsen theories.

New results include a new formula generalization of the averaging formula in both the
algebra and the geometry. We also generalize the original coincidence averaging formula for
oriented infra-nilmanifolds to the smooth non-orientable category, and also to a pair of self
maps of smooth infra-solvmanifolds of type R. Other generalizations concern the finiteness
of Reidemeister numbers. Finally we fill in proofs and details missing from previous work.
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1 Introduction

We start with the algebra. Consider the following diagram of groups and homomorphisms

1→ H1
i1−→ G1

p1−→ Ḡ1 → 1

f ′ ↓↓ g′ f ↓↓ g f̄ ↓↓ ḡ

1→ H2
i2−→ G2

p2−→ Ḡ2 → 1,

(1)

in which the top and bottom rows are exact. Thus f ′ and g′ are the restrictions of f and g
respectively and f̄ and ḡ are the corresponding induced homomorphisms.

In [26] it was stated (without proof) that Diagram (1) gives rise to the 8 term exact sequence

1→ Coin(f ′, g′)→ Coin(f, g)
p̂1→ Coin(f̄ , ḡ)

δ→ R(f ′, g′)
î2∗→ R(f, g)

p̂2∗→ R(f̄ , ḡ)→ 1 (2)

The first 4 terms are groups and homomorphisms, and the rest sets and functions. Here for
example Coin(f, g) = {x ∈ G1|f(x) = g(x)} (we use the notation Fix f when g = 1), and R(f, g)
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(R(f) when g = 1) is the set of Reidemeister classes of f and g. The statement and sketch proof
of a non-technical fixed point version was given earlier in [25].

For our purposes here, we need (and give) a more subtle version of these sequences. We
say sequences (plural) because when G2 in Diagram (1) is not Abelian, it gives rise to a whole
collection of exact sequences that arise out of conjugation of the f ′, f and f̄ (see Theorem 2.4
and Example 2.7). The more subtle version allows for a deeper analysis which gives rise to new
results including upper and lower bounds which we outline first in the algebra. These bounds
then carry over to both contexts of our applications.

In fact there are essentially two formulations of the upper and lower bounds even in the
algebra, depending on whether Ḡ1 and Ḡ2 are finite or not (equations (3) and (4) below). In the
case they are not finite, we can use the weaker condition that the [Coin(τᾱf̄ , ḡ); p1∗(Coin(ταf, g))]
(denoted [Cᾱ : p̂α1 (Cα)] below) are bounded. Under these conditions we have the inequalities∑

ᾱ∈R(f̄ ,ḡ)R(ταf
′, g′)

Minα([Cᾱ : p̂α1 (Cα)])
≥ R(f, g) ≥

∑
ᾱ∈R(f̄ ,ḡ)R(ταf

′, g′)

Maxα([Cᾱ : p̂α1 (Cα)])
(3)

(the τα represent conjugation by α ∈ G2). Actually we will also need a second, slightly different
version of (3) (see Theorem 2.12 ).

When Ḡ1 and Ḡ2 are finite the second formulation of our upper and lower bounds generalize
the so called averaging formula. In this formulation we have:–

Maxβ∈G1(|p̂1(Cβ)|)
|Ḡ1|

∑
α∈Ξ

R(ταf
′, g′) ≥ R(f, g) ≥ Minβ∈G1(|p̂1(Cβ)|)

|Ḡ1|
∑
α∈Ξ

R(ταf
′, g′), (4)

where p̂α1 (Cα) := p1∗(Coin(ταf, g)). Since Minβ∈G1
(|p̂1(Cβ)|) ≥ 1, the right hand bound gives a

sharper lower bound than that given in the Reidemeister averaging formula (see Remark 3.18),
which is recovered when Maxβ∈G1(|p̂1(Cβ)|) = Minβ∈G1(|p̂1(Cβ)|) = 1 (Theorem 2.16(b)).

In fact when, in our various formulations, the upper and lower bounds coincide, the inequalities
give rise to a number of new and familiar Reidemeister formulas (see Corollary 2.14). All this
translates into analogous results in both (i.e in the dual) contexts of our applications in each of
four Nielsen theories (fixed point, ordinary coincidence, semi-index coincidence and root theory -
see Theorem 3.11, Corollary 3.12 and Theorems 3.15, 3.30 and 3.32).

We describe first the, perhaps more familiar, fibre space context of our applications, in which
we extend results given in [26]. In this context the corresponding horizontal terms in Diagram
(1), are truncated homotopy ladders of fibre preserving maps. That is fibre preserving maps f
and g of fibrations p1 and p2 (left hand diagram below) give rise to a diagram of the form of (1)
(right hand diagram)

E1
p1−→ B1

f ↓↓ g f̄ ↓↓ ḡ

E2
p2−→ B2,

Ker p1∗ −→ π1(E1)
p1∗−→ π1(B1) → 1

↓↓ f∗ ↓↓ g∗ f̄∗ ↓↓ ḡ∗

Ker p2∗ −→ π1(E2)
p2∗−→ π1(B2) → 1.

(5)

Specifying basepoints allows us to identify the Kernels in Diagram (5). Let b ∈ Φ(f̄ , ḡ), we
use the symbols fb, gb to denote the restriction of f and g to the fibre of p1 over b. Thus
Ker p1∗ = π1(Fb, x)/K1 where K1 = Ker i1∗ : π1(Fb, x) → π1(E, x), for x ∈ Φ(f, g) with
p1(x) = b. Similarly Ker p2∗ = π1(Ff̄(b), f(x))/K2. The right hand side of (5) now gives rise to
a sequence of the form of (2). Under appropriate conditions, we can then form the subsequence
below (Lemma 3.26) by using the the usual embeddings of Nielsen into Reidemeister classes

1→ CoinK(fb∗, gb∗)→ Coin(f∗, g∗)
p̂1∗→ Coin(f̄ , ḡ)

δ→ EK(fb, gb)
j∗→ E(f, g)

pE→ E(f̄ , ḡ). (6)

Here E(f, g) is the set of essential Nielsen classes of f and g, and EK(fb, gb) the essential mod
K (for kernel) Nielsen classes (see section 3.3 for full details). Under certain other conditions
these subsequences are exact. When this happens the new algebraic results and proofs can be
mimicked to give new Nielsen theory results. In particular under suitable conditions we have∑

b∈EχN
I
K(fb, gb)

Minx∈EΘχ([Cp1(x) : p̂x1∗(Cx)])
≥ NI(f, g) ≥

∑
b∈EχN

I
K(fb, gb)

Maxx∈EΘχ([Cp1(x) : p̂x1∗(Cx)])
,
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where the superscript I refers to one of four Nielsen theories, and K refers to the mod K version
of these numbers (see Theorem 3.32 for more details). Here too it is convenient to have two
versions of the inequalities in order to generalize known formulas for fibre preserving maps which
then fall out when the upper and lower bounds coincide (Theorems 3.30 and 3.32).

We call the other context of our applications the covering space context. As we see below it
is dual to that of the fibre space context. In this context (which comes first in our exposition) we
have Nielsen analogues of both of the inequalities in (3) and (4).

The reader may be finding the need for two contexts a little puzzling. After all covering
spaces are themselves fibrations. The point though, is that taking p1 and p2 in Diagram (1)
to be induced by covering projections does not work. For starters the Kernels in (5) would be
trivial since the fibres of covering projections are discrete. In addition neither p1 nor p2 would
be surjective, so the corresponding horizontal sequences in Diagram (1) would not be exact. If,
on the other hand, we let i1 and i2 be the homomorphisms induced by our covering projections
q1 : X̃1 → X1 and q2 : X̃2 → X2 respectively, then by taking Cokernels we have a diagram of the
form of (1) that is dual to the diagram in (5)

X̃1
q1−→ X1

αf̃ ↓↓ g̃ f ↓↓ g

X̃2
q2−→ X2

1→ π1(X̃1)
q1∗−→ π1(X1) −→ Coker q1∗

αf̃∗ ↓↓ g̃∗ f∗ ↓↓ g∗ f̄∗ ↓↓ ḡ∗

1→ π1(X̃2)
q2∗−→ π1(X2). −→ Coker q2∗.

(7)

Here f̃ and g̃ are chosen lifts of maps f and g respectively, and α ∈ π1(X2). Under appropriate
conditions (see Proposition 3.4), we then have the following not quite complete dual

1→ Coin(αf̃∗, g̃∗)→ Coin(f∗, g∗)
p̂1∗→ Coin(f̄∗, ḡ∗)

δ→ E(αf̃ , g̃)
Eq1→ E(f, g). (8)

of subsequences (6) (sequence (6) has 7 terms, sequence (8) has only 6). Under conditions that
imply exactness, we can again mimic the algebra to produce generalizations and extensions of
Nielsen theory results in this covering space context. As we said, this time we have results that
are analogous to both types of the inequalities in (3) and (4). In the first case, in the context of
Diagram (7), we have (also new) the analogue of a slightly different (the position of the

∑
), but

usefull version of (3) (see Theorem 3.11 for comparisons, notation and details).

∑
αk∈χ̃

NI(αkf̃ , g̃)

Minθ∈EΘα̃k([Cᾱk : q̂θαk1∗ (Cθαk)])
≥ NI(f, g) ≥

∑
αk∈χ̃

NI(αkf̃ , g̃)

Maxθ∈EΘα̃k([Cᾱk : q̂θαk1∗ (Cθαk)])
(9)

Before we discuss the analogue of (4) we indicate how (9) allows us to extend and generalize
results in the literature. At the time [26] was being prepared, Jezierski was working on his paper
“Nielsen number of a covering map” ([33]). The basic goal was to give conditions under which
the Nielsen number N(f) of a self map f can be written as a linear combination of the Nielsen
numbers of various lifts αf̃ , to a finite index covering space (q1 = q2 and g = 1 in the left hand
diagram of (7) above). This was later generalized to coincidences in a non-trivial way by Moh’D
([43, 44]). Though Jezierski and Moh’D used neither the sequences nor our formulation of their
results, they did in fact prove them under conditions that imply the upper and lower bounds in
(9) coincide (Theorem 3.11). Our result generalizes those just mentioned, freeing them from the
constraint that Ḡ1 and Ḡ2 are finite (Corollary 3.12). This generalization then allows us to give
an application which compares ordinary and Mod H Nielsen numbers. Of particular interest is
the specific application to Mod K Nielsen numbers of the fibres of fibre-preserving maps, which
in fact conncts the two applications of the sequences that we give here (Proposition 3.22).

In this same covering space context, in addition to (9) and its variant, we also have a Nielsen
analogue of the inequalities in (4). We come at this through the historical development. Though
the full sequences (2) are unique to our work, portions of them have appeared in the literature.
In particular after the fixed point version of our sequences appeared in [25], but both before and
after [26], the following part

R(f ′, g′)→ R(f, g)→ R(f̄ , ḡ)→ 1. (10)
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of sequence (2) appeared on its own, first in the fixed point case, then later in coincidence versions
(see [13, 15, 16, 17, 48] and [8, 12, 19]). In all cases (10) was used to study the relationship
between R(f, g), R(f̄ , ḡ) and the R(ταf

′, g′). At times, usually under very strong conditions
(which we weaken), it was used to produce formulas, or to investigate when R(f, g) is finite (we
also generalize this, see Corollary 2.15). Some of the applications of (10) given in the works cited
above fit well into fibre space context, others do not. This was noted in [26], and came with the
cryptic comment “One could, I suppose, debate whether these are fibre techniques or not” ([26,
p.544]). Behind this comment was the thought that all Nielsen formula could somehow or other
be deduced from the collection of conjugates of (2). As we shall see these are in fact the exact
sequences associated with a fibration of groupoids (section 4). What I did not see clearly at the
time, was the need for the separate (dual) covering space context of our applications. This came
firstly with Jezierski’s work in [33] and then later when the series [38, 39, 22] caught my attention
with the presentation of [22] at the Nielsen theory conference in China in 2011.

But sequence (10) was not the only part of sequence (2) that appeared in the literature. About
the same time that [26] appeared, the fixed point version of the following conjugates of the first
part of sequence (2) also appeared ([38])

1→ Coin(ταf
′, g′)

î1→ Coin(ταf, g)
p̂1→ Coin(τᾱf̄ , ḡ), (11)

under the condition that Ḡ1 and Ḡ2 are finite. Coincidence versions followed later in [39, 22] under
the same finiteness condition. However, the crucial Bockstein type boundary function connecting
(10) and (11) was absent (see Remark 4.7). The main goal in [38] and [39, 22] was to give fixed
and coincidence versions respectively, of the averaging formula. The Nielsen coincidence version
of which is represented by equality in the equation

N(f, g) ≥ 1

|Ḡ1|
∑

[ᾱ]∈Ḡ2

N(αf̃, g̃). (12)

A Reidemeister version of (12) also appeared in [22], and this Reidemeister version is generalized
here in equation (4) by giving an upper bound and sharpening the given lower one. With many
details, the authors of [38] (fixed points) and [39] (coincidences) used the two partial sequences
(10) and (11) to exhibit the inequality (12). In addition, equality was shown to hold if and only
if p̂1(Fix(ταf)) ⊆ H1 respectively p̂1(Coin(ταf, g)) ⊆ H1 for all α. This condition was seen to
be automatic for maps f and g of infra-nilmanifolds. It was then used to deduce that the fixed
point averaging formula always holds for self maps of infra-nilmanifolds, and that the coincidence
version holds for oriented infra-nilmanifolds X1 and X2 of the same dimension.

We generalize and extend all of this in the covering space context of our applications in several
ways. Firstly we give conditions under which the inequalities

Maxβ∈π1(X)(|ĵβ1 (Cβ)|)
|Ḡ1|

∑
[ᾱ]∈Ḡ2

NI(αf̃, g̃) ≥ NI(f, g) ≥
Minβ∈π1(X)(|ĵβ1 (Cβ)|)

|Ḡ1|
∑

α∈[ᾱ]∈Ḡ2

NI(αf̃, g̃)

hold for our four distinct Nielsen numbers NI(f, g). Secondly, this not only adds an upper
bound and sharpens the lower bound given in (12), but also, under conditions under which the
upper and lower bound coincide gives rise to a new formula generalizing the averaging formula
itself (Corollary 3.16). Thirdly, using the work of Vendrúscolo ([45]), we generalize the averaging
formulas of [41, Theorem 4.2] and [39, Theorem 4.9] to smooth non-orientable infra-nilmanifolds,
as well as generalizing the fixed point version in [41], to a coincidence version for pairs of smooth
self maps of a smooth infra-solvmanifold of type R (Corollary 3.17 includes both of these results).

There seems to me to be beauty and value in a number of things in our presentation that
are worth pointing out. Firstly in addition to giving many new results, the sequences allow for
an expression of the them that make both results and proofs almost obvious. For example in
light of the sequences, it is clear where the coefficients [Coin(ᾱkf̄∗, ḡ∗) : ĵθαk1 (Coin(θαkf̃∗, g̃∗)]
come from in our simultaneous formulation (Corollary 3.12) of the work of Jezierski and Moh’D
in [33, 43, 44]. With our formulation the truth of the statements then seem almost obvious (but
see the caution below). In addition the sequences point to a way to compute these coefficients in
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a different way. Secondly once the Reidemeister theory has been set up, the multitude of details
of the analagous topological results are often reduced to two or three lines (see for example 2.13,
3.11, 3.12, 3.15, 3.16, 3.32). Thirdly it seems to me that there is value in bringing a large number
of results and proofs together in a way that unites both results and methodology. In particular
in both the algebra and the geometry all results are deduced from appropriate sequences, the
analogous bounds are shown to exist, and formulas deduced when the upper and lower bounds
coincide. In this way the algebraic and geometric proofs are essentially identical. Fourthly we
see value in reproducing important results by a different method, especially when such results
fall out easily from the methodology (see Corollary 3.35 for example). Finally the details we give
here, though elementary in the sense that they are mostly set theoretic, are at times subtle and
so worth including. It would be easy for example, to think that the equation below follows from
the exactness of sequences (2) alone

#(Im δ) = [Coin(f̄ , ḡ) : p̂1(Coin(f, g)]. (13)

This is not the case as the following example shows.

Example 1.1. Consider the exact sequence of groups and homomorphisms (first three terms)

0→ 3Z ↪→ Z δ→ {a, b} → 1,

and base point preserving functions (remaining terms), where δ takes 3Z to the point a (the base
point of {a, b}), and everything else to b. Note that #(Im δ) = 2, while [Z : 3Z] = 3.

As indicated above, equation (13) does indeed hold true. In order to give insight into what
is happening here, we reveal the intuition that lies behind this paper (and in fact behind [25]
and [26]). In particular with the right interpretation (see section 4), our sequences are the exact
sequences associated with a fibration of groupoids. Such sequences are entirely analogous to the

bottom part of the long exact homotopy sequence of a topological fibration F → E
p→ B. In this

context, the analogous equality #(Im δ) = [π1(B) : p∗(π1(E))] holds, where δ : π1(B) → π0(F )
is the usual boundary. As here, this is not deduced from exactness alone, but rather from the
properties of lifting functions associated with the fibration (see [10]). Equation (13) holds true
for similar reasons, and this, together with the Bockstein type boundary, turn out to be key in
terms of what allows for the deeper and simpler analysis and proofs we give here.

Although our primary focus is not to produce a survey of results, this comes as a byproduct
of our considerations in the covering space context of our applications. This is not true of the
applications in the fibre space context, and we refer the reader to [26] for those looking for a more
complete set of applications of this context. In the algebra and both contexts of our applications,
new results include the existence of upper and lower bounds on the Nielsen or Reidemeister
numbers we are seeking to compute. In the fibre space context we also include a number of proofs
of results stated, but not proved, in [26] (i.e. Theorem 3.34). The work also gives a simultaneous
proof of a number of results in the literature (Corollary 3.33 includes all the näıeve Nielsen
addition (product) formulas of [47, 31, 32, 30] and [26, Corollary 11.4]). We also give a fibre
space proof (Corollary 3.35) of a Theorem of Dobreńko and Jezierski [9, Theorem 2.5]. The proof
in [9] used a prototype of the averaging formula. The technical versions of our sequences in both
the fixed point ([25]) and coincidence version ([26]) are also new. The more technical versions
are necessary for the deeper analysis given here. We include a complete and rigorous proof of our
technical version Theorem 2.4 of our sequences. The original fixed point case contained only a
sketch of the non-technical version ([25]), and the non-technical coincidence version of Theorem
2.4 was stated in [26] without proof.

The paper is divided as follows. Section two, following this introduction, is devoted to the
algebraic side of our considerations. The proof of the main Theorem (2.4) is however, delayed
until section 4. Section three is divided into three subsections, starting with a brief review of
index and semi index considerations. The next two subsections give firstly the covering space
context, then secondly the fibre space context of our applications of the algebraic section. The
fourth section gives the delayed proof of Theorem 2.4.
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2 The Reidemeister sequences and the analysis thereof.

In this section, which is divided up into three subsections, we deal exclusively with the algebraic
side of our story. In the first subsection we briefly review Reidemeister theory, introduce our
notation and give other relevant material. In the second subsection we state the main Theorem
giving our 8 term sequences together with the crucial extra information. We also look at the
special case when G2 is Abelian, where we are able to exhibit a formula relating R(f, g), R(f ′, g′)
and R(f̄ , ḡ). This gives us a kind of model or pattern to aim for when G2 is not Abelian. In such
cases there is often a lack of uniformity in the cardinality of pre-images of various functions, and
we need multiple “conjugate” sequences in order to study the appropriate pre-images individually.
The third subsection then gives our complete analysis of the general case including the promised
upper and lower bounds.

2.1 Notation and preliminaries (algebraic side)

Let f, g : A → B be group homomorphisms, the Reidemeister set R(f, g), is the quotient set
of B defined by the relation α ∼ β if and only if there is γ ∈ A such that α = g(γ−1)βf(γ).
The Reidemeister number R(f, g) of f and g, is cardinality #(R(f, g)) of R(f, g). The algebraic
coincidence set Coin(f, g) is the subgroup Coin(f, g) =: {α ∈ A|f(α) = g(α)} ⊆ A. When g = 1
the identity we will sometimes write R(f, g) as R(f), and Coin(f, g) as Fix f . When g = ∗ the
zero homomorphism, we may write RR(f) in place of R(f, ∗), and of course Ker f for Coin(f, ∗).

Proposition 2.1. (c.f. [25, 21]) There is an exact sequence of sets and functions

1→ Coin(f, g)
i→ A

f ·−1g→ B
j→ R(f, g)→ 1,

where i is the inclusion, f ·−1 g the function that takes α to g(α−1)f(α), and j places an element
β into its Reidemeister class [β] ∈ R(f, g). If (B,+) is Abelian, there is a canonical Abelian
group structure + on R(f, g) with [α] + [β] = [α+ β], and (f ·−1 g)(α) = f(α)− g(α).

Furthermore a commutative diagram of groups and homomorphisms of the form

A
p−→ C

f1 ↓↓ g1 f2 ↓↓ g2

B
q−→ D,

induces a morphism of exact sequences (of groups if C and D are Abelian) in the obvious way. �

Remark 2.2. Our results incorporate coincidence, fixed point and root theory. If
A = B and g = 1 is the identity then we have classical Reidemeister fixed point theory with
(f ·−1 g)(α) = α−1f(α), F ix f := {α|f(α) = α} = Coin(f, 1) and R(f) := R(f, 1). If g = ∗
is the trivial homomorphism, we have classical Reidemeister root theory with (f ·−1 g)(α) =
f(α), Coin(f, ∗) = Ker f and RR(f) := R(f, ∗) = [B : f(A)], where RR(f) is the Reidemeister
root number. Furthermore Coin(f, g) = Ker(f −g), and if B is Abelian R(f, g) ∼= Coker(f −g).

These formulations easily give the following Reidemeister analogy/generalization to coinci-
dences and roots of the well known Theorem from [2].

Corollary 2.3. Let f, g : Zn → Zn be homomorphisms with linearizations1 F and G respectively.
If det(F −G) = 0, then R(f, g) =∞. If det(F −G) 6= 0 then R(f, g) = |det(F −G)|, Coin(f, g)
= 1, R(f) = |det(F − I)| (where I is the identity matrix), and RR(f) = |det(F )|.

1that is a matrix representation of f and g with respect to a fixed basis for Zn (see also ([37]).
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Proof. By Proposition 2.1, R(f, g) = #(Coker(F − G)), and this is ∞ if det(F − G) = 0. If
det(F − G) 6= 0, then F − G is injective and Ker(f − g) = Coin(f, g) = 1. For n = 1 it is easy
to see that R(f, g) = |det(F −G)|. For n > 1 (as in the proof of the fixed point case in [2]) there
are unimodular matrices A and B such that D := A(F −G)B is diagonal. So then the order of
Coker(F −G) is the same as the product of 1 dimensional cases, each of order the absolute value
of one of the diagonal entries of D. �

2.2 The sequences and product formulas

When the groups in Diagram (1) are not Abelian, we need the following well known “conjugate”
version of Diagram (1):-

1→ H1
iα1−→ G1

pα1−→ Ḡ1 → 1

ταf
′ ↓↓ g′ ταf ↓↓ g τᾱf̄ ↓↓ ḡ

1→ H2
iα2−→ G2

pα2−→ Ḡ2 → 1,

(14)

where for example τh(u) = huh−1 for any u, h ∈ G.
The normality of H2 allows the composite ταfi1 to factor through H2 (denoted by ταf

′). We
also use ᾱ for p2(α). It is useful to incorporate redundancies into our notation. In particular the
homomorphisms iαt and pαt are simply it and pt respectively for t = 1, 2.

A simplified version of the fixed point case of our main Theorem, which we now give, was
sketched in [25, Theorem 1.8]. A simplified version of the coincidence case was stated but not
proved in the survey article [26, Theorem 9.18].

Theorem 2.4. (c.f. [25, Theorem 1.8], [26, Theorem 9.18]) For each α ∈ G2, the following
sequence of groups and homomorphisms (first four terms) and based sets and base point preserving
functions (next 4 terms) is exact

1→ Coin(ταf
′, g′)

îα1→ Coin(ταf, g)
p̂α1→ Coin(τᾱf̄ , ḡ)

δα→ R(ταf
′, g′)

îα2→ R(ταf, g)
p̂α2→ R(τᾱf̄ , ḡ)→ 1,

where δα(β̄) = [g(β−1)ταf(β)], for any β ∈ G1 with p1(β) = β̄. Furthermore if β̄, θ̄ ∈ Coin(τᾱf̄ , ḡ)
then δα(β̄) = δα(θ̄) iff there is a γ ∈ Coin(ταf, g) with p̂1(γ) = β̄−1θ̄. In particular #(Im δα) =
[Coin(τᾱf̄ , ḡ); pα1∗(Coin(ταf, g))]. The cardinality R(ταf

′, g′) of R(ταf
′, g′) is independent of α ∈

(pα2 )−1([ᾱ]) ⊂ G2
2.

Finally, if G2 is Abelian, then there are canonical group structures on the three Reidemeister
sets, and the whole sequence becomes an exact sequence of groups and homomorphisms

An immediate Corollary which is useful in examples is the following:-

Corollary 2.5. If both Coin(ταf
′, g′) and Coin(τᾱf̄ , ḡ) are trivial, so also is Coin(ταf, g). More-

over the formula
[Coin(f̄ , ḡ); p̂1(Coin(f, g))]R(f, g) = R(f ′, g′)R(f̄ , ḡ)

holds if (a) G2 Abelian, or (b) G1 = G2, g = 1 and fn(G1) is commutative for some n ∈ N.
Under these same conditions R(f, g) = R(f ′, g′)R(f̄ , ḡ) iff [Coin(f̄ , ḡ); p̂1(Coin(f, g))] = 1. �

Condition (b) is dubbed “eventually commutative” by Jiang in [34]. We will show later that
the Root version of this product formula also holds (Corollary 2.14).

2.3 The analysis, bounds and formulas.

In this subsection we give a complete analysis of the situation when G2 is not abelian. Equation
(10) is well known and follows from the surjectivity of p̂2 (i.e. [19] and [22]).

R(f, g) =
⊔

[ᾱ]∈R(f̄ ,ḡ)

p̂−1
2 [ᾱ]. (15)

2It is known that R(ταf ′, g′) is independent of α ∈ (p2)−1(ᾱ) (as opposed to α ∈ (pα2 )−1([ᾱ]) (see [22] and
2.10), but this is not enough (see proof of Corollary 2.15). A first principles proof is complex (see Remark 4.5).
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Our 8 term sequence has allowed us to replace Ker p̂α2 with Im îα2 in the next Lemma which
otherwise is well known.

Lemma 2.6. (c.f. [17, 38, 39]) For each α ∈ G2, the designation [θ] [θα−1] determines a well
defined bijection (α−1)∗ : R(f, g) → R(ταf, g). Thus R(f, g) = R(ταf, g). Furthermore (α−1)∗

restricts to a bijection α̂−1 : p̂−1
2 ([ᾱ])→ Ker p̂α2 , and if ᾱ = p2(α), then the Diagram

p̂−1
2 ([ᾱ]) → R(f, g)

p̂2→ R(f̄ , ḡ)

(α̂−1)∗ ↓ ↓ (α−1)∗ ↓ (ᾱ−1)∗

Im îα2 → R(ταf, g)
p̂α2→ R(τᾱf̄ , ḡ)

is commutative. Thus #(p̂−1
2 ([ᾱ])) = #(Ker p̂α2 ) = #(Im îα2 ) for all α ∈ G1.

Proof. The function α∗ : R(ταf, g)→ R(f, g) given by α∗([θ]) = [θα] induces an inverse to each
vertical function, which in turn gives rise to an “inverse” commutative diagram. �

The point, as in the various references, is that we can transfer the study of the cardinality of
p̂−1

2 ([ᾱ]) to the study of #(Im îα2 ) in the “α” sequence. As we now see, they can be very different.

Example 2.7. Let K2 denote the Klein bottle thought of as the quotient space of R2, under the
equivalence relation defined by (s, t) ∼ ((−1)ks, t+ k) and (s, t) ∼ (s+ k, t) for any k ∈ Z. Note

that K2 fibres as S1 ↪→ K2 p→ S1 where p is induced by projection on the second factor. The
bottom end of the exact homotopy sequence is 1 → Z → π1(K2) → Z → 1. The correspondence
(s, t) → (−s,−t) induces a well defined fibre preserving map f on K2, which in turn induces a
self morphism of the above short exact sequence. If we choose different base points x = (0, 0) and

y = (0, 1
2 ) in K2 (with corresponding base points in base and fibre), the two sequences in Theorem

2.4 end with 1→ Z2 → R(fx∗ )
p̂2∗→ Z2 → 1, and 1→ Z→ R(fy∗ )

p̂α2∗→ Z2 → 1 respectively.

The 8 term sequences allows us to continue our analysis by examining the relationship between
the R(ταf

′, g′) and the Im(̂iα2 ) = Ker(p̂α2 ) (and hence between p̂−1
2 ([ᾱ])). For each α ∈ G1, define

an equivalence relation on R(ταf
′, g′) as follows: [θ] ∼ [µ] if and only if iα2∗([θ]) = iα2∗([µ]). Denote

the set of equivalence classes by R(ταf
′, g′) and its cardinality by R(ταf

′, g′).

Definition 2.8. A set χ̃ ⊆ G2 is said to be a set of Reidemeister lifts for Diagram (1), if for each
[ᾱ] ∈ R(f̄ , ḡ), there is exactly one α ∈ χ̃ with [p2(α)] = [ᾱ].

The first equation in the Lemma below is the Reidemeister analogy of an equation in Nielsen
fixed point fibre space theory ([30, Theorem 3.3]).

Lemma 2.9. Let χ̃ be a set of Reidemeister lifts for Diagram (1), then

R(f, g) =
∑
α∈χ̃

R(ταf
′, g′) and

∑
α∈χ̃

R(ταf
′, g′) ≥ R(f, g).

Proof. From Theorem 2.4 we have, for purely set theoretic reasons, that R(ταf
′, g′) = #(Ker p̂α2 )

= #(Im(̂iα2 )). The first equation now follows directly from Lemma 2.6, the definitions and
equation (15). The inequality also follows, since (clearly) R(ταf

′, g′) ≥ R(ταf
′, g′) for all α. �

The continuation of sequence (2) to the left by δα : Coin(τᾱf̄ , ḡ) → R(ταf
′, g′) allows us

to perform the same sort of analysis on the R(ταf
′, g′) given earlier in Lemmas 2.6 and 2.9 on

R(f, g). We start, by analogy with equation (15), with the disjoint union

R(ταf
′, g′) =

⊔
[γ]∈Ker(p̂α2 )=Im(̂iα2 )

(̂iα2 )−1([γ]). (16)

As with the p̂−1
2 [ᾱ], there need be no uniformity among the the cardinalities of the (̂iα2 )−1([γ]).

A topologically inspired example of this is given in [30, Example 1.3]. Our sequences allow us
(in the Lemma below) to express each (̂iα2 )−1([γ]) in equation (16) in terms of the image of some
δβ . For Ḡ1 and Ḡ2 finite, much of the essence of the Lemma is given in [22], in a multitude of

technical details, but of course phrased there in terms of ker îβ2 rather than Im δβ .
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Lemma 2.10. Let α, β ∈ G2, then (αβ−1)∗ : R(ταf, g) → R(τβf, g). If αβ−1 ∈ H2, then of
course (αβ−1)∗ : R(ταf

′, g′) → R(τβf
′, g′) is a bijection which in turn restricts to a bijection

(̂iα2 )−1([βα−1]) → Im δβ shown in the commutative diagram

(̂iα2 )−1([βα−1]) ↪→ R(ταf
′, g′)

îα2→ R(ταf, g)

↓ ↓ (αβ−1)∗ ↓ (αβ−1)∗

Im δβ ↪→ R(τβf
′, g′)

îβ2→ R(τβf, g),

so that #((̂iα2 )−1([βα−1])) = #(Im δβ) = [Coin(τᾱf̄ , ḡ) : p̂β1 (Coin(τβf, g)]).

Notation: We often use the abbreviations Cᾱ for Coin(τᾱf̄ , ḡ) and p̂β1 (Cβ) for p̂β1 (Coin(τβf, g)).

Proof. The element βα−1 induces an inverse to each vertical function. That ker îβ2 = Im δβ

and that #(Im δβ) = [Cᾱ : p̂β1 (Cβ)] comes from Theorem 2.4. �

Let χ̃ be a set of Reidemeister lifts and α ∈ χ̃. We choose Θα ⊆ {θ ∈ H2|p2(θα) = p2(α)}, one
θ for each Reidemeister class in Ker p̂α2 . Clearly #(Θα) = #(Ker p̂α2 ) = R(ταf

′, g′). Equation
(17) below appears in [22] under the hypothesis that Ḡ1 and Ḡ2 are finite.

Corollary 2.11. Let χ̃, α ∈ χ̃ and Θα be as above, then

R(ταf
′, g′) =

∑
θ∈Θα

[Cᾱ : p̂θα1 (Cθα)]. (17)

Moreover, if the set of numbers [Cᾱ : p̂θα1 (Cθα)] is bounded over θ ∈ Θα then we have that

R(ταf
′, g′)

Minθ∈Θα([Cᾱ : p̂θα1 (Cθα)])
≥ R(ταf

′, g′) ≥ R(ταf
′, g′)

Maxθ∈Θα([Cᾱ : p̂θα1 (Cθα)])
.

Proof. It is clear from the definition of Θα, that each [γ] ∈ Ker(p̂α2 )) can be written as [γ] = [θα]
for some θ ∈ Θα. Since #(Θα) = #(Ker p̂α2 ), we have from equation (16) that R(ταf

′, g′) =∑
θ∈Θα #((̂iα2 )−1([θα])) =

∑
θ∈Θα #(Im δθα) =

∑
θ∈Θα[Cᾱ : p̂θα1 (Cθα)], giving the first part.

Next since #(Θα) = R(ταf
′, g′), then R(ταf

′, g′) ≥Minθ∈Θα([Cᾱ : p̂θα1 (Cθα)]) ·R(ταf
′, g′), and

R(ταf
′, g′) ≤Maxθ∈Θα([Cᾱ : p̂θα1 (Cθα)]) ·R(ταf

′, g′). The second part follows. �

Let Θχ̃ denote the union over α ∈ χ̃ of the sets Θα (defined just prior to Corollary 2.11). We
call Θχ̃ a complete set of representative lifts for Diagram (1).

Theorem 2.12. If the [Cβ̄ : p̂β1 (Cβ)] are bounded over β ∈ Θχ̃, for some complete set Θχ̃ of
representative lifts for Diagram (1), then∑

α∈χ̃

R(ταf
′, g′)

Minθ∈Θα([Cᾱ : p̂θα1 (Cθα)])
≥ R(ταf, g) ≥

∑
α∈χ̃

R(ταf
′, g′)

Maxθ∈Θα([Cᾱ : p̂θα1 (Cθα)])

and ∑
α∈χ̃R(ταf

′, g′)

Minβ∈Θχ̃([Cβ̄ : p̂β1 (Cβ)])
≥ R(f, g) ≥

∑
α∈χ̃R(ταf

′, g′)

Maxβ∈Θχ̃([Cβ̄ : p̂β1 (Cβ)])
.

Proof. The inequalities of Corollary 2.11 remain true if we replace Maxβ∈Θα by Maxβ∈Θχ̃, and
Minβ∈Θα by Minβ∈Θχ̃. Taking the sum over α ∈ χ̃ gives both results by 2.9 and 2.11 . �

In our first application of Theorem 2.12 we discuss the finiteness of R(f, g). The Corollary
below generalizes a number of published results. These include that R(f̄ , ḡ) = ∞ implies that
R(f, g) = ∞ ([12, 19]). In [48, Theorem 1] Wong proved that if R(f̄ , ḡ) and all the R(ταf

′, g′)
are finite, then so also is R(f, g). Alternatively in both fixed point and coincidence cases when
R(f̄ , ḡ) is finite and if either Coin(τᾱf̄ , ḡ) = 1 (or Fix τᾱf̄ = 1) for all ᾱ, or if Coin(τᾱf̄ , ḡ) or
Ḡ1 are finite, and if R(ταf

′, g′) = ∞ for some α, then R(f, g) = ∞ ([18, 19, 12]). Other results
include that when Ḡ1 and Ḡ2 are finite, then R(f, g) < ∞ if and only if R(ταf

′, g′) < ∞ for
all α ([8]) (see also [19, 12, 15]). Our result most closely resembles the last formulation in that
for equivalence to hold we require only that R(f̄ , ḡ) and the [Coin(τᾱf̄ , ḡ); pα1∗(Coin(ταf, g))] are
bounded. The easy proof that it generalizes all the above is left to the reader.
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Corollary 2.13. If R(f̄ , ḡ) is infinite, so also is R(f, g). If the [Cᾱ : p̂α1 (Cα)] are bounded and
R(f̄ , ḡ) is finite, then R(f, g) is finite if and only if R(ταf

′, g′) is finite for every α ∈ χ̃. Of course
the [Cᾱ : p̂α1 (Cα)] are bounded and R(f̄ , ḡ) is finite if both Ḡ1 and Ḡ2 are finite.

Proof. The first part is obvious since p̂2∗ is surjective. The second part is forced by the inequal-
ities in Theorem 2.12. Finally [Cᾱ : p̂α1 (Cα)] ≤ #(Cᾱ) ≤ |Ḡ1|, and R(f̄ , ḡ) ≤ |Ḡ2|. �

We investigate next conditions under which we have formulas. Part (a) of the Corollary below
gives Reidemeister analogues of Nielsen theory formulas given by Jezierski in [33, Theorem 4.2]
and by Moh’D in [43, Theorem 4.9] (see Corollary 3.12). The Nielsen results in these references
are for Ḡ1 and Ḡ2 finite (where the boundedness conditions given below are automatic). It is also
the Reidemeister analogue of a fixed point Nielsen fibre space formula proved in [30, Theorem
4.1], and of a coincidence version stated but not proved in [26, Theorem 9.9] (see Theorem 3.32).

Corollary 2.14. Suppose that the [Cᾱ : p̂θα1 (Cβ)] are bounded over Θχ̃ and are independent (a)
of θ ∈ Θα, or (b) of θ ∈ Θχ̃ and in (b) that R(ταf

′, g′) are also independent of α ∈ G2. Then

(a) R(f, g) =
∑
α∈χ̃

R(ταf
′, g′)

[Cᾱ : p̂1(Cα)]
, respectively (b) [Cᾱ : p̂1(Cα)]R(f, g) = R(f ′, g′)R(f̄ , ḡ).

In particular, if g = ∗ (root theory) then [Ker f̄ : p̂1(Ker f)]RR(f) = RR(f ′)RR(f̄).

Proof. Under hypothesis (a), the R(ταf
′, g′) of Lemma 2.9 have the required form by Corollary

2.11. Part (b) follows as in the proof of Corollary 2.5 when [Cᾱ : p̂1(Cα)] is finite. When it is
not, then both sides are infinite.

In the root theory case note that Coin(ταf, ∗) = Ker ταf . Let α ∈ G2, since H2 is normal
then τα : G2 → G2 restricts to τα : H2 → H2 (by abuse of notation). This gives a morphism

1→ Ker f ′
i−→ H1

f ′−→ H2 → RR(f ′)→ 1

↓ 1 ↓ 1 ↓ τα ↓ [τα]

1→ Ker ταf
′ i−→ H1

ταf
′

−→ H2 → RR(ταf
′)→ 1,

of the sequences of Proposition 2.1, where [τα] is induced by τα. Clearly τα−1 induces the inverse
morphism. In particular Ker f ′ = Ker ταf

′ and RR(f ′) = RR(ταf
′). Similarly we have that

[Ker f̄ : p̂1(Ker f)] = [Ker τᾱf̄ : p̂1(Ker ταf)] for all α. The result follows. �

The first part of the next Corollary generalizes several results in the literature given under
the hypothesis that the Coin(τᾱf̄ , ḡ) (or the Fix(τᾱf̄)) =1 ([13, 17, 22, 48]). The last part is a
Reidemeister and coincidence analogue of a result by Fadell on natural fibre splittings ([11]).

Corollary 2.15. If R(f̄ , ḡ) and the R(ταf
′, g′) are finite, then

R(f, g) =
∑
α∈χ̃

R(ταf
′, g′) ⇐⇒ [Coin(τᾱf̄ , ḡ); p̂1(Coin(ταf, g))] = 1 for all α.

In particular, if both p1 and p2 have sections σ1 and σ2 respectively, with σ2(Ḡ2) normal in G2,
and if f(σ1(Ḡ1)) ⊆ σ2(Ḡ2) and g(σ1(Ḡ1)) ⊆ σ2(Ḡ2), then the equations hold true.

Proof. Sufficiency: Clearly if [Cβ̄ : p̂α1 (Cβ)] = 1 for all β ∈ G1, equality holds by Corollary 2.14.

Necessity: Suppose when R(f̄ , ḡ) and the R(ταf
′, g′) are finite, that [Cβ̄ : p̂α1 (Cβ)] > 1 for

some β ∈ G1. Then R(τβf
′, g′) > R(τβf

′, g′) by Corollary 2.11. Since the R(ταf
′, g′) are

independent3 of α ∈ (pα2 )−1([ᾱ]) ⊂ G2 (Theorem 2.4) we can, without loss assume that β ∈ χ̃, so∑
α∈χ̃R(ταf

′, g′) >
∑
α∈χ̃R(ταf

′, g′) = R(f, g) (by Lemma 2.9), a contradiction.

The given conditions in the last part give rise to a section to Coin(ταf, g)→ Coin(τᾱf̄ , ḡ). �
We end our analysis by generalizing and extending the recent Reidemeister averaging inequal-

ity ([22]). We do this by adding an upper bound, sharpening the given lower bound and by giving
a new formula in situations where Coin(ταf, g) might not be contained in H1.

Theorem 2.16. Suppose that Ḡ1 and Ḡ2 are finite, and that Ξ ⊂ G2 contains exactly one
representative α ∈ p−1

2 (ᾱ) for each ᾱ ∈ Ḡ2 (we call Ξ a set of lifts for p2). Then

Maxβ∈G1
(|p̂1(Cβ)|)
|Ḡ1|

∑
α∈Ξ

R(ταf
′, g′) ≥ R(f, g) ≥ Minβ∈G1

(|p̂1(Cβ)|)
|Ḡ1|

∑
α∈Ξ

R(ταf
′, g′).

3See footnote 2 and Remark 4.5
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Moreover if |p̂1(Cβ)| is independent of β ∈ G1 then

(a) R(f, g) =
|p̂1(Cβ)|
|Ḡ1|

∑
α∈Ξ

R(ταf
′, g′), and in particular (b) R(f, g) =

1

|Ḡ1|
∑
α∈Ξ

R(ταf
′, g′)

if Coin(ταf, g) ⊂ H1 for all α. If all the R(ταf
′, g′) are finite, then this last condition is both

necessary and sufficient for (b) to hold. �

Proof. Now
∑
α∈ΞR(ταf

′, g′) = |Ḡ1|
∑
α∈Ξ

1
#([ᾱ])

∑
θ∈Θα

1

p̂θα1 (|Coin(τθαf,g)|)
from [22]. Clearly

1
#([ᾱ]) ·

∑
θ∈Θα 1

Minβ∈G1
(|p̂β1 (Cβ)|)

≥ 1
#([ᾱ])

∑
θ∈Θα

1

p̂θα1 (|Coin(τθαf,g)|)
≥ 1

#([ᾱ]) ·
∑
θ∈Θα 1

Maxβ∈G1
(|p̂β1 (Cβ)|)

for each

α ∈ Ξ. Now
∑
θ∈Θα 1 = R(ταf

′, g′), so
∑
α∈Ξ

1
#([ᾱ])

∑
θ∈Θα 1 =

∑
α∈Ξ̃R(ταf

′, g′) = R(f, g).

Using this, summing the inequality over Ξ and multiplying by |Ḡ1| we have from above that
|Ḡ1|·R(f,g)

Minβ∈G1
(|p̂β1 (Cβ)|)

≥
∑
α∈ΞR(ταf

′, g′) ≥ |Ḡ1|·R(f,g)

Maxβ∈G1
(|p̂β1 (Cβ)|)

. Rearranging this gives the result. �

3 Applications to Nielsen theory

The aim of this section is to give applications of section 2 to four different Nielsen theories in two
distinct contexts. We deal first with the covering space context in which the i1 and i2 in Diagram
(1) are induced by covering projections. The second and dual context is the fibre space context,
where p1 and p2 are induced by fibrations. The four Nielsen theories are fixed point, classical
coincidence theory on oriented closed manifolds, semi-index coincidence theory, and finally root
theory.

Our technique in both contexts, is to outline precise conditions under which the usual inclu-
sions of Nielsen classes into the corresponding Reidemeister classes, give rise to exact subsequences
of the corresponding Reidemeister versions. In this way the algebraic results and proofs of section
3 can be mimicked almost word for word.

3.1 Notation and preliminaries

For maps f, g : X1 → X2, we use the symbols Φ(f, g) := {x ∈ X1|f(x) = g(x)}, Φ̃(f, g) and
Φ̃H(f, g) (Φ(f) and Φ̃H(f) in the fixed point case) to denote the set of coincidences and their
Nielsen classes respectively their mod (H) Nielsen classes where H1 and H2 are normal subgroups
of π1(X1) and π1(X2) respectively. Without loss of generality we assume all the Φ(f, g) are finite.

When x ∈ Φ(f, g) we use the symbols fx∗ , g
x
∗ : π1(X1, x)→ π1(X2, f(x)) to denote the induced

homomorphisms. With the usual notation we have well known injections

ρ : Φ̃(f, g)→ R(fx∗ , g
x
∗ ) and ρH : Φ̃H(f, g)→ RH(fx∗ , g

x
∗ ) (18)

defined, (for example) on a class [yH1] ∈ Φ̃H(f, g) by ρH([aH1]) = [g(λ)f(λ−1)H2], where λ :
x→ y is any path, and y is any representative of [yH], and where R(fx∗ , g

x
∗ ) and RH(fx∗ , g

x
∗ ) are

respectively the ordinary and mod H Reidemeister numbers, and x ∈ X1 represents the basepoint.
We assume the reader is familiar with the following notions of index and semi index.

Definition 3.1. The phrase a (semi) index I (sometimes an essentiality I) refers to one (or
more) of the following scenarios:-

(i) I1 is a fixed point index defined for self maps f (i.e. g = 1) on either compact connected
ANRs, or compact connected manifolds ([34, 5])

(ii) I2 is the usual coincidence index defined for maps f, g : X1 → X2, of compact oriented
closed manifolds X1 and X2 of the same dimension (i.e. [46])

(iii) I3 is the coincidence semi - index defined for smooth maps f, g : X1 → X2 defined on
closed smooth manifolds X1 and X2 of the same dimension (see [9]).

(iv) I4 which takes values in Z ∪ Z2, is multiplicity for root classes as defined in [4, page 9].
In particular g is the constant map.

Convention 3.2. We adopt the convention that each (semi) index indicated in Definition 3.1
is attached to specific category of (fibre) spaces, maps and homotopies. So when using I3 for
example, the base, total space and fibres of any fibration, covering space, map, lifts and all
homotopies are smooth. Of course we exclude homotopies of g(= 1) when using I1.
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Each (semi) index I in Definition 3.1 gives rise to a notion of essentiality. A class [x] (some-
times A) is said to be essential if its (semi) index I([x]) 6= 0 (6= 0 or [0] for I4). Similarly a mod
H class is essential if it’s index or semi index is non-zero. For each I in Definition 3.1 the (I)
Nielsen number NI(f, g) is defined to be the number of essential (with respect to I) classes of
Φ̃(f, g). We use a subscript for mod H versions (i.e NIH(f, g)). In more usual notation

NI1(f, g) = N(f), NI2(f, g) = N(f, g), NI3(f, g) = N(f, g) and NI4(f, g) = NR(f), (19)

where N(f) is the classical Nielsen number and NR(f) is the Nielsen root number (i.e. [4]).
We extend each (semi) index to Reidemeister classes (this is the essence of the modified

fundamental group approach - see [24, 20]). Let [α] ∈ R(fx∗ , g
x
∗ ), for each t = 1, · · · 4

It([α]) :=

{
It([a]) if [α] = ρH([a]), for some [a] ∈ Φ̃(f, g),
0 otherwise.

(20)

With this definition the functions ρ and ρH are index preserving.

Recall that the linearization of a self map f : T → T of a torus T is defined, up to conjugation,
to be the matrix associated with the linear transformation f∗ : π1(T )→ π1(T ). The linearization
of a self map f : N → N of a nilmanifold N is the block diagonal matrix whose blocks are formed
from the fibred toral decomposition (i.e. [27, Theorem 3.1]).

Proposition 3.3. (c.f [2, 31]). Let N be a nilmanifold (in particular a torus) and f, g : N → N
maps with linearizations F respectively G (chosen with respect to the same basis). Then for each
I of Definition 3.1 we have that NI(f, g) = |det(F −G)| (note G = I for I1, and G = 0 for I4).

Proof. Since for orientable manifolds we have that NI1(f, g) = NI2(f, 1) = N(f), NI2(f, g) =
NI3(f, g) and NI4(f, g) = NI2(f, ∗) = NR(f), then we need only consider I2. Now nilmanifolds
(and hence tori) are Jiang type spaces for coincidences ([16]), and L(f, g) = det(F − G). If this
is zero so is NI2(f, g). When det(F −G) 6= 0 then NI2(f, g) = R(f∗, g∗) = |det(F −G)| for tori
by Corollary 2.3. For nilmanifoldsNI2(f, g) = |det(F −G)| by the product theorem ([31, Lemma
7.3]) on the fibred toral decomposition (i.e. [27, Theorem 3.1]). �

3.2 Nielsen numbers, covering maps, homogeneous spaces etc.

In this subsection we give our applications of section 2 to four Nielsen theories in the covering
space contex. We generalize the work of Jezierski and Moh’D from finite index covering spaces
([33, 43, 44]) as well as providing upper and lower bounds on their numbers. This work relates
the Nielsen numbers of maps to a linear combination of the Nielsen numbers of representative
lifts of the maps involved. In a similar way our results also generalize and extend those of a
number of authors who have exhibited averaging formulas that compute both Nielsen fixed point
and coincidence point numbers on infra-nilmanifolds or infra-solvmanifolds of type R (fixed point
cases) and oriented infra-nilmanifolds (coincidence case). In particular existing results are all
extended to give upper and sharpen lower, bounds on the NI(f, g) in all four theories. Finally
this subsection also considers the relationship between ordinary and “Mod H” Nielsen numbers.

Let H1 = π1(X̃1), H2 = π1(X̃2), x̃ ∈ Φ(f̃ , g̃) and q1(x̃) = x. Using the notation of subsection
3.1 we identify the right hand side of Diagram (7) below obtaining, for each such x̃, the diagram

1→ H1
q̂1∗−→ π1(X1, x)

j1−→ π1(X1, x)/H1 → 1

f̃ x̃∗ ↓↓ g̃x̃∗ fx∗ ↓↓ gx∗ f̄x∗ ↓↓ ḡx∗

1→ H2
q̂2∗−→ π1(X2, f(x))

j2−→ π1(X2, f(x))/H2 → 1.

(21)

Theorem 2.4 gives exactness of the top sequences of the various diagrams presented in Proposition
3.4 below. Our aim is to give necessary and sufficient conditions for exactness at ĵxk1∗ , δ̃xk and
q̃αk1 in all of the various subsequences that diagram represents. With these subsequences we can
mimic the proofs and results of section 2.

Let χ̃ = {α = 1, α2 · · · , αR(f̄∗,ḡ∗)} ⊂ π1(X2) be a chosen set of Reidemeister lifts for Diagram

(21). Then Φ(f, g) =
⊔
αk∈χ̃ q1(Φ(αkf̃ , g̃)), the union is disjoint, and q1(Φ(αf̃, g̃)) is a union
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of coincidence classes of f and g. For each αk ∈ χ̃ let Ek(f, g) denote the subset of essential
classes contained in p1(Φ̃(αkf̃ , g̃)) (some of the Ek(f, g) may be empty). Then for each of the
essentialities I of Definition 3.1 we have that

E(f, g) =
⊔
αk∈χ̃

Ek(f, g), so NI(f, g) =
∑
αk∈χ̃

#(Ek(f, g)), (22)

Proposition 3.4. For I ∈ {I1, I2, I3}, if Im δxk∩Im ρ̃ 6= ∅ then δxk : Coin(f̄xk∗ , ḡxk∗ )→R(f̃ x̃k∗ , g̃x̃k∗ )
factors through E(αkf̃ , g̃) as shown, q̃1 : Φ̃(αkf̃ , g̃)→ Φ̃(f, g) restricts to q̃αk1 : E(αkf̃ , g̃)→ E(f, g)
which in turn factors through Ek(f, g) as shown. This gives rise to the following commutative di-
agram which exhibits subsequences of the form given in (8)

Coin(fxk∗ , gxk∗ ) ĵ
xk
1∗→Coin(f̄xk∗ , ḡxk∗ )

δ̃xk ''

δxk→R(αkf̃
x̃k
∗ , g̃x̃k∗ )

q
xk
2∗ // R(fxk∗ , gxk∗ )

E(αkf̃ , g̃)

ρ̃

OO

q̃
αk
1 ��

q̃
αk
1 // E(f, g).

ρ

OO

Ek(f, g)

??

If I = I4 and f is root essential, then RN(f) = RR(f) which can be computed from the Reide-
meister sequence.

Note we have yet to prove Coin(fxk∗ , gxk∗ )→ Coin(f̄xk∗ , ḡxk∗ )→ E(αkf̃ , g̃)→ E(f, g) is exact.

Proof. It is well known that if A ⊂ Φ(f, g) and Ã ⊂ Φ̃(αkf̃ , g̃) are Nielsen classes with q1(Ã) = A,
then for t = 1, 2, 3 we have that It(Ã) = ι(A) · It(A) for some integer ι(A) dependent only on
A (see [34, 33, 45]). In the case of semi- index, ι(A) can be zero, but in any case, if some Ã is
essential, then this ι(A) 6= 0, and so A(=q̃αk1 (Ã)) and every other Ã′ with q1(Ã′) = A is essential
too. So, when A is essential either all Nielsen classes in q−1

1 (A) are essential, or none of them
are. Thus when Im δxk ∩ Im ρ̃ 6= ∅ all Ã with q1(Ã) = A = [xk] are essential. And this means
all Reidemeister classes in Im δxk are essential. For the last part see [4]. �

Corollary 3.5. If Im δxk ∩Im ρ̃ 6= ∅ there are [Coin(f̄xk∗ , ḡxk∗ ) : ĵxk1∗ (Coin(fxk∗ , gxk∗ ))] coincidence
classes of E(αkf̃ , g̃) that coalesce to qαk1 ([x̃k]) = [xk] in Ek(f, g). In particular we have that the
[Coin(f̄xk∗ , ḡxk∗ ) : ĵxk1∗ (Coin(fxk∗ , gxk∗ ))] are independent of xk in its class in E(f, g). �

As we shall soon see, the Nielsen analogue of the equation R(f, g) =
∑
α∈χ̃R(ταf

′, g′) in
section 2 can fail. We give below necessary and sufficient conditions for it to hold. But first we
define our terms. Let Ã, B̃ ∈ E(αkf̃ , g̃), we say Ã and B̃ are equivalent if they both lie in the
image of δ̃xk for some x̃k ∈ Φ(αkf̃ , g̃) (see Proposition 3.4). We use E(αkf̃ , g̃) to denote the set
of equivalence classes with cardinality E(αkf̃ , g̃). We adopt some notions from [43].

Definition 3.6. (c.f. Moh’D [43]). For I ∈ {I1, I2, I3} let EED(f, g) denote the set of essential
defective classes [y] ∈ E(f, g) for which |ĵy1∗(Coin(fy∗ , g

y
∗)| is even.

We call NED(f, g) := #(EED(f, g)) the Essential Defective Nielsen number of f and g. It is a
homotopy invariant lower bound for #(EED(f, g)) ([43]). We use the symbol NIL(f, g) (L for the
linear part of NI(f, g) - [43]) to denote the number

NIL(f, g) := NI(f, g)−NED(f, g)

The proof of the next Lemma is trivial from the definitions.

Lemma 3.7. NIL(f, g) =
∑
αk∈χ̃E(αkf̃ , g̃). �

Proposition 3.8. Let I ∈ {I1, I2, I3}. The following are equivalent:-
(i) NI(f, g) = NIL(f, g).,

(ii) the q̃αk1 : E(αkf̃ , g̃)→ Ek(f, g) are surjective for all k,
(iii) for all Ã and A with q1(Ã) = A, we have that Ã is essential if and only if A is essential.
(iv) there are no essential defective classes [y] ∈ E(f, g) for which |ĵy1∗(Coin(fy∗ , g

y
∗)| is even.

(v) the number NED(f, g) = 0,
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These equivalent conditions are fulfilled if one or more of the following hold:-
(vi) there are no defective classes, in particular if I = I1 or I2,
(vii) all the |jαk1∗ (Coin(αkf̃∗, g̃∗))| are odd, and in particular
(viii) Coin(ᾱf̄∗, ḡ∗) = 1 for all ᾱ.

Under these conditions Coin(fxk∗ , gxk∗ )→ Coin(f̄xk∗ , ḡxk∗ )→ E(αkf̃ , g̃)→ E(f, g) is exact.

Remark 3.9. The crucial enabling ingredient. As McCord observed in 1992 in [42, Page
355], either all classes that cover an essential class in Φ̃(f, g) are essential, or all are inessential.
Proposition 3.8 tell us exactly when they are essential. As we shall see, when this is the case, we
can essentially replace Reidemeister numbers in section 3 with the appropriate Nielsen numbers.
So Proposition 3.8 gives the crucial enabling ingredient for this subsection. In terms of root
theory, when f is root essential we compute NR(f) using the Reidemeister formulas of section 2.

Proof of Proposition 3.8. As in the proof of Proposition 3.4, for t = 1, 2, 3 when q1(Ã) = A, we
have that It(Ã) = ι(A)·It(A) for some integer ι(A) depending only on A. Using the same ideas we
see that each of the five conditions holds iff whenever It(A) 6= 0 in such a formula, then ι(A) 6= 0.
The condition fails only if there is an essential defective class A = [x] for which |ĵx1∗(Coin(fx∗ , g

x
∗ )|

is even (see Moh’D’s modification [43, Proposition 3.12], of Vendrúscolo’s analysis [45, Theorem
3.7]). And A can only be defective when It = I3. The result follows. �

An example where the equivalent conditions of Proposition 3.8 do not hold (i.e. when
NED(f, g) 6= 0) is given by Moh’D in [43, Example 3.18].

Let Θαk ⊆ {θ ∈ H2|qxk2∗ (θαk) = qxk2∗ (αk)} be a set of representatives for Im qxk2∗ chosen as in

Lemma 2.10, and let EΘαk := {θ ∈ Θαk | [θ] ∈ Im ρ̃}. We use Cᾱk and ĵθαk1∗ (Cθαk) to abbreviate

Coin(ᾱkf̄∗, ḡ∗) respectively ĵθαk1 (Coin(θαkf̃∗, g̃∗). We come to the analogy of Corollary 2.11

Lemma 3.10. Let I ∈ {I1, I2, I3}, χ̃ a set of Reidemeister lifts, and αk ∈ χ̃. If NI(αkf̃ , g̃) 6= 0

NI(αkf̃ , g̃) =
∑

θ∈EΘαk

[Cᾱk : ĵθαk1∗ (Cθαk)].

In particular when NI(αkf̃ , g̃) 6= 0, all the [Cᾱk : ĵθαk1∗ (Cθαk)] are finite. Furthermore

NI(αkf̃ , g̃)

Minθ∈EΘαk([Cᾱk : q̂θαk1∗ (Cθαk)])
≥ E(αkf̃ , g̃) ≥ NI(αkf̃ , g̃)

Maxθ∈EΘαk([Cᾱk : q̂θαk1∗ (Cθαk)])
.

Proof. By Proposition 3.4, the injective image of ρ̃ : E(αkf̃ , g̃) → R(f̃ x̃k∗ , g̃x̃k∗ ) is a union of
equivalence classes under the relation that defines R(f̃ x̃k∗ , g̃x̃k∗ ). By definition there are #(EΘαk)
of them, and the cardinality of the equivalence class indexed by θ is [Cᾱk : q̂θαk1∗ (Cθαk)]. These
numbers are finite whenever NI(αkf̃ , g̃) 6= 0 by the first part of the Lemma. The proof of the
last part is identical to that of Corollary 2.11, once we replace Θα there with EΘαk. �
Theorem 3.11. Let I ∈ {I1, I2, I3}, EΘαk and χ̃ and EΘχ̃ be as above, Let EΘχ̃ := ∪χ̃EΘαk,
then∑

αk∈χ̃

NI(αkf̃ , g̃)

Minθ∈EΘα̃k([Cᾱk : q̂θαk1∗ (Cθαk)])
≥ NIL(f, g) ≥

∑
αk∈χ̃

NI(αkf̃ , g̃)

Maxθ∈EΘα̃k([Cᾱk : q̂θαk1∗ (Cθαk)])
,

and ∑
αk∈χ̃N

I(αkf̃ , g̃)

Minθ∈EΘχ̃([Cᾱk : q̂θαk1∗ (Cθαk)])
≥ NIL(f, g) ≥

∑
αk∈χ̃N

I(αkf̃ , g̃)

Maxθ∈EΘχ̃([Cᾱk : q̂θαk1∗ (Cθαk)])
.

Of course if any of the conditions of Proposition 3.8 are satisfied, then NIL(f, g) = NI(f, g).

Proof. Note that
∑
αk∈χ̃E(αkf̃ , g̃) = NI(f, g)−NED(f, g). The proof now follows the pattern

of Theorem 2.12 using Lemma 3.10 instead of Corollary 2.11, and replacing Θχ̃ by EΘχ̃. �

Our first Corollary generalizes (from Ḡ1 and Ḡ2 finite) Jezierski’s fixed point result ([33,
Theorem 4.2]) and Moh’D’s generalization to coincidences in [43, 44]. To see that the equations
in the Corollary are simply different formulations of those in these references, we refer the reader
to [33, Corollary 3.11] and [43, Proposition 3.9]. The generalization to cases where Ḡ1 and Ḡ2

may not be finite is useful when dealing with Mod K Nielsen classes of the fibres in the Nielsen
theory of fibre-preserving maps in the next subsection (see also Proposition 3.22).
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Corollary 3.12. (Generalizing [33, 44, 43]) Let I ∈ {I1, I2, I3}, and χ̃ be a set of Reidemeister
lifts for Diagram (21). Let Eχ̃ be the set of αk ∈ χ̃ for which NI(αkf̃ , g̃) 6= 0. Then if for any
αk ∈ Eχ̃ the [Cᾱk : ĵθαk1∗ (Cαk)] are independent of θ in EΘαk, then

NI(f, g)−NED(f, g) =
∑
αk∈Eχ̃

NI(αkf̃ , g̃)

[Cᾱk : ĵαk1∗ (Cαk)]
, while NI(f, g) =

∑
αk∈Eχ̃

NI(αkf̃ , g̃)

[Cᾱk : ĵαk1∗ (Cαk)]

if any of the conditions of Proposition 3.8 are satisfied. If f is root essential then we have that
[Ker f̄ : q̂1∗(Ker f)]NR(f) = RR(f̃)RR(f̄) (q1 : π1(X1)→ π1(X1)/H1, and f̄ is induced by f).

We refer the reader to [33] and [43] for examples of the Corollary.

Proof. Under the given hypothesis we have from Lemma 3.11 that the E(αkf̃ , g̃) are equal to
N(αkf̃ , g̃)/[Cᾱk : ĵαk1∗ (Cαk)]. Lemma 3.10, Proposition 3.8 and Corollary 2.14 give the result. �

Corollary 3.13. If in Corollary 3.12, we have that [Cβ̄ : ĵβ1∗(Cβ)] = 1 for all β ∈ EΘχ̃ then

NI(f, g)−NED =
∑
α∈Eχ

NI(αf̃, g̃). In particular NI(f, g) =
∑
α∈Ẽχ

NI(αf̃, g̃)

if I = I1 or I2, or all Coin(ᾱf̄∗, ḡ∗) = 1, or all the |ĵβ1∗(Cβ)| are odd. �

Example 3.14. Let q : S2 → RP 2 be the quotient map, and f = g : RP 2 → RP 2 the identity.
Now π1(RP 2) = Z2 = {1, β}, where β is the antipodal map. From Proposition 2.1 we have that
Fix(f∗) = R(f∗) = Z2. But π1(S2) = 1, so j∗ : R(fx∗ ) → R(f̄x∗ ), and jx∗ : Fix(fx∗ ) → Fix(f̄x∗ )
are isomorphisms for any x ∈ Φ(f) by Theorem 2.4. This gives [Fix(f̄x∗ ) : j∗(Fix(fx∗ ))] = 2/2 = 1
for any x ∈ Φ(f). Let f̃ : S2 → S2 be the identity lift of the identity. Now βf̃ = β and Φ(β) = ∅,
so N(βf̃) = N(β) = 0. Also L(f̃) = 2 so N(f̃) = R(f̃) = 1. Note that Coin(ᾱf̄∗, ḡ∗) 6= 1 and

|ĵβ1∗(Cβ)| = 2 is even, but NED(f, g) = 0 since I = I1. Therefore N(f) =
∑
α∈Eχ̃N(αf̃) = 1.

We come now to the Nielsen counterpart of our extensions and generalizations of the Reide-
meister bounds on averaging formulas (Theorem 2.16).

Theorem 3.15. Suppose that π1(X1)/H2 and π1(X2)/H2 are finite. Let Ξ ⊂ π1(X2) be a set of
lifts for j2 (Diagram (21), Theorem 2.16). Then for each of the essentialities of Definition 3.1

Maxβ∈π1(X)(|ĵβ1 (Cβ)|)
[π1(X2) : H2]

∑
α∈EΞ

NI(αf̃, g̃) ≥ NL(f, g) ≥
Minβ∈π1(X)(|ĵβ1 (Cβ)|)

[π1(X2) : H2]

∑
α∈EΞ

NI(αf̃, g̃).

where NL(f, g) := NI(f, g)−NED(f, g), and EΞ is the subset of Ξ for which NI(αf̃, g̃) 6= 0. In
particular, if any of the conditions of Proposition 3.8 are satisfied, then

Maxβ∈π1(X)(|ĵβ1 (Cβ)|)
[π1(X2) : H2]

∑
α∈EΞ

NI(αf̃, g̃) ≥ NI(f, g) ≥
Minβ∈π1(X)(|ĵβ1 (Cβ)|)

[π1(X2) : H2]

∑
α∈EΞ

NI(αf̃, g̃).

Proof. The proof mimics that of Theorem 2.16 replacing R(ταf
′, g′) by E(ταf̃ , g̃) and R(ταf

′, g′)
by E(ταf̃ , g̃). Since

∑
θ∈EΘα 1 = E(ταf

′, g′) we also replace Θα by EΘα, and use the equality∑
α∈χ̃E(ταf̃ , g̃) = NL(f, g) from Lemma 3.7. �

As we shall soon see, our first Corollary essentially contains a number of averaging formulas
(see Remark 3.18) as well as an extension and two generalizations (Proposition 3.17).

Corollary 3.16. If |ĵβ1 (Cβ)| is independent of those β ∈ π1(X1) for which NIt(βf̃ , g̃) 6= 0, and

if in addition either I = I1 or I2, or I = I3 and |ĵβ1 (Cβ)| is odd, then with EΞ as above

NI(f, g) =
|ĵβ1 (Cβ)|

[π1(X2) : H2]

∑
α∈EΞ

NI(αf̃, g̃). In particular NIt(f, g) =
1

[π1(X2) : H2]

∑
α∈EΞ

NIt(αf̃, g̃)

if t = 1, 2, 3, and Coin(ταf, g) ⊆ H1 for all α for which NIt(αf̃, g̃) 6= 0.
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Proof. In each case the Max and Min in Theorem 3.15 coincide. In the second case this
number is 1. So as appropriate the right hand side of each equation in the Corollary is equal to
NIt(f, g)−NED(f, g). In both cases however, NED(f, g) = 0 from Proposition 3.8 . �

In addition to illustrating Corollary 3.13, Example 3.14 also illustrates the first formula in
Corollary 3.16. This very same example was used in [38, Example 4.3] to show the averaging
formula in 3.16 need not hold when Coin(αf̃, g̃) 6⊂ H1 for all α.

Corollary 3.17. (Generalizing both [39, Theorem 4.9] and [41, Theorem 4.1]) Suppose, in the
context of this subsection that X1 and X2 are orientable infra-nilmanifolds of the same dimension,
or smooth non orientable infra-nilmanifolds of the same dimension, or X1 = X2 is a smooth infra-
solvmanifold of type R (see [41, p. 119]). Let A = q1(Φ(αf̃, g̃)) be essential and NI(αf̃, g̃) 6= 0,
then Coin(ταf∗, g∗) = 1. So then, in the usual notation

NI3(f, g) =
1

[π1(X1) : π1(X̃1)]

∑
α∈EΞ

NI3(αf̃, g̃).

Proof. When NI(αf̃, g̃) 6= 0, then Coin(αf̃∗, g̃∗) = 1. For infra-nilmanifolds this comes from
[14], and for solvmanifolds of type R from the coincidence analogue of the proof that weakly Jiang
maps on solvmanifolds are “essentially fix trivial” (see [27])). From 2.4, when Coin(αf̃∗, g̃∗) = 1
then Coin(ταf∗, g∗) is essentially a subgroup of Coin(ᾱf̄∗, ḡ∗) ⊂ π1(X1)/H1 (a finite group). But
Coin(ταf∗, g∗) ⊂ π1(X1) which is torsion free, so Coin(ταf∗, g∗) must be trivial.

For the formula, in each case the spaces X̃1 and X̃2 are appropriate quotients by torsion free
discrete cocompact subgroups of simply connected nilpotent respectively solvable of type R, Lie
groups. Each case gives rise to a diagram of the form of the one given in Diagram (21). As above
Coin(ταf∗, g∗) = 1 when NI(αf̃, g̃) 6= 0. The result follows by Corollary 3.16. �

Remark 3.18. The history of averaging formulas. Corollary 3.17 includes the following
Nielsen averaging formulas:- firstly [9, Theorem 2.5] (orientable double cover), next [38, Theorem
3.5] (fixed point version on infra-nilmanifolds), then [39, Theorem 4.9] (coincidence version for
orientable infra-nilmanifolds), and in the same year [41, Theorem 4.2] (fixed point version for
infra-solvmanifolds of type R). This formula for Nielsen numbers first appeared in [42, Corollary
5.10] with no connection to the sequences. The Reidemeister version appeared in [22] in 2012.
The two non orientable cases presented in Corollary 3.17, are new.

In our illustration of the non orientable case, which cost me a finite number of beers in Daejeon
Korea, we use the identification of Aff(Rn) = Rn o GLn(R) with GLn+1(R) defined using the
injective homomorphism ∆ : Aff(Rn)→ GLn+1(R) given on (a,A) ∈ Rn o GLn(R) by

∆(a,A) :=

(
A a
0 1

)
. (23)

Example 3.19. Non-orientable infra-nilmanifold example. For k = 1, 2, 3 let ek denote
the standard basis elements of R3, tk := ∆(ek, I), where I is the 3 × 3 identity matrix, and let
β, γ ∈ Im(∆) be given by

β := ∆(b, B) =


−1 0 0 0
0 1 0 0
0 0 1 1

2
0 0 0 1

 and γ := ∆(c, C) =


1 0 0 1

2
0 −1 0 0
0 0 1 0
0 0 0 1

 ,

where B and C (used below) and b and c are determined by these equations. Let M be the
3-dimensional non-orientable (because det(B) = det(C) = −1) infra-nilmanifold M := Π\R3,
where Π ⊂ Aff(Rn) is generated by t1, t2, t3, β and γ. We identify the integer lattice of pure
translations in Π with Z3, and this gives rise to the exact sequence

1→ Z3 → Π→ Z2 × Z2 → 1.

To see that the holonomy group is indeed Z2 ×Z2 observe that β2 = t3, γ2 = t1, βγ = γ−1β and
(βγ)2 = βγγ−1β = β2 = t3, so that β, γ and βγ each have order 2.
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Next, since M is a K(π, 1), the map f : M → M is determined up to homotopy by defining
f∗ on Π by f∗(β) = t2p1 t

`
3β, f∗(γ) = tn1 t

2q
2 γ, f∗(t1) = t1+2n

1 , f∗(t2) = tm2 and f∗(t3) = t1+2`
3 for

arbitrary integers `, m, n, p and q. Let g : M →M be determined by g∗(β) = tx1t
y
2t
z
3, g∗(γ) = 1,

g∗(t1) = 1, g∗(t2) = 1 and g∗(t3) = t2x1 t2y2 t2z3 for arbitrary integers x, y, and z.
The formulas give rise to lifts f̃ and g̃ of f and g to the 3-torus with respective linearizations

F =

 1 + 2n 0 0
0 m 0
0 0 1 + 2`

 and G =

 0 0 2x
0 0 2y
0 0 2z

 .

By Corollary 3.17 and Proposition 3.3 (maps of tori) we have that

NI3(f, g) =
1

4
(|det(F−G)|+|det(BF−G)|+|det(CF−G)|+|det(BCF−G)|) = |(1+2n)m(1+2`−2z)|.

As an alternative way to see this, note that Coin(f̄ , ḡ) = 1, so R(f̄ , ḡ) = 1 by Proposition 2.1.
Corollary 3.13 gives that NI3(f, g) = NI3(f̃ , g̃), which is also equal to |(1 + 2n)m(1 + 2`− 2z)|.

The following root theory example also illustrates weakly Jaing possibilities (see Remark 3.21).

Example 3.20. Root theory example. Let Π ⊂ Aff(R2) be generated by t1, t2 and β, where
for k = 1, 2 the tk = ∆(ek, I), are the 2 dimensional versions of the tk in Example 3.19, and β is

β :=

 −1 0 0
0 1 1

2
0 0 1

 F :=

(
a 0
b d

)
.

Then β2 = t2, Π = < t1, β | βt1 = t−1
1 β > and X := Π\R2 is the Klein Bottle, and is covered by

X̃ := T 2, the 2-torus. Since X is a K(π, 1) we define a self map f up to homotopy by putting
f∗(t1) = ta1t

b
2, and f∗(β) = βd (so that f∗(t2) = td2) where a is odd, and b, d ∈ Z arbitrary. Now f

lifts to X̃ with linearization F given above, so for any essentiality I for which f is root essential
we have that NRI(f) = RR(f̃) = |det(F )| = |ad|.

Remark 3.21. Various root essentialities. The maps in root theory can be thought of as
weakly Jiang (the Nielsen number is zero or equal to the Reidemeister number). When the latter
case holds the Nielsen number can be computed from the algebra. Though we defined I4 explicitly,
there are many ways of defining root essentiality, and each has the weakly Jiang property. In
particular, in addition to I4 we can add to the list simply by putting g equal to a constant map
in either I2 or I3. In addition we could replace Z coefficients in these last two essentialities with
Z2 coefficients, or we could use the non-empty homotopy invariance root essentiality (see [1]).

We close the subsection with a result which connects Mod H Nielsen numbers with ordinary
Nielsen numbers. Our special interest is in the Mod K Nielsen numbers on the fibres of fibre
preserving maps. Though needed in the fibre space contex, its proof belongs here. It is here
where (unlike [33, 44, 43]) we need the possibility that Ḡ1 and Ḡ2 are infinite (Corollary 3.12).
In the context of Diagram of (5), suppose that x ∈ Φ(f, g), and b = p1(x). Let Fb = p−1

1 (b),
Ff(b) = p−1

1 (f(b)) and fb, gb : Fb → Ff(b) be the restrictions of f and g. Then, with the obvious
notation, we have the following special case (ignore f, g : E1 → E2 for now) of Diagram (21)

Fb → E1

fb ↓↓ gb f ↓↓ g
Ff(b) → E2

K1 := Ker i1∗ −→ π1(Fb)
j1∗−→ π1(Fb)/K1

fxbK∗ ↓↓ gxbK∗ fxb∗ ↓↓ gxb∗ f̄xb∗ ↓↓ ḡxb∗

K2 := Ker p2∗ −→ π1(Ff(b))
j2∗−→ π1Ff(b))/K2.

(24)

Note that instead of writing f̃b we have written fbK . Since we are dealing with fibre spaces here,
each ordinary Nielsen class contained in a mod K Nielsen class has the same index ([47, 25, 31]).
So suppose further, that x lies in an essential Nielsen class, then in situations like this, we can
modify and extend the sequences in Equation (8) to give sequences of the form

Coin(fxb∗, g
x
b∗)

q∗→ Coin(f̄xb∗, ḡ
x
b∗)

δ→ R(fbK∗, fbK∗)
Eq1→ E(fb, gb)→ EK(fb, gb)→ 1.

This easily gives rise the the following result, stated in terms of the various mod K Nielsen
numbers NIK(fb, gb) which are useful in Theorems 3.30 and 3.32.
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Proposition 3.22. Mod K Nielsen numbers on the fibres. If, in the situation just described
we have that π1(Ff(b)) is abelian, then for any x ∈ Φ(fb, gb) we have

NIK(fb, gb) =
[Coin(f̄xb∗, ḡ

x
b∗) : q∗(Coin(fxb∗, g

x
b∗)]N

I(fb, gb)

R(fxbK∗, g
x
bK∗)

.

3.3 Nielsen theories of Fibre preserving maps

Though the fibre space context of our applications were the subject of [26], there are results here
that are new. These include upper and lower bounds on the various Nielsen numbers we are
seeking to compute, but also in our way of using the bounds to prove formulas. In addition we
prove a number of results stated without proof in [26]. These including the algebraic results out
of which the Nielsen bounds presented here fall. In addition we take the opportunity to prove
Theorem 3.34 stated, but again not proved, in [26]. This result was expected to appear in a joint
publication with Keppelmann, but this is now not going to happen. As a Corollary of this results
we give an alternative, much shorter and simpler proof of a result by Dobreńko and Jezierski
(Corollary 3.35). The original proof gives a prototype of the averaging formula.

Using the notation and notions explained in diagram (24), and combining the two left hand
sides of Diagrams in (5) and (24), we produce (for each x) the following example of Diagram (1)

1→ π1(Fb, x)/K1 −→ π1(E1, x)
p1∗−→ π1(B1, b) → 1

↓↓ f∗ ↓↓ g∗ f̄∗ ↓↓ ḡ∗

1→ π1(Ff(b), f(x))/K2 −→ π1(E2, f(x))
p2∗−→ π1(B2, f̄(b)) → 1

(25)

(we assume throughout that the Topological spaces in Diagrams (5) and (24) are all path con-
nected). We will use this to deduce subsequence (6) in Lemma 3.26 below.

The functions i1 and p1 in Diagrams (5) and (24) induce the following sequence of finite sets

Φ̃K(fb, gb)
i1→ Φ̃(f, g)

p1→ Φ̃(f̄ , ḡ).

Clearly different choices of b ∈ Φ(f̄ , ḡ) will give different “fibres” Φ̃K(fb, gb) for this sequence,
and p1 need not be surjective. However each non-empty Nielsen class A in Φ̃(f, g) determines
such a sequence. In particular each Nielsen class A of f and g has “components” denoted Ã in
Φ̃K(fb, gb) and Ā := p1(A) in Φ(f̄ , ḡ), where i1(Ã) = A, and b ∈ Ā. There are of course in general
many choices of Ã in this scenario.

Definition 3.23. For f and g as above, and for each of the essentialities of Definition 3.1 we say
that f and g satisfy the product rule for a given essentiality if for all Nielsen classes A in Φ̃(f, g),
A is essential if and only if Ā = p1(A) and all choices of the component Ã of A are essential.

Proposition 3.24. Let I one of the essentialities of Definition 3.1, p1 and p2 be locally trivial
fibre bundles, and all associated maps and spaces lie in the category that defines I. Suppose
further that f and g are fibre preserving maps from p1 to p2 (see Diagram (5). Then f and g
satisfy the product rule for each essentiality I in the following situations:

(a) I = I1, I2,
(b) I = I3 and for all A ∈ E(f, g) and all Ã with q1(Ã) = A then either (i) I3(Ā) · I3(Ã) ≤ 1,

or (ii) neither Ā (= p1(A)) nor any choice of Ã is defective.
(c) I = I4 and f is root essential.

Using the same identifications as in the proof of [4, Theorem 6.1] (also in the proof below),
we can use Example 3.1 of [3] to show that f (i.e. the pair f , ∗) need not satisfy the product
rule when f is not root essential. The point of the product rule is to ensure the surjectivity of
the E ĩ1 : EK(fb, gb)→ Ep−1

1 (Ā) in Lemma 3.27 below.

Proof. Part (a) for I1 for compact ANR’s is found in [47, Theorem 4.1]. For manifolds [31,
Lemma 5.7] serves for both I1 and I2. Part (b) is [32, Theorem 3:13, Lemma 4.2]. Part (c)
follows from [3, Theorem 2.3] once (as seen in the proof of [4, Theorem 6.1]) we replace NR(g)
(their g) with NR(fb) and NR(h) with NR(f̄) (see [4] for their g and h). �
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Corollary 3.25. Let F1 → E1 → B1 and F2 → E2 → B2 be locally trivial fibre bundles in the
smooth category with matching dimensions in both fibre and base. Suppose further that F1, F2,
B1 and B2 are orientable, then all fibre preserving maps f and g in the smooth category, satisfy
the product rule for I3 (or I2 if appropriate). In particular this is true under the additional
conditions that E1 and E2 are solvmanifolds, and p1 and p2 Mostow fibrations (i.e. [37]).

Proof. Proposition 3.24(b)(ii) is satisfied, since F1, F2, B1 and B2 are orientable. �

When f and g satisfy the product rule for an essentiality, then p1 : Φ̃(f, g)→ Φ̃(f̄ , ḡ) restricts
to Ep1 : E(f, g)→ E(f̄ , ḡ). Since this may not be surjective (see [26, Example 2.10]), some of the
Ep−1

1 (Ā) in the Lemma below may be empty.

Lemma 3.26. Suppose that f and g satisfy the product rule for an essentiality I, then

E(f, g) =
⊔

Ā∈E(f̄ ,ḡ)

Ep−1
1 (Ā) and NI(f, g) =

∑
Ā∈E(f̄ ,ḡ)

#(Ep−1
1 (Ā)). �

The top row of the diagram below is exact (apply Theorem 2.4 to Diagram (25)).

Coin(fx∗ , g
x
∗ )

p̂x1∗→ Coin(f̄ b∗ , ḡ
b
∗)

δ̃x ''

δx→ RK(fxb∗, g
x
b∗)

ix2∗ // R(fx∗ , g
x
∗ )

EK(fb, gb)

ρK

OO

E ĩ1 ��

Ei1 // E(f, g)

ρ

OO

Ep−1
1 (Ā)

??

Here ρK and ρ are the restrictions (to essential classes) of the usual inclusions.

Lemma 3.27. Suppose that f and g satisfy the product rule for an essentiality, Ā ∈ E(f̄ , ḡ),
b ∈ Ā and x ∈ Φ(fb, gb). If Im δx ∩ Im ρK 6= ∅ then δx factors through EK(fb, gb) as indicated.
Moreover i1 : Φ̃K(fb, gb) → Φ̃(f, g) restricts to Ei1, and Ei1 factors through Ep−1

1 (Ā) as shown.
Furthermore E ĩ1 : EK(fb, gb)→ Ep−1

1 (Ā) is surjective, and the diagram is commutative.

Proof. Note first that Φ̃(fb, gb) → Φ̃(f, g) factors surjectively through Φ̃K(fb, gb). Let A ∈
Φ̃(f, g). When Ā ∈ E(f̄ , ḡ) then the product rule for essentiality implies that either all classes
Ã ∈ Φ̃(fb, gb) that coalesce to A are essential or all are inessential. So then over each essential Ā, a
class ÃK in Φ̃K(fb, gb) is essential if and only if all of the classes in Φ̃(fb, gb) that coalesce to it, are
essential. In particular over each essential Ā, the composition Φ̃(fb, gb) → Φ̃K(fb, gb) → Φ̃(f, g)
restricts to E(fb, gb) → EK(fb, gb) → E(f, g) (though the first two sets may be empty). But in
any case EK(fb, gb)→ Ep−1

1 (Ā) is surjective if and only if E(fb, gb)→ Ep−1
1 (Ā) is. The rest of the

proof now mimics that of Proposition 3.4. �

Corollary 3.28. Under the conditions of Lemma 3.27, if Im δxk ∩ Im ρ̃ 6= ∅, then there are
[Coin(f̄ b∗ , ḡ

b
∗) : p̂x1∗(Coin(fx∗ , g

x
∗ ))] mod K coincidence classes of EK(fb, gb) that coalesce to [x] in

Ep−1
1 (Ā). In particular the [Coin(f̄ b∗ , ḡ

b
∗) : p̂x1∗(Coin(fx∗ , g

x
∗ ))] are independent of x in its class in

E(f, g). Furthermore Coin(fx∗ , g
x
∗ )→ Coin(f̄ b∗ , ḡ

b
∗)→ EK(fb, gb)→ E(f, g)→ E(f̄ , ḡ) is exact. �

Following the by now familiar pattern, we define an equivalence relation on EK(fb, gb) by
equating those Ã and B̃ which lie in the image of δ̃x for some x ∈ Φ(fb, gb). We use EK(fb, gb) to
denote the set of equivalence classes with cardinality EK(fb, gb). A set Eχ ⊂ Φ(f̄ , ḡ) is said to be
a set of essential representatives for f̄ and ḡ provided Eχ contains exactly one b from each of the
essential classes of f̄ and ḡ (note we are using Eχ to distinguish it from Eχ̃ ⊂ Φ(f, g) used earlier).
For each b ∈ Eχ we say that EΘb ⊂ Φ(fb, gb) is a Mod K set of essential representatives for fb and
gb if EΘb contains exactly one representative of each equivalence class of EK(fb, gb). Note that
EΘb may be empty, and that #(EΘb) = EK(fb, gb). We use EΘχ to denote the union (over Eχ) of
the EΘb, and abbreviate Cb respectively p̂x1∗(Cx) by Coin(f̄ b∗ , ḡ

b
∗) respectively p̂x1∗(Coin(fx∗ , g

x
∗ )).

The right hand equality in the Lemma below generalizes [30, Theorem 3.3] (from the fixed
point case). The proof mimics that of the first part of Lemma 3.10. Note that, under the given
conditions, the analogue of NED(f, g) from subsection 3.2 is always zero.
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Lemma 3.29. Let f and g satisfy the product rule for an essentiality I, and let Eχ and EΘχ be
chosen. Then for each b ∈ Eχ either NIK(fb, gb) = 0 or

NIK(fb, gb) =
∑
x∈EΘb

[Cp1(x) : p̂x1∗(Cx)]. Furthermore NI(f, g) =
∑
b∈Eχ

EK(fb, gb). �

Once we observe, from Definition 3.23, that there can be no essential classes of f and g that
lie over inessential Reidemeister classes of f̄ and ḡ, then the proof of the following brand new
Theorem follows previous patterns of section 2 and subsection 3.2 exactly.

Theorem 3.30. Let f , g, I, Eχ and EΘχ be as in Lemma 3.29. Then∑
b∈Eχ

NIK(fb, gb)

Minx∈EΘb([Cp1(x) : p̂x1∗(Cx)])
≥ NI(f, g) ≥

∑
b∈Eχ

NIK(fb, gb)

Maxx∈EΘb([Cp1(x) : p̂x1∗(Cx)])
,

and ∑
b∈EχN

I
K(fb, gb)

Minx∈EΘχ([Cp1(x) : p̂x1∗(Cx)])
≥ NI(f, g) ≥

∑
b∈EχN

I
K(fb, gb)

Maxx∈EΘχ([Cp1(x) : p̂x1∗(Cx)])
. �

We remark that the relationship between the NIK(fb, gb) and the NIK(fb, gb) can be studied
using the techniques of Proposition 3.22.

The bounds in Theorem 3.30 need not be whole numbers. When this is the case we can, of
course, improve the bounds. We illustrate this with an example from [30].

Example 3.31. The Möbius pretzel ([30, Example 1.3]) Let f : E → E and p : E → B be
as in [30, Example 1.3]. We sketch the example and refer the reader to that reference for the
details. Each fibre of p is the figure eight denoted 8, and the restriction of f to each fibre is the
self map of 8 that is, it is a map of degree −1 on each of the circles making up 8. So for each b
we have that NK(fb) = N(fb) = 3. On the other hand part of E is formed by rotating 8 about a
central axis while also rotating 8 through 180 degrees. In this way the North pole of the initial
8 is connected by a line of fixed points to its South pole. What this means geometrically is that
the North and South poles are coalesced in E. So if x is either of these points, then algebraically

[Fix f
p(x)
∗ : p∗(Fix fx∗ )] = 2. On the other hand if y is taken at the wedge point of 8, then

[Fix f
p(y)
∗ : p∗(Fix f

y
∗ )] = 1. Since f̄ = 1 and B is also a copy of 8, Theorem 3.30 gives us

N(fb)

1
≥ N(f) ≥ N(fb)

2
that is

3

1
≥ N(f) ≥ 3

2
. So 3 ≥ N(f) ≥ 2,

since N(f) must be a whole number. In fact N(f) = 2.

The fixed point case (I = I1) contained in the next result, was proved in [30], the two
coincidence cases (I = I2 and I3) as well as the root theory version (I = I4) were stated but not
proved in [26]. The root theory result is an analogue of [4, Theorem 6.1] (see [26, Section 11] for
further discussion). We take this opportunity to point out that the necessary hypothesis, that f
is root essential, is missing from the statements of Theorem 11.2 and Corollary 11.4 in [26].

Theorem 3.32. Suppose under the hypothesis of Lemma 3.29, we have for each b in Eχ that
[Cb : p̂x1∗(Cx)] is independent (a) of x ∈ EΘb, or (b) of x ∈ Φ(f, g). Then

(a) NI(f, g) =
∑
b∈Eχ

NIK(fb, gb)

[Cb : p̂x1∗(Cx)]
respectively (b) NI(f, g) =

∑
b∈EχN

I
K(fb, gb)

[Cb : p̂x1∗(Cx)]
.

In case (b) if f and g are fibre uniform (all the NIK(fb, gb) all equal), then [Cb : p̂x1∗(Cx)]NI(f, g) =
NIK(fb, gb)N

I(f̄ , ḡ). If f is root essential then [Ker f̄ : p̂1(Ker f)]NR(f) = NRK(fb)NR(f̄).

Proof. The proof is dual to 3.12 and requires the dual of the last part of Lemma 3.10. We have
left this to the reader. For f root essential use Corollary 2.14. �

The Corollary below puts together the various näıeve product/addition formulas from [47, 30,
31, 33] and a roots version stated in [26]. The bounds on NI(f, g) given in Theorem 3.30 allow
us to furnish a simple rigorous proof of necessity.
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Corollary 3.33. (Näıeve addition formulas). Under the hypothesis of Lemma 3.29,

NI(f, g) =
∑
b∈Eχ

NI(fb, gb) (= NI(fb, gb)N
I(f̄ , ḡ) if f, g are fibre uniform)

if and only if (i) [Coin(f̄
p1(b)
∗ , ḡ

p1(b)
∗ ) : p̂1∗(Coin(fx∗ , g

x
∗ )] = 1 for all x ∈ EΘχ, and (ii) NIK(fb, gb) =

NI(fb, gb) for all b ∈ Eχ.

Proof. If the [Coin(f̄
p1(b)
∗ , ḡ

p1(b)
∗ ) : p̂1∗(Coin(fx∗ , g

x
∗ )] = 1 and NIK(fb, gb) are as given, then the

equality follows trivially from Theorem 3.32. Conversely, suppose NI(f, g) =
∑
b∈EχN

I(fb, gb).

We show first that NI(fb, gb) = NIK(fb, gb) for all b ∈ Eχ. So suppose that NI(fb, gb) >
NIK(fb, gb) for some b ∈ Eχ. Since Minx∈EΘχ([Cp1(x) : p̂x1∗(Cx)]) ≥ 1 (clearly), then from the
left hand inequality in Theorem 3.30 and our assumption we have that∑
b∈Eχ

NIK(fb, gb) ≥Minx∈EΘχ([Cp1(x) : p̂x1∗(Cx)])
∑
b∈Eχ

NI(fb, gb) ≥
∑
b∈Eχ

NI(fb, gb) >
∑
b∈Eχ

NIK(fb, gb),

a contradiction. So NI(fb, gb) = NIK(fb, gb) for all b ∈ Eχ. Next, suppose [Cp1(x) : p̂x1∗(Cx)] >

1 for some x ∈ EΘχ. Let b = p(x), then NIK(fb, gb) > EK(fb, gb) and
∑
b∈EχN

I(fb, gb) =∑
b∈EχN

I
K(fb, gb) >

∑
b∈EχEK(fb, gb) = NI(f, g), again a contradiction. �

Corollary 3.33 lends itself supremely to a pair of self maps of a solvmanifold. First we remind
the reader of a number of facts concerning solvmanifolds, path lifting functions for fibrations and
linearization. Details can be found, for example, in [27, 28, 29], [23] and [37] respectively. A
solvmanifold S is a coset space of a connected simply connected solvable Lie group by a closed
uniform subgroup. Solvmanifolds are compact, and have the property that every self map f :
S → S is homotopic to a fibre preserving with respect to it’s minimal Mostow fibration denoted

Nr → S
p→ T t, where Nr is a nilmanifold of dimension r and T t a torus of dimension t.

We describe the linearized gluing data for p. Let λ : a → b be a path in T t, the path lifting
function defines a homotopy equivalence τλ : p−1(a)→ p−1(b), which up to homotopy is functorial
(i.e. [23, Corollary 7.7]). Let `(τλ) be the linearization of τλ (see for example [28, Definition 2.1]).
Then `(τλ) is an r × r integer valued matrix, which is invertible over Z (it’s inverse is `(τλ−1)).
In particular det(`(τλ)) = ±1. The linearization process is functorial, so if µ : b → c is a path,
then `(τµ)`(τλ) = `(τµτλ) = `(τµλ) (since τµτλ ∼ τµλ i.e. [23, Lemma 7.4]). The linearized gluing
data for p is the homomorphism A : π1(T t)→ Aut(Zr) defined by A([λ]) = `(τλ). Note that it is
sufficient to define A on a basis for π1(T t) = Zt.

A self map f : S → S of a solvmanifold S can also be linearized. Without loss we assume that
f is fibre-preserving, and letf̄ denote the induced map on the base T t of the Mostow fibration.
We assume that 0 is a fixed point of f̄ , and use f0 to denote the restriction of f to the fibre over
0. We linearize both f0 and f̄ . If `(f0) = X and `(f̄) = Y , then (X,Y ) is the linearization of f .

The fixed point case of the next result is well known. The coincidence version given below is
a special case (of a pair of self maps) of one that was announced in [26]. This was to appear in a
future joint publication by Ed Keppelmann and the author, but this will not now happen. Note
that our result includes the non-orientable solvmanifolds.

Theorem 3.34. (Heath Keppelmann unpublished) Let S be a solvmanifold with Mostow fibration
Nr → S → T t, and linearized gluing data A : Zt → Aut(Zr). Let I ∈ {I1, I2, I3}, and suppose
that f, g : S → S are self maps with linearizations (X,Y ) and (W,Z) respectively. If det(Y −Z) =
0 then NI(f, g) = 0. If det(Y − Z) 6= 0 then

NI(f, g) =
∑

[ᾱ]∈R(f̄∗,ḡ∗)

|det(A(ᾱ)X −W )|.

Furthermore for any root essentiality (see Remark 3.21) for which f is root essential we have that

NR(f) = |det(Y )det(X)|.

Proof. If det(Y − Z) = 0 then f̄ can be homotoped so that Φ(f̄ , ḡ) = ∅. In this case f can
also be homotoped so that Φ(f, g) = ∅, so clearly NI(f, g) = 0 for all essentialities I. When
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det(Y −Z) 6= 0 we may assume without loss, that #(Φ(f̄ , ḡ)) = |det(Y −Z)|, and we can replace
Eχ with Φ(f̄ , ḡ) in Corollary 3.33. Furthermore the homomorphism Y −Z : Zt → Zt is injective,

so from Proposition 2.1, and the fact that Zt is Abelian, we have that Coin(f̄
p1(b)
∗ , ḡ

p1(b)
∗ ) is trivial

for all for all b ∈ Φ(f̄ , ḡ). Thus [Coin(f̄
p1(b)
∗ , ḡ

p1(b)
∗ ) : p̂1∗(Coin(fx∗ , g

x
∗ )] = 1 for all b ∈ Φ(f̄ , ḡ).

Finally π2(T t) is also trivial, so NI(fb, gb) = NIK(fb, gb) for all b ∈ Φ(f̄ , ḡ). Thus the conditions
of Corollary 3.33 are fulfilled and we can use the näıeve addition formula given there.

The next step is to show for b ∈ Φ(f̄ , ḡ), that NI(fb, gb) = |det(A(ᾱ)X −W )|, where [ᾱ] =
ρ([b]) = [ḡ(λ)f(λ−1)] and λ : 0→ b is any path. As in [25, Lemma 4.5] (see also [23]) path lifting
functions define τλ, τf̄(λ) and τḡ(λ) below, and yield homotopy commutative diagrams

F0
f0−→ F0

τλ ↓ ↓ τf̄(λ)

Fb
fb−→ Ff̄(b)

and

F0
g0−→ F0

τλ ↓ ↓ τḡ(λ)

Fb
gd−→ Ff̄(b).

So then fb ' τf̄(λ)f0τλ−1 and gb ' τḡ(λ)g0τλ−1 , where ' denotes homotopy. Since homotopic
maps have the same linearization we have by Proposition 3.3, that

NI(fb, gb) = |det
(
`(τf̄(λ)f0τλ−1)− `(τḡ(λ)g0τλ−1)

)
|

= |det(`(τḡ(λ))
(
`(τḡ(λ−1))`(τf̄(λ)f0)− `(g0)

)
`(τλ−1))|

= |det(`(τḡ(λ))||det
(
`(τḡ(λ−1)τf̄(λ))`(f0)− `(g0)

)
||det(`(τλ−1))|

= |det
(
`(τḡ(λ−1)f̄(λ))`(f0)− `(g0)

)
|,

since |det(`(τḡ(λ)))|= |det(`(τλ−1))|= 1, and τḡ(λ−1)τf̄(λ) ' τḡ(λ−1)f̄(λ). Now `(τḡ(λ−1)f̄(λ))= A(ᾱ),

where ᾱ represents [ḡ(λ−1)f̄(λ)] in R(f̄ , ḡ), and `(f0) = X, and `(g0) = W , so∑
b∈Φ(f̄ ,ḡ)

NI(fb, gb) =
∑

b∈Φ(f̄ ,ḡ)

|det
(
`(τḡ(λ−1)f̄(λ))`(f0)− `(g0)

)
| =

∑
[ᾱ]∈R(f̄∗,ḡ∗)

|det(A(ᾱ)X −W )|.

By Corollary 3.25 if I ∈ {I1, I2, I3}, then I satisfies the product rule for essentialities, and this
last term is equal to NI(f, g) by Proposition 3.24 and Corollary 3.33.

If f is root essential for any root essentiality I, then NI(f, g) = RR(f∗) which by above and
by Corollary 2.14 is RR(f0∗)RR(f̄∗) = |det(X)||det(W )| = |det(X)det(W )| as required. �

For our final result we use Theorem 3.34 to give a fibre space proof of [9, Theorem 3.8], which
was proved there using a prototype of the averaging formula, that is in the dual context to this

section. Let S1 ↪→ K2 p→ S1 be the fibering of the Klein bottle K2 presented in Example 2.7.
The gluing data A : Z→ Aut(Z), is given by A(z) = (−1)z (see [29]). Each homotopy class of a
self map f has a representative induced by a linear map on R2 given by (s, t)→ (ds+bt, at) where
a, b and d are integers, and either a is odd or d = 0. Such a representative is fibre preserving, and
has linearization (d, a) (see [29]).

Corollary 3.35. ([9, Theorem 3.8]) Let f and g be arbitrary self maps of K2 with linearizations
(d, a) and (d′, a′) respectively. Then

NI3(f, g) = |a− a′|max(|d|, |d′|).
Proof. By Proposition 3.3 we have that NI3(f̄ , ḡ) = |a− a′|. Now NI3(f̄ , ḡ) = NI3(f, g) = 0 if
a = a′. Otherwise, by Proposition 2.2, we have R(f̄ , ḡ) = Z|a−a′|. By Theorem 3.34 we have that
NI3(f, g) =

∑
[ᾱ]∈Z|a−a′|

|det(A(ᾱ)d− d′)|. If either d or d′ is equal to 0, then (since A(ᾱ) = ±1)

there are |a− a′| terms in the sum, each equal to max(|d|, |d′|), giving the result for these cases.
If neither d nor d′ is zero, then a − a′ is even, and half of the A(ᾱ) are +1, and half -1. So
NI3(f, g) = 1/2(|a− a′|) (|(d− d′|+ | − d− d′|) = |a− a′|max(|d|, |d′|), completing the proof. �

4 Proof of the main Theorem

In this section we give a rigorous proof of Theorem 2.4 using the theory of groupoids. Theorem 2.4
is a more precise statement of a version stated but not proved in [26, Theorem 9.18], and also of
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the special case of the fixed point version given in [25, Theorem 1.8] sketched there by a different
method. Groupoid theory not only gives a proof of the Theorem, but unveils the inspiration for
it. Our technique is to show that Diagram (1) gives rise to a fibration of groupoids and that the
sequences in Theorem 2.4 are simply the exact sequences associated with this fibration.

4.1 Groupoid Preliminaries

A groupoid A can be defined as a category in which every morphism is an isomorphism. The
fundamental groupoid π(X) of a space X is a familiar example. The objects Ob(π(X)) of π(X)
are the points of X, and the morphisms are the path classes between points. If σ ∈ A(x, y) is a
morphism from x to y in a groupoid A, we use σ(0) = x, and σ(1) = y to denote end points. A
functor p : A→ B between groupoids is said to be a fibration of groupoids if for every x ∈ Ob(A)
and γ̄ : p(x)→ y ∈ B there is a γ : x→ γ(1) ∈ A with p(γ) = γ̄. As an example of a fibration of
groupoids, if p : E → B is a topological fibration, then the induced functor p∗ : π(E)→ π(B) is
a fibration of groupoids. If x̄ ∈ Ob(B) we will use the symbol Fx̄ := p−1(x̄) ⊆ A to denote the
groupoid fibre. So then Ob(Fx̄) = {x ∈ Ob(A)|p(x) = x̄}, and Fx̄(x, y) = {λ ∈ A|p(λ) = 1x̄}.

If A is a groupoid and x ∈ Ob(A), then the symbol A{x} will denote the group at x, that
is the subgroupoid of A(x, x) whose morphisms begin and end at x. It is of course a group. If
A = π(X) is as above, then π(X){x} = π1(X,x), the fundamental group of X at x. The symbol
π0(A) denotes the quotient set of Ob(A) under the equivalence relation that x ∼ y if and only if
A(x, y) 6= ∅. If A = π(X), then π0(π(X)) = π0(X) in the usual sense.

Theorem 4.1. (Ronald Brown [7]) Let p : A → B be a fibration of groupoids in which p is epi,
and x ∈ Ob(A). Then the sequence below is an exact sequence of groups (first four terms) and
based sets (last four terms with the obvious base points)

1→ Fp(x){x}
i→ A{x} p→ B{p(x)} δ→ π0(Fx̄)

i∗→ π0(A)
p2∗→ π0(B)→ 1,

where δ(β̄) = [β(1)] where β is a lift of β̄ at x, and square brackets denote component.
Furthermore if β, θ ∈ B{x̄} then δ(β) = δ(θ) iff there is a γ ∈ A{x} with p(γ) = β−1θ.

Moreover #(Im δ) = [B{p(x)} : p(A{x})].

The proof of Theorem 4.1 is essentially a much simpler version of the proof of the exactness
of the bottom end of the exact sequence of a topological fibration p : E → B (see [10] for the
“Furthermore” part). In fact the long exact sequence of Topological fibration can be deduced
from Theorem 4.1 by applying it iteratively to the fibration pS

n

: ES
n → BS

n

(see [24]).

4.2 Proof of Theorem 2.4

The main point is that each Diagram of the form of (1) gives rise to a fibration of groupoids, and
that Theorem 2.4 is then the corresponding special case of Theorem 4.1. We make this explicit.

Definition 4.2. Let f, g : G1 → G2 be homomorphisms of groups. Then f and g determine a
groupoid G1×̃G2 whose set of objects is G2. Morphisms in G1×̃G2, are pairs (α, β) ∈ G1 ×G2,
where (α, β) takes the object β to the object g(α−1)βf(α). That is (α, β)(1) = g(α−1)βf(α).
The composite (α′, β′)(α, β) takes β to g((α′α)−1)βf(α′α), and is defined if and only if β′ =
g(α−1)βf(α). The inverse of (α, β) is (α−1, g(α−1)βf(α)).

The proofs of the next two lemmas follow trivially from the definitions.

Lemma 4.3. For f and g as in Definition 4.2, the group of G1×̃G2{1} of G1×̃G2 at 1 ∈ G2

is the group {α ∈ G1|1 = g(α)f(α−1)}. It is canonically isomorphic to Coin(f, g), and the set
π0(G1×̃G2) is in canonical bijective correspondence with R(f, g). �

Lemma 4.4. In the context of Diagram (1) the functor (p1, p2) : G1×̃G2 → Ḡ1×̃Ḡ2 defined on
(α, β) by(p1, p2)((α, β) = (p1(α), p2(β)) is an epic fibration of groupoids. Furthermore the fibre of
(p1, p2) over the base point 1 ∈ G2 is the groupoid H1×̃H2. �
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Remark 4.5. Lemma 2.10 shows that R(ταf
′, g′) is independent of α ∈ p−1

2 (ᾱ), but for Corollary
2.15 we need that it is independent of α ∈ (p̂α2 )−1([ᾱ]) ⊂ G2. A first principles proof is complex,
and is absent from the literature. The conclusion of the Lemma below is a little more than we
need for this paper, but we get it for free from the abstract homotopy theory of groupoids.

Lemma 4.6. If p : A → B is a fibration of groupoids and b1, b2 ∈ Ob(B) lie in the same com-
ponent, then there is a natural equivalence F : Fb1 → Fb2 of categories (in this case groupoids).
In particular F induces bijections from π0(Fb1) to π0(Fb2), and for any x ∈ Ob((Fb1) an iso-
morphism of groups from Fb1{x} to Fb2{F(x)}. In particular in the context of Diagram (14) the
cardinalities of R(ταf

′, g′) and Coin(ταf
′, g′) are independent of α ∈ (p̂α2 )−1([ᾱ]) ⊂ G1.

Proof. An abstract homotopy equivalence in the category of groupoids is simply a natural
equivalence of functors. The existence of such an abstract homotopy equivalence F , follows from
an abstract homotopy version of the topological result that any two fibres of a surjective fibration
are of the same homotopy type (see for example [23]). An appropriate abstract homotopy version
can be found in [35, Satz 5.4]. That the category of groupoids satisfies Kan condition DNE(2)
(part of the hypotheses of [35, Satz 5.4]) can be found in [36, p. 157]. �

Proof of Theorem 2.4. The facts that the sequences exist, are exact, and that the “Fur-
thermore” part is true all follow from Theorem 4.1 using Lemmas 4.3 and 4.4. As to the in-
terpretation of δ, let β̄ ∈ Coin(τᾱf̄ , ḡ) ∼= Ḡ1×̃Ḡ2{1}. Then a lift of β̄ (∼= (β̄, 1)) to G1×̃G2

at 1 ∈ Ob(G1×̃G2) = G2 is a pair (β, 1), where p2(β) = β̄. By definition δ(β̄) = [(1, β)(1)] =
[g(β−1)ταf(β)]. The independence of the cardinality of R(ταf

′, g′) comes from Lemma 4.6.
Finally to see that the sequence is a sequence of groups when G2 is Abelian, we note that
when G2 is Abelian so also are H2 and Ḡ2. By Proposition 2.1 this gives the canonical group
structures on the three Reidemeister sets and, with the exception of δ, that the sequence is
an exact sequence of groups and homomorphisms. To see that δ is a homomorphism, let
β̄, θ̄ ∈ Coin(τᾱf̄ , ḡ), and β, θ ∈ G2 be such that and p2(β) = β̄, and p2(θ) = θ̄. Then since G2

is abelian we have that δ(β̄)δ(θ̄) = [g(β−1)ταf(β)g(θ−1)ταf(θ)] = [g(β−1)g(θ−1)ταf(β)ταf(θ)]
= [g((βθ)−1)ταf(βθ)] = δ(β̄θ̄) as required. �

Remark 4.7. Note on the description of δ as a Bockstein. If we apply Proposition 2.1 to
Diagram (1), we obtain the following grid

1→ Coin(f ′, g′)
î1−→ Coin(f, g)

p̂1−→ Coin(f̄ , ḡ)

↓ ↓ ↓

1→ H1
i1−→ G1

p1−→ Ḡ1 → 1

↓ f ′ ·−1 g′ ↓ f ·−1 g ↓ f̄ ·−1 ḡ

1→ H2
i2−→ G2

p2−→ Ḡ2 → 1

↓ ↓ ↓

R(f ′, g′)
î2−→ R(f, g)

p̂2−→ R(f̄ , ḡ) → 1,

in which both the vertical and horizontal sequences are short exact. That δ exists and is well
defined is essentially a non-Abelian version of the well known “snake lemma” for Abelian groups
and homomorphism (see [40]).
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[12] Felshtyn, Alexander; Gonçalves, Daciberg L. The Reidemeister number of any automorphism
of a Baumslag-Solitar group is infinite, Geometry and dynamics of groups and spaces, 399-
414, Progr. Math., 265, Birkhuser, Basel, 2008.

[13] Ferrario, D. Computing Reidemeister classes, Fund. Math. 158 (1998), no. 1, 1-18.
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