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ABSTRACT

A simplicial set may be defined as a contravariant functor
from the simplicial model category to the category of sets.
This thesis develops a class T of polyhedral model categories.
For a category M in T , an M-set is a functor MOP -+ Set.
The development of T is motivated by the possibility of
studying T-complex structures on M-sets.

In order to define T we introduce the category of cone-
complexes, which are regular CW-complexes made more rigid. The
addition of a structure of marked faces to a closed cell of a
cone~complex gives a polycell, which is analogous to an ordered
simplex of the simplicial model category. We take I to be a
class of full subcategories of the category of polycells.

A shellability condition on polycells is used to define
a subclass Er of T . Each member of EI is isomorphic to a
category of posets with extra structure and is thus combinatorial
in nature.

A simplicial T-complex is a simplicial set K with special
elements (referred to as thin) in each dimension satisfying
Dakin's axioms:

(T1) All degenerate elements of K are thin.

(T2) Every box has a unique thin filler.

(T3) If all faces but one of a thin element are thin then so is
the remaining face.

For M a member of I , an MT-complex may be defined
using these axioms. We prove that, for M in EI , there is
an equivalence of categories MT-complexes -+ simplicial T-
complexes. Since EI is infinite, this gives a rare example of
an infinite class of non-trivially equivalent algebraic categories.
Ashley has constructed an equivalence between simplicial T-
complexes and the important category of crossed complezxes, .
studied recently by Brown and Higgins.

We also show that a T-complex structure on an M-set
defines a canonical degeneracy structure. This is of use in
defining a functor from simplicial T-complexes to cubical
T-complexes which we claim is an equivalence of categories.
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INTRODUCTION

The use of simplicial methods in algebraic topology,
and in many of its applications, is well known (Gabriel-

Zisman [37], May [32], Lamotke [40]). There is also some use
in the literature of cubical methods, particularly the

singular cubical complex (Massey [31], Federer [23]? Kan [381];
also Adams-Hilton [1], Chen [17], Kamps [29]). The object of
this thesis is to develop as wide a generalization as seems
reasonable of these methods, by considering as basic models
members of a class of polyhedra which includes cubes, simplices
and products of these.

Partial motivation is provided by the problem of
axiomatising those aspects of simplices and cubes which make
them satisfactory as basic models in algebraic topology. ‘As
we shall see (Chapter II), this leads to a class of posets
which we call C-posets. Remarkably, such posets have been
studied independently by A. Bjorner [5], who was led to them
for purely combinatorial reasons.

Previous extensions of simplicial or cubical theory of

which we are aware are as follows: °

(1) Gug enheim [25] considers 'supercomplexes', for which
: p p . .

the models are products Apl x A 2 x ceo X AT of simplices.

(1i) Hintze's 'polysets' [26]1 have elements modelled on the
objects of the minimal geometric category which includes both
the join of an object to a point and the product of an object

with the unit interval.
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(1ii) Evrard [21] considers 'I'-sets' for which the models
are essentially triangulated cubes.

However, as far as we know, this thesis is the first wide
study of its type.

Initial motivation came also from combinatorial group
theory, particularly from the notion of a van Kampen diagram
(Chapter V). Generators of a group can be modelled by edges,
and this gives a Cayley diagram. For modelling relations,
faces are required and in particular an n-gon 1is needed to

model x©" =1 (n 2 2) . But once diagrams such as

are considered there arises the problem of what range of
geometric gadgets should be allowed. We are led to what we
call cone-complexes and, among these, the cone-cells. However,
these gadgets are sometimes too general. We are interested in
certain kinds of Kan complexes, so that our models must have
certain collapsing properties. The required properties turn
out to be conveniently described in terms of shelladility.

A further point is that x> = 1 is modelled by

X

which, while it is a 2-simplex, is not an ordered 2-simplex.

This raises the question of generalizing the ordering of
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vertices which is so successful in simplicial complexes. A
structure of marked faces in a cone-complex is found to work
well. We define a category Poly of polycells, that is,
cone-cells with marked faces. There is an infinite class T

of subcategories of Poly which can be used as model categories.
The member§ of T give rise to categories of 'poly-sets'.

Our main test-bed for this theory. is to give a satisfactory
notion of 'poly T-complex'. A simplicial (cubical) T-complex
is a simplicial (respectively cubical) Kan complex K with
speéial elements in each dimension =21 . These elements are

called thin and satisfy the following axioms:

(T1) Every degenerate element of K is thin.
(T2) Every box in K has a unique thin filler.
(T3) If all faces but one of a thin element of K are thin

then so is the remaining face.

The notion of a simplicial T-complex was found by
M.K. Dakin [19]. The cubical version was taken up by R. Brown
and P.J. Higgins [10, 11, 12] and plays an essential part in
their proof of a higher-dimensional form of the Seifert-
van Kampen theorem. Together with crossed complexes
[3,10; also 8, 14, 151 , w-groupoids [10], and w-groupotids
(131, simplicial and cubical T-complexes make up a set of
five non-trivially equivalent algebraic categories. In fact,
each structure may be regarded as a version of 'higher-
dimensional group theory' [7]. The question arises: can the
axioms above be used to define poly T-complexes such that
there is an equivalence poly T-complexes -+ simplicial

T-complexes® We construct an infinite class of such T-complexes.
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Poly-sets have no degeneracies. Thus poly-sets form a
generalization not of simplicial and cubical set but of the
'A-sets' and the 'b-sets' of Rourke and Sanderson [33] and
Hintze [26]1. We consider how to introduce degeneracies and
give one possible solution to the problem. Further, we show
that certain poly T-complexes have a canonical degeneracy
structure. This sheds some light on the prgblem of constructing
a direct equivalence of categories simplicial T-complexes —
cubical T-complexes.

The thesis is laid out as follows.

Chapter I introduces the categories of cone-complexes aﬁd
polycells. The class TIof model categories is defined.

In Chapter II we use a shellability condition on polycells
to define a subclass EI' of T wused in Chapter III. The
categories in EI' are shown to be isomorphic to categories of
C-posets with extra structure.

Chapter III contains the definition of poly T-complexes
and the proof of the equivalences poly T-complexes -
simplicial T—comélexes.

Degeneracy structures in poly T-complexes are studied in
Chapter IV. We define a functor poly T-complexes =+ <cubical
T-complexes and a pair of functors simplicial T-complexes 2
cubical T-complexes which we claim are equivalences of
categories. |

Chapter V considers areas thch require further work.

Finally, there is an Appendix devoted to shelling in

cone-complexes.
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CHAPTER 1
A CLASS OF MODEL CATEGORIES

This chapter introduces the class T of model categories.
The notion of a model category occurs in the Appelgate-Tierney
theory of categories with models (21 . We first recount some
basic ideas from this theofy then proceed to develop the
geometric category Poly and to define T as a class of sub-
categories of Poly.

The first step in the development of Poly is to define
the category of cone-complexes, A cone-complex is a regular
CW-complex equipped with a cone structure on each cell. This
structure is analogous to the affine sfructure on a simplex
and cone-complex maps are rigid in the same way as simplicial
maps.

On providing a cone-complex with a structure of marked
faces we obtain a marked cone-complex. A polycell (a Poly-
object) is a marked cone-cell. Choosing a marked face
structure for a polycell is analogous to ordering the vertices
of a simplex. Poly-morphisms preserve marked faces and are
comparable to the vertex-order preserviﬁg maps of the
geometric version of the usual simplicial model category A
However, we allow only injective morphisms in Poly so that the
model categories in I are actually analogous to A1 s the

wide subcategory of A with injective maps.

§1 Categories with models

Let M be a small category, that is, a category whose

class of objects is a set.
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1.1 Definition [2] A category A together with a functor

I: M > A 1is called a category with models. M 1is called the
model category for A .

For example, the simplicial category A with dBjects
the sets [ml = {0, 1, ..., m} and morphisms the increasing
functions [m] - ([nl 1is a model category for Top (the
category of topological spaces and continuous maps). Define
I: A > Top by I([nl) = A"  where A" is the standard
geometric n-simplex, and, for a: [ml = [nl , I(a) = the
uniquely determined affine map A" > A"

The geometric simplices may be thought of as local
objects which can be pasted together by homeomorphisms to
create g16ba1 objects. (Compare this with the notion of

triangulation of a manifold.) The objects of A therefore

act as models for the local building blocks in Top

1.2 Definition [2] Given a category A with models, the
op
functor I defines a singular functor s: A - SetM as

follows. For X an object of A , sX: moP" 5 set  is given by

sX(m)

HomA(Im, X) me Ob(M) ,
sX(a)

(Ia, A) "o a morphism in M.
(If o: m+n, (Ia, A) denotes the map
HomA(In,X) - HomA(Im,X) defined by u > u o Ia.)
For a morphism f: X » X' of A, sf: sX » sX' 1is the
natural transformation induced by composition with £ .
. S
Going back to the example of I: A =+ Top 6pSet is the

category of simplicial sets and s: Top =+ set? is the

usual singular functor of homology theory.
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The pasting together mentioned above of local objects in
the category A with models ig carried out by a realization
functor Setmop - A,

Let F: M°P > Set and consider the category (Y,F) whose
objects are pairs (m,x) wheré me Ob(M) , x € F(m) , and
whose morphisms (m,x) + (m',x') are morphisms «: m » m' in

M such that Fd(x') = x . There is a functor Boz(Y,F) - M

given by ao(m,x) =m, J a =oa . Take the composite of 3

o o}

with I , (Y,F) =2, L A, and put TF = 1lim I o 80
—
(assuming A has small colimits). It can be shown that r .is
op :
a functor SetM - A .
. MOoP i

1.3 Definition [2] The realization functor Set > A 1is

defined to be r .
The basic point about realization is the following:

1.4 Proposition [2]1 The functors r and s are adjoint. [

If A has a colimit - preserving underlying set functor
U: A +~ Set there is an explicit description of

U(rF) = 1im U o I o 3, - Consider the set F of all triples

_

(m, x, k) where (m,x) ¢ Ob(Y,F) and k € U I(m) . Let =

be the equivalence relation on F genergted by the relation

(m,x,k) n (m',x',k') if and only if there exists

&: (m,x) » (m',x') in (Y,F) such that Y o Ia(k) = k'

(Thus (m, Fa(x'), k) ~ (m',x', UoIla(k)) .) Let |m,x,k]

denote the equivalence class containing (m,x,k) . The set F

of equivalence classes together with the family of functions
im,x) :y o I(m) » F

given by k > |m,x,k]|
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is a colimit of U I » 30 .

This means that, in our simplicial example,
T: SetAop +~ Top is the well-known geometric realization of
Milnor (see May [321 , p.55). The standard result that
Milnor's realization functor is adjoint to the singular

op
functor Top ~* SetA is thus a special case of Proposition 1.4.

§2 Cone-complexes

We follow Massey [311 in defining a CW-complex to be
regular if, for each cell éx , there exists a characteristic

ny

map hk: B > éx which is a homeomorphism. (Some authors,

Lundell and Weingram [30] for example, merely suppose that
there is some homeomorphism an-+éx )

Essentially, we wish to constrﬁct model categories whose
objects are regular complexes whicﬁ are balls and have one
top-dimensional cell. However, the regular complex structure
is mot combinatorial enough : in the category Reg of regular
complexes and regular cellular maps ({301 , p.27) there are
too mahy isomorphisms X +~ Y for jsomorphic objects X and Y

We can make Reg more combinatorial by rigidifying the
morphisms. One way of doing this is to choose a particular
characteristic map for each cell of a complex ‘and require
fhat morphisms preserve characteristic maps. A problem with
this approacﬁ is that characteristic maps of a complex in
various dimensions need not be related. Given regular
complexes X and Y which are isomorphic in Reg , choices of
characteristic maps can be made such that no Reg - isomorphism
X Y preserves characteristic maps for all (n-1) - cells as
well as all n-cells of X . The extra structure therefo?e

leads to too many isomorphism classes. We avoid this difficulty
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by modifying the definition of a characteristic map.

2.1 Definition A cone-complex '{X;{hx}x <A } is a

Hausdorff space X and a decomposition X = U ey of X as
Ael

a disjoint union of subspaces €5 such that ey is an open
n _ - = )
n, - cell. Let X = ASA ey and 8ex €y ey We require

s
nkn

for all X € A

CCl) ode is a union of a finite number of open cells

A nx-l nx—l .
belonging to X and is homeomorphic to S ?

CC2) hx is a homeomorphism Coe, - ék which is the identity

on Jde f CeA denotes the topological cone

A
(de, x I) / (de, x {11).)

We call the maps hA characteristic maps.

A cone-complex obviously has a regular cell structure.

The complex '{X;{hxjxeA} will generally be denoted
simply by X . Throughout, we consider only finite cone-
complexes so that the term cone-complex implies a finite number

of cells. The theory could of course be easily extended to the

infinite case by imposing the usual conditions on the topology

of X .

For '{X;{hk}AeA} a cone-complex let Y be a non-empty
subspace of X and let ¢ be the set of XeA such that the
image of hl is contained in Y . If the maps hx s
A e & , are the characteristic maps for a cone-complex
structure on Y we say ‘{Y;{hx}keé} is a subcomplex of X .

It follows immediately from Theorem III 2.1 of [301 that
each closed cell of X 1is a subcoﬁplex of X . We refer to

a cone-complex which is a ball and has one top-dimensional cell



1/6

as a cone-cell. Each closed cell of a cone-complex is

a cone-cell.

2.2 Definition A map

£:0X, {hy}, b >+ Y, O o)

of cone-complexes is a homeomorphism into f: X - Y of spaces
such that if e\ is a cell of X then f(ex) is a cell,
say e& , of Y and the cone structure of e, is preserved

by f ; that is, the diagram

C£ e,

LY '
Caex > CBeu
zj?x | ky| 2
- f —-—

. Y 1
ek 7 eu

commutes.

The category of cone complexes and cone-complex maps will

be denoted by CC .

2.3 Proposition Let X, Y be cone-complexzes. If f: X > Y s

a regular homeomorphism into then -there is a cone-complex map

£': X > Y such that £'(e,) = f(e,) for each cell e, of X . O

2.4 Proposition ILet f: X > Y be a cone~complex map. Then

() f(X) Zs a subcomplex of Y ;
(17) f pestricts to a cone-complex tsomorphism X »> £(X) ;

(iii) £ 1is completely determined by speecifying to whieh cell of

Y each cell of X <Zs mapped. 0O
Clearly, the category CC 1is a more combinatorial version
of Reg , with rigid maps analogous to injective simplicial

maps of simplicial complexes. In fact, the underlying
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polyhedron |K| of a simplicial complex K has a canonical
cone-complex structure. Each simplex o of K 1is a polyhedral
cone on 90 with cone point the barycentre of o so there is an
obvious (cone-complex) characteristic map C3c + o . We identify
K with the cone-complex |K| . It is easily seen that, for
simplicial complexes K and L , the injective simplicial maps

K » L are precisely the cone-complex maps. *We therefore have:

2.5 Proposition The category of simplieial complexes and

injective simplicial maps is a full subcategory of CC . O

Let X be a cone-complex and let e, be a cell of X
with characteristic map hA: C 8ek-+§x . Following the
simplicial case, we call h, (cone point) the barycentre of
ey - There is a notion of barycentric subdivision of X which
coincides with the usual polyhedral definition when X is a

simplicial complex.

2.6 Definition The barycentric subdivision SdX of X is

the cone-complex defined as follows.

Let Sdx° = X° . Assume sax(™1)  has been given and
let e, be an n-cell of X . Take the barycentre of e, to
be an O-cell of sdx® and, for each k-cell e, of Sdaex ,
let hx(Céu) be a closed (k+1)-cell of sax® .

There is a canonical characteristic map for hk(C éu)

using the map h, CBCéu +C5u given in the next section.

(barycentres denoted by 8 )
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The following result shows that a cone-complex is

essentially only one subdivision away from a simplicial complex.

2.7 Proposition If X <8 a cone-complex there ts a

simplicial complex TX which ©s CC - <somorphic to SdX .

Proof (See [301, p. 80) Form the abstract simplicial
complex whose vertex set is the set of barycentres of cells of

X and whose k-simplices (k = 0) are members of the set

'{(30,51,...,§k) I ﬁi = barycentre of the i-cell a; of X ;

ay # a; for 1 #J ; ajcajc... gy

)
)

Let 11X be a geometric realization of this complex. A CC
- isomorphism 7tX - SdX can be constructed by induction on the

skeleta of X . O

§3 Three standard constructions

Let X be a cone-complex. As for a CW-complex, we
need to define standard cone-complex structures for X x I and
CX . This is done below, where the more specialized dome
construction is also considered.

In 6rder to define the cone-complex characteristic maps
for X x I we have to choose a homeomorphism
CB(EA x I).+ Ex x I for each cell e, of X . Now EA
has a cone structure with barycentre 8A . There is a
canonical cone structureonéx x I with cone point (gk y 3)
such that:

(i) the rays containing (éx ,0) and (gx , 1)
are ‘gk x [0, 17 and gx x [1, 1] respectively;
(ii) if r is any other ray and pg: éA x I » éx,
Pq: éxlx I > I are the projection maps then po(r) is

contained in a ray of EA and p; maps ¥ linearly.
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e; x I
We therefore have a canonical homeomorphism

h CB(EXXI)-*c—eXI

AL A

3.1 Definition The ecylinder X x I on the cone-complex X

is defined to be the space X x I with the following cone-
complex structure:

(i) the structure on (X x {0}) v (X x {1}) 1is induced by

the maps i,: X > X x' {0}, i;: X+ X x {1}
xr+_(x;0) x+ (x,1)
(ii) for each k-cell e, of X, éx x I is a closed (k+1)-
cell of X x I with characteristic map .
h Ca(ey x I) » ey x I |

AT A
For each cell ey of a cone-complex X there is a
canonical homeomorphism hCA: CBCEX*'CéA whose defiﬁition is

similar to that of th.

3.2 Definition The (CC-) cone on. X 1is the space CX with

the following cone-complex structure:
(1) the cone point is an 0-cell ;
(ii) the structure of X < CX 1is inherited ;

(iii) for each k-cell of X, Cék is a closed (k+1)-

2
cell of CX with characteristic map hg,: CBCEA > CéA
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3.3 Remark The definition of barycentric subdivision

(2.6) essentially uses CC- cones. An alternative to (2.6)
is to construct SdX inductively by replacing each cell of

X by the CC- cone on its subdivided boundary.

3.4 Definition Let X be an n-dimensional cone-cell, For

n x>1, the dome DX on X 1is the space CX with the
following cone-complex structure:
(1) the structure of X < CX 1is inherited ;
(ii) C3X 1is a closed n-cell with the identity map
CaX » C3X as characteristic map ;
(iii) CX 1is the single closed (n#l1) - cell and has

h C3CX > CX as characteristic map.

cx*
For n =0, DX is taken to be the CC- cone CX .

When n 21, DX can be thought of as an (n+l) - cell
whose boundary consists of two copies of X glued along 29X .

Some examples are shown below.

— D

DX  D(DX)

Se2

X DX

We make a convention that the copy of X in DX consisting

of X x {0} ¢ CX 1is denoted by X and that the other copy

of X is X+
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§4 Marked cone-cbmplexes and the category Poly

The introduction by Eilenberg of a vertex-ordering on
simplices in singular theory was an important step in the
development of simplicial theory. Vertex-orderings 'tie down'
maps in the sense that if f£: AT > AT , g A™ > A" are order-
preserving simplicial maps with f(Am) = g(Am) then f = g ;
that is, an order-preserving simplicial map is determined by
its set image. We have to impose extra structure on cone-
complexes so that if X and Y are cone-cells a CC - map
f: X » Y preserving the structure is determined by its set

image.

4.1 Definition A marked cone-complex is a cone-complex X

together with, for k = 1 and each closed k-cell A of X,
a choice of a closed (k-1) - cell A, (called the marked face
of A ) in the boundary of A .

—
The category CC has marked cone-complexes as objects, and

—
a morphism f: X +Y of CC is a cone-complex map preserving
marked faces. That is, £f(A.) = (£(A)). for each closed cell

A of X with dimA =21

Some simple marked cone-complexes are pictured below.
We adopt the convention that the marked face of a 2-cell is
always represented by a double edge and that an arrow on a

1 - cell A points away from the vertex A,

A, A
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4.2 Definition A marked cone-cell is called a polycell. We
—

take Poly to be the full subcategory of CC whose objects are

polycells.

A subcomplex of a marked cone-complex X inherits a
structure of marked faces. Each closed cell of X 1is thus a
polycell. Marked cone-complexes are analogous to ordered
simplicial complexes while;polycells correspond to ordered
simplices. We have two main reasons for using marked faces rather

than, say, a vertex-ordering in the definition 4.1 .

First (see next section), there may be more marked face
structures on a cone-cell X than there are orderings of the

vertices of X . Consider X = Az

Any two vertex-ordered 2-simplices are isomorphic but there
are two non-isomorphic polyceil structures X1 and X2 on AZ .
If polycells are to be used to model van Kampen diagrams, as
suggested in the Introduction, then both X1 and X2 are
required: X1 to represent relators of the form azﬁq, X,
tb represent a3

Secondly, vertex-orderings fail to tie down morphisms
involving certain cone-cells. For example, an ordering of the
vertices of the cone-cell Y below does not differentiate

between the 1 - cells of Y . There are thus two CC -

isomorphisms Y = Y preserving the ordering.
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01
On the other hand, each of the two marked face structures

Yl and Y2 on Y differentiate between 1-cells and there

are unique Poly - isomorphisms Y1 > Y Y, =Y

1 b4

<> L

We proceed to show that any Poly morphism f: X > Y

2 2

is determined by its set image £(Y)

One or two preliminaries are necessary. By a face of
a markeé cone-complex X we will always mean a closed cell
of X so that, in particular, a face of a polycell is also a
polycell.

Define inductively, for an n-dimensional polycell X

and 1 < r <n,

1'"" = (X(I‘—l) )%

the marked face of X(r—l)*

We have a sequence Xn* S X(n—l)* € .. € X, € X , where
dim Xr* = (n-r) , of faces of X . This is reminiscent of the

notion of a flag in an n-dimensional vector space V , namely

a sequence O < F1 c F2 € ... cF

Fi1 of subspaces of V

such that dim Fr = r . We therefore state:

4.3 Definition The flag in an n-polycell X 1is the

sequence Xn*.c X(n-l)* € «.. ¢ X of faces of X .
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The vertex Xn* is a base-point specified by the
marked face structure of X and the flag itself can be thought
of as a generalized base-point.

The notion of a“pseudomanifold is required.

4.4 Definition ( 0351, p.82 )  An n-dimensional

pseudomanifold is an n-dimensional finite regular complex K

which satisfies the following conditions (taking 'cell' to

mean 'closed cell'): "

(1) every cell of K 1is a face of some n-cell ;

(ii) every (n-1) - cell of K 1is a face of exactly two
n-cells ;

(iii) if E and E' are n-cells of K there is a sequence
E = Eo’ El’ ey Ek = E' of n-cells of K such that,
for each i , Ei and Ei+1 have an (n-l)-face in

common.

It is a standard result ([351, p. 81) that any regular
cell decomposition of s is an n-pseudomanifold. We

therefore have:

4.5 Proposition If X s an N-polycell then BdX <s an

(n-1)-pseudomanifold. O

4.6 Corollary For X an N-polycell and p < n each cell

of X of dimension <p 18 contained in some closed p-cell .

Proof Use downward induction on skeleta. ad

4.7 Proposition

(i) Let f£f: X+ Y be a morphism of Poly . Then £(X) s a

face of Y and f: X » £(X) <s a Poly -<isomorphism.
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‘(ii) If f£,g: X > Y are isomorphisms of Poly <then £ =g .

(iii) If f,g: X > Y are morphisms of Poly such that

£(X) g(X) then £ =g .

Proof
.(i) By Proposition 2.4, f(X) 1is a face of Y and £ 1is a
CC - isomorphism X -+ f(X) . Since £ preserves
disfinguished faces f_1 does the same, and we have a
Poly - isomorphism X =+ £(X) .
(ii1) We first prove the following.
Claim If A and B are q-polycells (q 2 1) and f,g: A 4 B
are Poly - isomorphisms which agree on a (q-1) -face F of A
then f =g .
The proof is by inductioﬁ on the common dimension of A
and B
Assume the claim holds for polycells of dimension q-1
and consider f,g: A > B . By Proposition 4.5, if F' 1is
any (q-1) - face of A other than F there is a sequence
F =‘Fo’ Fis oves F, = F! of (q-1) - faces of A such that

F; o Fi,y 2 2 (q-2) - face. Now f|F = g|F implies that £

i 1

and g agree on the (q-2) -face contained in F n Fy . Thus,
by the inductive assumption, f and g agree on the face F1 .
Similarly £[F, = g|F2, cens f|Fk = g|F , giving fl|F' = g|F'
We have shown that f and g agree on all (q-1) - faces
of A . Since BdA is a (q-1) - pseudomanifold each of its
cells is contained in some (q-1) - face, so that
f|BdA = g|BdA . The preservation of cone structure by CC -
maps then ensures that f = g .
The claim follows, with the inductive process started by

noting that an isomorphism A + B of 1-polycells is
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determined by the destination of one vertex of A .

To prove part (ii) of the proposition we note that, since
f and g preserve distinguished faces, f(Xr*) = g(Xr*) for
r=1,2, ..., n. Thus £ and g agree on the vertex Xn* .
For each r, Xr* is an (n-r) —facé of the (n-r+l) -polycell

x(r-l)* (taking X = X« ). Hence, making repeated use of
the Claim we can move up the flag in X to obtain £ =g

(iii) This follows immediately from (i) and (ii) . O

—
We remark that, in general, a CC morphism is not
determined by its set image. For instance, there are two
—

CC isomorphisms X + X , where X 1is the following marked

cone-complex.

///,-\ X

/

marked face of both 2-cells

§5 Consequences of the marked face structure of a polycell

We now look at some combinatorial properties of a polycell
which depend on its marked face structure and which strengthen
the analogy between polycells and vertex-ordered simplices.

Throughout this section X denotes an n-polycell.

5.1 Proposition The system of marked faces defines an

orientation of X and assigns to each (n-1) - face Ay of X

a parity ei(si = +1) vrelative to Xi (for n=21) .
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Proof Now Hn(X ,X(n-l)) = Z and an orientation of X is
defined to be a choice of generator of H_(X ,X(n_l)).
There is a boundary map

1, 8, (n-1) y(n-2)
Ho(x,x(071)y 2.y @D, x(n-2),

which 1s the composite
Hn(X ,X(n-l)) — Hn_l(x(n‘l)) — Hn-l(x(n—l)’xcn-Z))

and is also part of the homology exact sequence of the triple
(x ,x(@-1)  x(@-2)y  gince H (X, X(72)) = 0 (this follows
from the exact sequence of the pair (X ’X(n-Z)) and the
contractability of X ) , B'is injective.

Let X have (n-1) -faces X, = Ao’ Al, ey Ak .

The inclusion A, > X 1induces an isomorphism

T R
1

where, on the left, we have a direct sum of copies of Z , one

copy for each face Ai . By definition, an orientation of Ai

- - - (n-Z) ~
induces an isomorphism Hn_l(Ai, Ai ) 2 Z

. However,
because each _(n-2) - face of X 1is a face of precisely two
(n-1) - faces (Proposition 4.5) there are only two elements, say
ta , in the left hand group such that ¢(*fa) = 3 (generator
of H_(X , x(2-1)y

Suppose an orientation G(Ai) of each Ai has been
chosen. Then we can write o = I ;6 (A;) , e; = %1 , and o

i _

is determined up to sign. This can be fixed by insisting that
€y = +1 or that €5 = -1 : we choose €, = +1 . (The €5 >
i # 0, are then completely determined by the following rule:
if B is an (n-2) - face in Ai n Aj and €p in _Ai = -gp

in Aj then e; = €5 » otherwise e; = -ej .) By injectivity
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of 9 , once o is determined so also is a generator of
H, (X ,X(n_l)) , that is, an orientation 6(X) of X .
Abusiﬁg notation and regarding ¢ as the identity, we have

36(X) = I €30 (A;) .
1 . .

To start the inductive process, a l-polycell can be

oriented by ordering its two vertices. 0

5.2 Proposition The structure of marked faces of X determines

a total ordering of the (n-1)-faces of X (n 2 1).

Proof Let V be any set and let f: {0, 1, ..., k} — V
be a surjection. Then a total order is defined on V by letting
v, = f(0) be the first element and, if Vos Vis e Vo have
been defined, letting Vel be f(x) where x 1is the least

element of 10, 1, ..., k} \ .E f'l(vi)
i=o

The ordering on the set of (n-1) - faces of X «can be
constructed inductively. —

Assume an order on the (n~2) - faces of any (n-1) -
polycell Y and consider the n-polycell X . We label the
marked face X, by X(0) . Suppose X(0) , X(1) , ..., X(q)
" have been labelled in order. Let R(q) be the set of
remaining (n-1) - faces of X . Since BdX is an (n-1) -
pseudomanifold each (n-2) - face of X 1is contained in
exactly two (n-1) - faces. Let B(q) be the set of - (n-2) -
faces Z such that Z 1is contained in one of
X(0), X(1), ..., X(q) and in one of the (n-1) -faces in R(q)
Using the total order on the (n-2) - faces of each X(i) we

can order B(q) 1lexicographically. Since each element of

B(q) 1is contained in a unique element of R(q) we get a
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function B(gq) -+ R(q) and hence an order on the image of
this function. The (n-1) - faces in the image can now be
labelled. This process is continued until all the (n-1) -
faces of X are labelled ( as ensured by part (iii)
of the definition of a pseudomanifold).

To start the induction, for Y a l-polycell, take

Y, = Y(0) and let the remaining vertex be Y(1) . O

5.3 Proposition The marked face structure determines a

total order ¢(X) on the set of all faces of X .

Proof A modified lexicographic ordering using (5.2) is
constructed.

For some k =2 1 , the (n-1) - faces of X are
X(d), X(1), ..., X(k) . The (n-2) -faces of X(i) , 0 <1i <k ,
may be labelled X(i,0), X(i,1), .;., X(i,mi) for some m, .
We can continue in this way to give a label to each face of X .
Any face of dimension <n-1 will have more than one label:
an (n-2) - face of Z of X(1) n X(2) is both X(1,p) and
X(z,q)

The ordering z(X) 1is defined as follows.
The top-dimensional face X 1is taken as least element. Then
the (n-1) - faces are ordered X(0) < X(1) < ... < X(k)
Next the (n-2) -cells-are ordered lexicographically

X(0,0 < X(0,1) < ... < X(O,mo) < X(1,0) < ...

but omitting a face if it has appeared previously under a
different label. We proceed in order of decreasing dimension,

using the modified lexicographic ordering within each

dimension. 0O -

. The ordering z(X) plays a crucial role in Chapter III,
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where it is used to specify certain collapses of polycells.
Note that <z(X) induces a total order CO(X) on the

set of vertices of X . In turn, CO(X) induces an ordering

CO(X)Y of the vertices of each face Y of X . Since Y is

itself a polycell there is also an ordering CO(Y) determined

by the marked face structure of Y . In general CO(Y)‘ and

CO(X)Y do not agree. For example, consider the following

polycell structure on AZ .

Y
X
The ordering ¢(X) is
(6)
(4) 5)
(1)
which gives CO(X)Y =
(9)

>

(4)
(1)

The ordering ¢ _(Y) is

AN

(2)
which disagrees with Co(X)Y .

In contrast, if we take the other possible polycell

structure on Az we have:

(6)

(4) (5)
(1)
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(6)

giving CO(X')Y' =

(4)
(2)

which agrees with CO(Y') =

(L)
Intuitively, the fact that cO(B) "and CO(A)B do not

agree in general-explains why marked face structures are not
equivalent to vertex-orderings on cone-cells. We can think
of the polycell X' as corresponding to a vertex-ordered
2-simplex but, because co(Y) # CO(X)Y , there can be no
vertex-ordéring carrying the same amount of information as the
marked face structure of X . An interesting question 1is
whether, given a vertex-ordering ¢, on a cone-cell X , there
is a marked face structure on X such that CO(X) = T, -
This seems likely, but we have no proof at present.

We remark that the Fxtra strength of the marked face

structure allows us to do homotopy theory with polycells,

rather than just homology theory.

§6 Subcategories of Poly appropriate as model categories

We have seen that although the category Poly is very
general its objects have a rich structure‘and its morphisms
are restricted. It follows that certain subcategories of
Poly can be used as model categories. We consider a class of

such subcategories.

6.1 Definition The members of the class T are full

subcategories M of Poly satisfying:
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(i) for each n 2 0, Ob(M) contains an n-polycell ;

(ii) for each face A of an object of M there is an object
of M which is Poly -isomorphic to A ;

(iii) M 1is skeletal ; that is, any two isomorphic objects of

M are identical.

Useful model categorigs are obtained if condition (iii)
is omitted. However, we wish to look at the theory of 'M-T -
complexes' (Chapter III) and this seems to be neater ifb(iii)
is included. Moreover, the skeleta of a full subcategory M
of Poly satisfying (i) and (ii) are members of T
and, for M' a skeleton of M , the functor categories

M OP mOP :
Set and Set are equivalent.

Using the notation of §1 we make each category M e T
into a model category for Top by defining I: M - Top
to be the forgetful functor which sends each polycell to its

underlying space; Then, for each M , there is a singular

op
functor s: Top =~ SetM (Definition 1.2) and an adjoint
op
realization functor r: Set - Top (1.3, 1.4) . The functor
op
category set! is called the category of M - sets .

Let K: M°P > Set be an M-set. For X an
n-dimensional object of M , each x ¢ K(X) 1is said to be an
n-cell of K .

By conditions (ii) and (iii) of Definition 6.1 , for
each face A of X , there is precisely one M -object A'
isomorphic to A . Proposition 4.7 (iii) “ensures that there
is a unique M - morphism 6pt Af + X such that 6A(A') = A .
There is thus a unique map 9y = K(GA): K(X) > K(A")

corresponding to thé face A of X.
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6.2 Definition We call 9, a face map. For each cell

x ¢ K(X) , BAX is a face of x .

We will now give some examples of members of T . First,

-

three standard constructions are required.
————de

6.3 Definition Let X be a marked cone complex. The (CC-)

eylinder X x I on X 1is the CC - cylinder with the following
marked face structure: X x {0} , X x {1} inherit the marked

faces of X and (A x I), = A x {0} for each face A of X.

For each face A , A x I is clearly a polycell, and
X x I 1is a marked cone-complex. If X 1is itself a polycell
then so is X x I . The situation is the same for the

following construction.
-

6.4 Definition Let X be a marked cone-complex. The (CC-)

cone CX on X 1is the CC -cone with the following marked
face structure: X < CX retains its marked faces and, for

each face A of X, (CA)y = A .

Recall that the dome construction (3.4) was defined on

cone-cells only.

6.5 Definition Let X be an n-polycell. For n =2 1 , the

—

(CC-) dome DX on X 1is the CC - dome with the marked face

structures of X' , X° inherited from X and '(DX)* = X
—— '

For n =0, DX 1is the CC -cone CX .

Note that marked face structures other than those given
above may be imposed on CC -cylinders, cones and domes. We
-

reserve the terms CC -cylinder, cone and dome for the

particular choice of structure made in each case.
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Let Q denote the O-polycell (0, O, ...) ¢ R
We use 0O whenever a standard choice of O-polycell is required,
as in the definitions of the skeletal categories below.

6.6 Definition The category G 1is the full subcategory of

Poly with objects Gc° s Gl, ... where G° = 0 and, for each

n-1

n=21, G* is the. CC -dome DG
A polycell isomorphic to G* is called an n-globe . Note

that, as a CW-complex , G* is the standard n-cell with its

commonly used cell structure

Up to isomorphism, G may be considered the simplest
category in T.

6.7 Definition The category Ag is the full subcategory of

Poly with objects AO, Al, ... where A° = Q and, for each

n-1

I is the Ef—cone CA .

n=21, A

n

A polycell isomorphic to A is referred to as an

~ n-simplex .
The order co(An) defined on the set of vertices of A"

by the marked face structure (85) can be described using the
n n n . n .

flag AL+ © A(n-l)* c ... © A in A" : for j=1, 2, ..., n

vertex Jj 1is the unique vertex of A?n-j)* not contained in

n

n* ° The marked face structure of

n . .
A(n-j+1)*’ vertex 0 1is A
AT is completely determined by co(An) , using the following

rule: for k = 1 and sach k-face X of a" , X, 1s the

unique (k-1)-face of X not containing the greatest
vertex of X . Thus the marked face structure of a% *°
equivalent to a vertex ordering. There is an obvious

canonical isomorphism between Ay and the wide subcategory
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A with injective morphisms of the usual simplicial category.

In future we identify the two categories A -
6.8 Definition The category 01 is the full subcategory of

Poly with objects Io, Il, ... Where 1° = Q and, for n 21,

is the CC-cylinder SR

In

A polycell isomorphic to 1" is called an n-cube. DI
ijs isomorphic to the wide subcategory DI with injective
morphisms of the usual cubical model categoTy 0 . Again we

jdentify the two isomorphic categories:

Combinations of the dome, cone and cylinder constructions
can be‘used to build four other members of r. For instance,
CcP is the full subcategory of Poly defined inductively as
follows: the single O0-dimensional object of CP is Q ; the
n-dimensional objects of CP are the CC-cones and cylinders
on the (n-1)-dimensional objects of CP (identifying CQ
with Q x I ). Here the notation CP indicates that cone and
product (that is, cylinder) operations are used in the definition.
Similarly, we have categories DC , DP and DCP . There is
an isomorphism between cP and the category P of Hintze [261.
Bigger categories in T can easily be constructed. The
skeleta of Poly are maximal and we can obtain other members
of T from these by imposing extra conditions on polycells.

Examples of such categories are given in the next chapter.
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CHAPTER 11

POSETS AND SHELLABILITY

This chapter is devoted to a subclass EI' of the class
I' of model categories. It will be shown in the next chapter
that, for any category M in ET s, the categories of MT -
complexes and simplicial T-complexes are equivalent. The
members of EI' are categories M in T such that M has
nice objects and Ob(M) contains certain specified polycells.

We specify niceness by means of a shellability condition.
A polycell satisfying this condition has tamely embedded faces
and can be given a combinatorial description. As a result, a
maximal category P- in ET 1is isomorphic to a category P'
of posets with extra structure. That is, P 1s combinatorial
in nature, which is‘desirable in a model category. The
properties of P are important because each member of ETI is
isomorphic to a full subcategory of P |

Terminology and results from the fheory of simplicial
comrlexes and PL topology are used without comment in this

chapter. The reader is referred to Hudson [271].

§1 Shelling

All simplicial complexes are taken to be finite. We say
that an n-dimensional simplicial complex X is pure if each

face oﬁ K 1is contained in an n-face.

1.1 Definition (see [201, p. 34) The n-dimensional simplicial

complex K 1is shellable if K is pure and the n-simplices of
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K can be given a linear order Fl, FZ, Ceey Ft such that

the following conditions hold for 1 < k < t except that

(ii) may fail when k =t

(1) for each i < k there exists é < k such that Pj n Fy
is an (n-1) - simplex and Fi n Fk c Fj n Fk ;

(ii) there is an (n-1) - face of‘ Fk not contained in Fi

for any i < k .

In other words the n-simplex Fy is required to intersect

k-1 A
the complex u Fy in a non-empty union of maximal proper
i=1

faces of Fy which does not include every such face of Fp .
An ordering of n-simplices which_satisfies (i) and (ii) is
called a shelling of K . A shelling represents an especially
nice and useful way of assembling K from its component
n-simplices. |

If the n-simplices of K can be given a linear order

Fl’ F F satisfying condition (i) then K 1is said to

93 ++vs Fy
be semishellable and the order Fl’ FZ’ coes Ft is referred to
as a semishelling of K . Some authors (in particular,
Bjorner and Wachs [4, 5, 61 take the term shelling to mean
what we call a semishelling.

The concept of shellability has been widely studied and
there are definitions similar to 1.1 for finite convex
cell complexes and finite regular complexes (see the survey
paper [20] and Chapter V). There is also a notion of

shellability for posets, which plays an important part in

sections 3 and 4 of this chapter.
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1.2 Definition A weak n- pseudomanifold with boundary is a

pure n-dimensional simplicial complex. K such that every

(n-1) -simplex of K 1lies in at most two n-simplices. The

boundary BAdK of K 1is the (n-1) -dimensional complex

consisting of all (n-1) -simplices that lie in one n-simplex.
If the boundary of K is empty, K 1is said to be a

weak n- pseudomanifold.

Note that if Definition I 4.4 1is restricted to
simplicial complexes and condition (iii) omitted the definition
of a weak pseudomanifold is obtained. Our terminology is not
‘standard since the term pseudomanifold (with boundary) is
sometimes used [20] for our weak pseudomanifold (with boundary).

The following results are well known.

1.3 Proposition ({20, p. 41] For X a semishellable weak

pseudomanifold , the semishellings of K are

identical to shellings. 0O

1.4 Proposition [20, p. 351 If F FZ, ooy Ft 18 a

1’
shelling of a weak n- pseudomanifold K with boundary then

K <s a combinatorial n- sphere or combinatorial n-ball
depending on whether condition (ii) of Definition 1.1 fails

or holds when k =t and whether BdK <Zs empty or non-empty. O

Recall that a simplicial complex has a canonical cone-
complex structure. We refer to a cone-complex Z which is
CC - isomorphic to a simplicial complex Z' as a simpliczal
cone-complex. The isomorphism Z' - Z 1is a triangulation of
Z . There are obvious analogues of Definitions 1.1 and 1.2_

for triangulated spaces so we have a notion of shelling and of
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a weak pseudomanifold with boundary for simplicial cone-
complexes. |

The triangulation Z' - Z makes Z a PL space. Recall
that a PL space is a PL bali or sphere if it 1is
triangulated as a combinatorial ball or sphere. Following from

Proposition 1.4 we have:

1.5 Proposition ZLet Z be a simplicial cone-complex. If

Z <s a weak n- pseudomanifold with boundary and has a shelling

F eeey F then the space L1 <s a PL n- sphere or a PL

1° t
n- ball depending on the failure of condition (1i) when k =t

and whether BdL <s empty. O

By Proposition I 2.7 , if X 1is a cone-complex the

barycentric subdivision SdX is a simplicial cone-complex.

1.6 Definition The cone-complex X 1is S- shellable if

SdA 1is shellable for each face A of X .

1.7 Proposition For k =2 O , every k-~ face of an S-

shellable cone-complex X <s a PL k- ball,

Proof For k 2 1 and each k-face A of X , SdBdA is

k-1 and is therefore a

a regular cell decomposition of S
(k-1) - pseudomanifold. It follows that SdA is a weak k-
pseudomanifold with boundary. Since SdA is shellable the
result follows from Proposition 1.5 and the fact that the

spaces A and SdA coincide. O

1.8 Proposition If B <s a (k - 1)- face of the k-face

A in an S- shellable cone~complex then there is a homeomorphism

of pairs (A, B) (Ik, Ik-l)

.
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Proof The inclusion i: BdB -~ BdA is a PL embedding of

the PL (k-2) - sphere BdB into the PL (k-1) - sphere

BdA . By Rushing [34] , Theorem 1.7.2 , such an embedding is
locally flat. The generalized Schoenflies Theorem [34, p. 48]

k-2 k-1

states that a locally flat embedding S »> S is flat.

The flatness of BdB in BdA implies the desired result. [

The propositions above show that an S-shellable cone-
complex has nice faces nicely embedded. The following result is

useful for checking the S-shellability of cone-complexes.

1.9 Proposition For k 21 and any k- face A of a cone-

complex, SdAA <s shellable <f and only if SdBdA <s shellable.

Proof

=> Let dim A = k . Since SdA 1is isomorphic to the CC-
cone on SdBdA a shelling Fl’ FZ’ ey Ft of SdA induces
an o}dering Bl’ BZ’ ceey Bt on the (k-1) - faces of SdBdA .
The ordering Bl’ By, «o., By is clearly a semishelling of
SdBdA , which is a weak pseudomanifold. Thus, by Proposition
1.3 , we have a shelling of SdBdA .

<= is obvious. 0

For n £ 2 all triangulations of n-balls are shellable
so all 1- and 2- dimensional cone-complexes are S-
shellable. Fdr n = 3 there exist combinatorial triangulations
of n-balls which are not shellable [20]. However, all
triangulations of 2-spheres are shellable and it is not known
if 3- and 4- spheres are shellable. Hence, by Proposition
1.9 , all 3-diﬁensional cone-complexes are S-shellable and it.
is unknown whether all 4- and 5- dimensional cone-complexes

are S-shellable.
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Edwards [36] (see also [20]1) has shown that for n = 5
there exist non-combinatorial triangulations of n-spheres.
Thus, by 1.4 , there exist non-she;lable triangulations of
n—spheres for n 25 . It is therefore likely that there are
cone-complexes of dimension 26 which are not S-shellable,
although we do not have an example at present.

The dome, cone and cylinder constructions (Chapter I, §3)
and other cone-complex constructions preserve S-shellability.
Proofs of S-shellability tend to be rather tedious so such
results are gathered into an Appendix.

We shall be concerned with S-shellable marked cone-
complexes and, in particular, S-shellable bolycells. These
are referred to as . 5T - complexes and S- polycells

respectively.

— —

1.10 Definition We let SC be the full subcategory of CC

whose objects are 5C - complexes.
éPoly is the full subcategory of Poly with S-polycells

as objects.

§2 The class ET of model categories

Before defining the class ET we need to give two

constructions of marked cone-complexes.

—
2.1 Definition For Z a marked cone-complex the (CC)

barycentric subdivision SdZ of Z 1is the CC barycentric
subdivision with the following marked face structure. For

k 21 and each k-face a of S8dZi 1let X be the barycentre
of.the unique k-face A of Z containing a . Take a. to

be the (k-1) - face of a which does not contain K .
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b 2

_==
yA

2.2 Definition For an n-dimensional marked cone-complex Z

the (n+l) -dimensional marked cone-complex VZ is formed by
—_

taking the CC cylinder Z x I and replacing Z x {1} by
Sd(z x {1} )

Examples of VZ for low-dimensional Z are given below.

o > o - > zx{1} S S —2 Sd(zx{1})
yA
AN N N
Zx{0} === 7x{0}
Z x I Vi
Zzx{1} Sd(Zx{1})
YA
zx{0} Zx{0}

2.3 Remarks
(i) Each face a of SdZ 1is a Poly —simplgx (that is, a
is isomorphic to an object of the category Ay defined in

I16.7).
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(ii) For each subcomplex Y of Z the marked cone-complex
structure of VZ induces the structure of VY on Y x I
Thus the faces of VZ are the faces of Z , the polycells VA
for A a face of Z , and Poly -simplices of dimension

< dim Z . This fact is important later on.

We have from the Appendix that:
(i) an n-simplex is S-shellable for n = O ;
(ii) if the complex Z is S-shellable then so is VZ . The

following definition is therefore meaningful.

2.4 Definition Let ET be the class of categories M 1in

I' which satisfy:

(1) each M -object is S-shellable ;

(ii) for n"'2 0 , M has an object Poly -isomorphic to
A" e Ob(Aq) ;

(iii) for each object X of M there is an object of M

which is Poly - isomorphic to VX .

2.5 Proposition Each category in ET has a full subcategory

tsomorphic to A; . O

In order to show that EI' 1is infinite we construct an
infinite subset SC = {SC;, SC,, ... } using the categories

A (See I §6 ).

1 » Ur

2.6 Definition For i =21, SCi is the full subcategory
of Poly with objects defined as follows. The single
O-dimensional object of SC; is the standard polycell QO .

The set of j-dimensional objects of SCi is
{ad, 17} u{vX|X e Ob(sg;) , dim X = j - 1} for j < i and

(a7} v {VX|X e Ob(scy) , dim X = j - 1}  for j > i,
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where Aj € Ob(AI) , 17 e Ob(DI) and Al, I1 and VQ are

identified.

There is no difficulty in checking that SCi is a member
of ET for each i
The low dimensional objects of SCl are

dim O . °

1 » } .

i
| i B S

The objects of sC, in the same diilensions are:

dim O PY

1 ~—> .

| .




For j < i there is no object of SCj which is Poly -
isomorphic to 1t e Ob(SCi) (since all i-~dimensional objects
of SC. have some simplicial faces). Therefore SCi is not

J

isomorphic to SCj for i # j . This gives:

2.7 Proposition The class ET has an infinite number of

non-isomorphic members. [

The elements of SC are among the simplest in ET
SCq is the smallest category in ET wup to isomorphism and
the SCi , 1 =2, 3, ... , lie between SCl and the least
category in ET having A" anda 1" . (for all n = Q) among
its objects.

The bigger members of ETI' are perhaps the most
interesting. For example, we can construct a category
Cv ¢ ET whose objects are based on convex polytopes.

For any point a in the interior of a convex polytope
A, A 1is obviously a polyhedral cone on BdA with cone
point a . There is thus a canonical cone-complex characteristic
map CBdA - A associated with each poiﬁt of Int A . All faces
of A are themselves convex polytopes so there is a set of
cone-cell sfructures for A . That is, there is a set of

eonvex cone-cells corresponding to each polytope A .
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2.8 Definition We denote by Conv the full subcategory of

Poly whose objects are convex cone-cells with marked face
structures. The category Cv 1is defined to be a skeleton of

Conv.

2.9 Proposition The category Cv is a member of ET

Proof Clearly Cv e T . To show that Cv €EI' we note:
(i) It follows easily from Proposition 5.2 of Bjorner [4]
that the barycentric subdivision of any convex cone-cell 1is
shellable. Each Cv -object is therefore S-shellable.

(ii) The standard geometric n-simplex is convex so Cv has
an object Poly - isomorphic to A" for n =0 .

(iii) Ewald and Shephard [22] have observed that the
barycentric subdivision of the boundary complex of a convex
polytope is isomorphic to the boundary complex of some
simplicial convex polytope. Using this, we can show that if
X 1is an object of Cv there exists a Cv -object Poly -

isomorphic to VX . O

The skeleta of SPoly (1.10) are maximal in ET : if P

is skeleton of SPoly then we have immediately.

2.10 Proposition

(Z) The category P is a member of ET
(7Z2) Each category im EI is isomorphic to a full subcategory

of P

P 1is bigger than Cv because polycells such as the globes
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are objects of P but not of Cv . In fact P 1is very big
because it contains isomorphs of all but the wildest polycells.
It is thus of interest that P can be given a combinatorial
description using posets with extra structure. The rest of the

chapter is devoted to this topic.

§3 Face posets of S-polycells

In this section a poset with extra structure is associated
to each S-polycell.

First we recall some terminology from the theory of
posets. Further details may be found in, for example, Bjorner [4].

All posets are taken to be finite. A poset is said to be

bounded if it has a least element and a greatest element.

3.1 Definition [4, p.d60l The Zength of a chain ¢ in a poset

Q 1is one less than the number of elements in ¢ . We say Q
is pure if all maximal chains have the same length. If Q is

bounded and pure it is called graded.

3.2 Proposition [4, p.160] 4 pure poset satisfies the Jordan-

Dedekind condition: all unrefinable chains between two

comparable elements have the same length. 0O

3.3 Definition [4, p. 1601 Let O be the least element of a

graded poset Q . For Xx € Q the rank p(x) of x 1is the

common length of all unrefinable chains from O to x in Q .

The fact that a rank can be assigned to each element of

Q explains the use of the term graded poset.

3.4 Definition [4, ppl60,182] The order complex A(Q) of a
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poset Q 1is the abstract simplicial complex of all chains of
Q .
The definitions of shellability, weak pseudomanifold with

boundary and so on given in section 1 also apply to abstract

simplicial complexes.

3.5 Definition The poset Q 1is shellable if its order complex

A(Q) 1is shellable.

Our terminology here is not completely standard. A poset
is commonly defined to be shellable if its ofder complex 1is |
what we call semishellable. However, we will be mainly
concerned with posets Q such that A(Q) 1is a weak
pseudomanifold , in which case shellings and
semishellings of A(Q) are identical (Proposition 1.3) .

Bjorner and Wachs [4, 5, 61 have developed and applied
various notions of lexicographic shelling of a poset. Their
work .provides  a number of useful tools for proving that a poset
is shellable. |

The new ideas we need are simple.

For a <b in a poset Q , [a,bl denotes the interval

‘{x € Q] a £ x < b}

3.6 Definition A graded poset Q 1is said to satisfy the

diamond condition if for every pair of elements a, b in Q

such that a < b and p(a) = p(b) - 2 then:

(i) the interval [a,b]l] contains exactly two elements X{
X, apart from a and b ;

(ii) each of X; , X, covers a and is covered by b

In other words [a,bl is of the form of the diamond
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ey
N/

5.7 Definition A C -poset is a poset Q satisfying:

(1) Q 1is graded ;
(ii) Q satisfies the diamond condition ;
(iii) for each element a of Q the sub-poset [0,al, where
O 1is the least element of Q , is shellable.
We can define a tree to be a poset R with least element

0 such that the interval [OR, al 1is a chain for each element

R
a of R. If Q 1is a poset with least element O , a

maximal subtree R of Q is a sub-poset of Q such that if
a e Q then a e R and the interval [0, al in R is an

] ] unrefinable
chain 0 ~»a in Q.

3.8 Definition An S -poset (Q,Q.) is a C -poset Q

together with a maximal subtree Qx of Q.

The category SPos has S -posets as objects and a
morphism £: (Q,Qs«) > (R,R¢) of SPos 1is an order-preserving
map of pairs (Q,Q«) > (R,R.) which restricts to a poset

isomorphism Q - [0,b] for some b ¢ R .

The S -poset (Q, Q) will often be denoted simply by Q .
An SPos -morphism is represented below. Edges of the
Hasse diagram of Q which are mérked by * belong to ‘the

diagram of Q. .
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3
% (The image of Q
* 3 .
is shown by
1 2—> * '
numbered vertices.)
* 2
0
Q 0

R

3.9 Definition The face—posét of a polycell X  is the pair

(F(X) , F(X)«) where F(X) 1is the set of faces of X
(including the empty face) ordered by inclusion and F(X), is
.the maximal subtree of F(X) ordered as follows: for faces

A and B of X, A <,B if A belongs to the flag in B

3.10 Proposition If X s an S -polycell then FE(X) <s an

S -poset.

Proof
(1) The poset F(X) is bounded, having least element ¢
and greatest element X . Each maximal chain in FE(X) 1is of
length n+l1 where dimX =n . Hence F(X) 1is graded.

(ii) Consider two elements A < B in F(X) such that

p(B) =k (k 22) and p(A) = p(B) - 2 . The rank of an
element in F(X) 1is one greater than its dimension in X .
Therefore A 1is a (k-3) - face of the (k-2) - pseudomanifold
" BdB , which implies that A is a face of exactly two (k-2) -
cells of BdB . Thus the interval [A,B] in F(X) 1is of the

form B
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(If p(B) =2 then A =¢ and BdB 1is an O -pseudomanifold;
that is, B is a 1-cell having two vertices.) It follows
that F(X) satisfies the diamond condition.
(iii) In the proof of Proposition I 2.7 the simplicial
complex X is defined together with a CC - isomorphism
a: TX = SdX . There is a canonical isomorphism
B: |ACE(X) - #)] » tX , where [A(F(X) - @)| denotes a
geometric realization of the order complex. The definitions
of o and B8 are such that there is an isomorphism
SdX + |A(F(X) - )| which restricts to an isomorphism
SdA -+ [A(F(A) - @®| for each face A of X.

Now |AF(A)| is a cone on [A(F(A) - @) so that
 shellability of [A(F(A) - @)| dis inherited by |AF(A) ] .
If |AF(A)| 1is shellable then the interval [0,A] in  F(X)
is shellable. Hence, since X 1is S —shellable; [0,A] is .

shellable for each element A in F(X) .

We have now shown that F(X) is a C -poset . It follows

that (F(X), F(X)«) 1is an S -poset . 0
We have easily

3.11 Proposition F defines a funetor from the category

SPoly of S -polycells to the category SPos of S -posets, U

The face-poset of a polycell is analogous to the face-
lattice of a convex polytope. Indeed, face-lattices of
polytopes are C -posets. Not all face-posets of polycells
are lattices: for instance F(Gn) , whgre ¢ is an n-globe,

is not a lattice for n = 2



I1/17

2 and P(GZ) is /’// \\\\

%
6> is @ so that F(G°) is

The form of F(G") for n = 2 is clear. Any distinct
elements of the same rank have two minimal upper bounds and

so no least upper bound.
Note that F(GZ) is one of the four simplest non-trivial

S - posets up to isomorphism. The other three are
X

* , the face-poset of an O - polycell X
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X
/\ )
1 2 , the face-poset of a l-polycell ?f——a————z
A F
¢
X
/ B
Xx \\\\
A B corresponding to the pollycell 2
*l : lek
A
1 2
N A
¢

§4 The equivalence SPoly =+ SPos

We now associate an S -polycell to each S -poset .

If R 1is a subset of the poset Q , A(R)“is a subcomplex
of A(Q) . If |A(Q)| 1is a geometric realiiation of A(Q) we
denote the subcomplex of |A(Q)| which is a realization of A(R)
by |A(R)] .. For Q an S -poset with least element O we
denote Q - {0} by Q' and, for each element a # 0 of Q,
write (0,al for [0,al - {0} and (0,a) for (0,al - {al .

4.1 Definition Let Q be an S -poset and let [A(Q')| be

a choice of geometric realization of A(Q') . We define
G(Q) to be the underlying polyhedron of [A(Q')| with the

following cell and marked face structures: for k 21 and
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each element ae Q' with rank k , the underlying polyhedron
of |A(0,al] is a closed (k-1) -cell ; for rank a 2 2 , the
marked face of |A(0,al] is [A(0,bl] , where b is the

unique element covered by a in the maximal subtree Qe of Q.

4.2 Proposition For Q an S -poset , G(Q) <Zs an S -

polycell with a canonical cone structure on each cell.
Before giving the proof of Proposition 4.2 we need:

4.3 Lemma For each element a of Q' with p(a) =k =2 2,

A(O,a) <s a weak (k-2) -pseudomanifold (without boundary).

Proof If x, <Xy < ... < Xy is a maximal chain in (0,a)
then O < Xy <X <l < xq < a 1is a maximal chain in [O0,al
All maximal chains in [O,al have length p(a) = k so
q = k-2
Thus A(O,a) is a pure (k-2) -dimensional complex.
Suppose Xy <Xy < eee <Xy g is a chain of length k-3
in (0,a) (When k = 2 we have the empty chain.) Thén
Xy <Xy < ... <X _z 1s contained in the chain
€ 0 <xy < .o. <X 5 <a of length k-1 in {0,al and
0 = p(0) < plxy) < p(xq) < ... <o(x_5) < p(a) =k .
It follows that p(x) , X € ¢ , runs through all the integers
0, 1, ..., k except one, say ¢ such that 1 < g s k-1
- Thus there is one pair X < X' of adjacent elements in ¢
such that lp(§) = q-1, p(§') ; q*l and, for any other pair
x < x' of adjacent elements, p(x') = p(x) + 1 . This means
that (since z < z' in Q => p(z) < p(z')) for any chain c'
of length k in [0,al containing c¢ , the single element Yy

e} A
of c¢' not contained in ¢ must satisfy x <y < x'
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Now [X, '] in Q is of the form
2
AN /y'
X

Hénce there are two chains

of length k in [0,al] which contain c¢ . Therefore

Xy < X < ... < xk;s is contained in exactly two chains of
length k-2 in (0,a), That is, each (k-3) -simplex of the
complex A(0,a) 1is a face of exactly two (k-2) -simplices.

It follows that A(O,a) is a weak (k-2) -pseudomanifold. 0

4.4 Lemma For each element a € Q' with p(a) 22 , A(O,a)

18 shellable.

Proof By definition A[O,al] 1is shellable. Therefore A(O,a)
is semishellable (Bjormer [41, p. 161 ) and, since A(0,a) is

a weak pseudomanifold, A(0O,a) 1is shellable. O

Proof of 4.2 Simplicial complexes are identified with their
underlying polyhedra.

If a 1is an element of Q' with p(a) = 1 then
|A(0,al] 1is a vertex.

For a ¢ Q' with op(a) =k 22, |A(0,a)] 1is a shellable
weak (k-2) -pseudomanifold by Lemmas 4.3, 4.4. Hence
(Proposition 1.4) |A(0,a)| is a (k-2) -sphere. |A(O,a]]|
is a (simplicial) cone on |A(0,a)| and is thus a (k-1) -ball

with a canonical cone-complex characteristic map.
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The interiors of the simplices of |A(Q')| partition
|a(Q*)| . Since Bd |A(0,al] = |A(0,a)] , the open cell
Int |A(O0,al] of G(Q) 1is the union of the interiors of those
simplices which belong to [A(0,al|l but not to [A(0,a)] .
Such simplices correspond to chains in Q which have a as
greatest element. Since a ghgin has a unique greatest element,
it follows that the interior of each simplex.of |a(Q)!| is
contained in exactly one open cell of G(Q) . The open cells
of G(Q) therefore partition G(Q)

Each chain in (0,a) has a greatest element of rank less
than p(a) = k . Hence the interior of each simplex of
|A(0,a)] is contained in an open cell of G(Q) of dimension
less than k-1 = dim |A(0,al] . The interiors of the
simplices of IA(O;a)I partition |A(0,a)| therefore
Bd | A(0,a1] = |A(0,a)| < a(¥"2) .

It has now been shown that G(Q) 1is a regular complex
withﬂa canonical cone structure on each cell. Thus G(Q) has
a caﬁonical cone-complex‘structure. Since Q has a greatest
element 1 each cell of G(Q) is a face of the closed cell
|A(0,11| . Hence G(Q) 1is a cone-cell. The marked face
structure makes _G(Q) a polycell.

Treating the simplicial complex |A(Q')| as a cone-complex
we can prove that IA(Q')I = Sd G(Q) by induction on the
skeleta of G(Q) . Suppose that |A(Q")| nG(Q)(k-l) = Sd.G(Q)(k_l).
Then (see the remarks at the beginning of this proof) each
k-cell of G(Q)k is the underlying space of a (simplicial)
cone on 1its subdiﬁided boundary and the characteristic maps
of G(Q)k are such that [A(Q')]| n G(Q)k ==SdG(Q)K . There

is no difficulty in starting the process.
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For each element a e Q' with p(a) 2 2 , |A(0,a)]
is shellable by Lemma 4.4. Hence [A(0,al] = C|A(0,a)]| is
sheliable; that is, the barycentric subdivision of the face
la(0,al] of G(Q) is shellable. It follows that G(Q) is

an S -polycell. (0

4.5 Proposition G defines a functor SPos =+ SPoly . [

4.6 Proposition The functors F and G define an adjoint

equivalence

F: SPoly < SPos : G .

SPos For Q an S -poset,. the elements of

F o G(Q) are faces [A(0,al] , a e Q' , of G(Q) and

Proof FoG=1

fa(0,al| < |a(0,b1] in F o G(Q) if and only if
|a(0,al] ¢ |A(O,b1] in G(Q) , that is, if and only if a < b
in Q . The function &: Q » F o G(Q) defined by

g(a) = CIA(O,aJI a ¢Q'

( @ a=20
is therefore a poset isomorphism.
In the maximal subtree F o G(Q)x of F o G(Q) ,

|a(0,a1| <. |A(0,b1| if and only ifJA(O,aJI belongs to the
flag in lA(O,b]I . This occurs if and only if a <, b in Q,
The map & therefore induces a poset isomorphism
Qe » F o GgQ)* . It follows that g an SPos - isomorphism.

Naturality is easily checked so we have F o G = 1SPOS

G o F=1 Let A and B be polycells. An S -poset

SPoly
isomorphism F(A) » F(B) defines an SPoly - isomorphism

A > B . By the remarks above we have, for X an S -polycell,
F oG o F(X) ® F(X) . There is thus an SPoly - isomorphism

G o F(X) = X and we f;nd that G o F = 1SPOly . 0
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An immediate consequence of Proposition 4.6 is

4.7 Proposition If P , P' are skeleta of SPoly , SPos

respectively them P is isomorphic to P' . [0

By Proposition 2.10 each category in the class ET 1is
isomorphic to a full subcategory of P . We have therefore
shown that each member of EI' is isomorphic to a full
subcategory of a combinatorial category.

Extra shellability or collapsibility conditions can be
imposed on S - polycells to obtain subcategories of P in
EI' which are isomorphic to similarly defined subcategories of
P'-. (The notion of collapsing is defined in III §3 and an
extra condition on S -polycells 1is- discussed in Chapter V.)
It may be that the category Cv e¢ ET based on convex polytopes
can Be defined in such a way. It is known [20, p. 37] that
there exists a purely combinatorial characterization of convex
polytopes and, according to Danaraj and Klee, this
characterization could consist of various strong shellability

conditions.
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CHAPTER III

EQUIVALENCES OF CATEGORIES OF T-COMPLEXES

The aim of this chapter is to define a category of
MT-complexes for each M ¢ ET , and to show that, for M ¢ ET ,
there is an equivalence of categories between MT-complexes and
simplicial T-complexes. This result is obtained by proving:
(i) the categories of simplicial T-complexes and

AIT—complexes are isomorphic; .

(ii) there is an equivalence of categories MT-complexes -

AIT—complexeS'for M e ET .

A feature of our proof of (ii) 1is that we work as far as
possible in the model category. In particular, collapsing of
polycells plays a central role. The use of (cubical) collapsing
in a similar context was introduced by Brown-Higgins to
construct the homotopy .w-groupoid of a filtered space ([11]
and to construct the w-groupoid structure on a cubical
T-complex [12] . Rourke-Sanderson {331 and Hintze [26]
also use collapsing in work on Ar-sets and P-sets
respectively.

The chapter is laid out‘as follows. The T-complex axioms
are introduced and applied to M-sets in §1 . An isomorphism
between simplicial and AIT —complexes is constructed in §2 ,
using work of Fritsch [24]1 . In §3 , a definition is given
of collapsing in cone-complexes and the duality between the

notions of collapsing and thin fillers of boxes is noted. This
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duality allows us to translate work on collapsing into

reasoning about elements of MT-complexes. Accordingly,

§§4, 5 consider particular collapses of certain . ST -
complexes. These collapses are used in §86, 7, 8 to prove

(i) above and hence the main equivalence theorem.

§1 T-complexes

The notion of a T-complex was introduced in a simplicial
context by Dakin [19] . The cubical version has played an

important part in work of Brown and Higgins (10, 11, 12]

1.1 Definition [10, 12, 191 A simplicial (cubical)

T~complex (K,T) 1is a simplicial (cubical) set K having in

each dimension n 21 a set Tn c Kn of elements (which are

called thin) satisfying the axioms:

(T1) Every degenerate element of K is thin;

(T2) Every box in K has a unique thin filler;

(T3) If all faces but one of a thin element of KX are thin
then so is the remaining face.

Simplicial T-complexes are the objects of a category
ATC whose morphisms are simplicial maps preserving thin
elements. The category U0OTC has cubical T-complexes as objects
and cubical maps preserving thin elements as morphisms.

In order to define a category of MT-complexes for M e T
we have to equip M-sets with thin elements satisfying a set of
axioms similar to that of definition 1.1 . There is a notion
of a box and filler in an M-set so axioms T2 and T3 may be
used. On the other hand, we have to dispense with axiom TI1
- since the fact that each M ¢ I has only injettive_morphisms

implies that an M-set has no degeﬁeracy maps. It turns out
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that a definition of MT-complexes using T2 and T3 1is
satisfactory.

Before defining a box in an M-set we note the following.
If f: A+ B 1is a Poly-morphism then, for any category
MeT having objects A' and B' Poly-isomorphic to A and

B respectively, there is a unique morphism £': A' > B' in M

such that
f!
Al ey B!
A ——i—* B

commutes (see Proposition I4.7 ). Since M 1is skeletal we
can refer to f£f' , without confusion, as the M-morphism
corresponding to £ .

We call an object of M an M-cell.

1.2 Definition For a category M e I' , let X be an

n-dimensional "~ M-cell with (n-1)-faces Xo, Xl, ceey Xq . For
an M-set K: moP s set, a boz B in K is a set
Xy Xyy eees X575 Xjuqs cees xq} of (n-1)-cells of X such

that x; € K(Xi) , Where X% is the M-cell corresponding to

J .
Xj , and if A ¢ X n X, is a face of X and
Gk: A > X'k , sT: A' » X'r are the M-morphisms corresponding

to the inclusions A <» Xy s Aic* Xr then K(Sk)xk‘= K(Gr)xr .

1.3 Definition A fZller of the box B 1is an n-cell

x € K(X) such that Iy X = X5 j#Fi .
J
A more concise definition of a box is given in §3 .
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1.4 Definition For MeTl , an MT-complex (X,T) 1is an

M-set K having, associated to each M-cell X (dimX =1), a subset
T(X) of K(X) whose elements (which are called tain) satisfy
the following axioms:

(T2) Every box in K has a unique thin filler;

(T3) If all but one of the (n-1)-faces of a thin n-cell of

K are fhin then so is the remaining (n-1)-face.

For each M ¢ I' we can define a category MTC whose
objects are MT-complexes and whose morphisms are M-set
morphisms which preserve thin elements. Where no confusion
arises we will write K for the T-complex (X,T)

A functor MTC - AITC for M ¢ ET can be defined here.

By Proposition II 2.5 , A; is isomorphic to a full subcategory

A of M . Hence we can associate a AI-set rMK to each M-set

M
K: M°P > set merely by restricting K to Ay - Each M-set
morphism g: K -+ L restricts to a AI-set morphism

Tyg: rMK - rML so we have a functor Ty: M-sets + A;-sets .

If K is an MT-complex then ryK 1is a A;T-complex and if

g: K - L preserves thin cells so does Tyg - We can thus

state:

1.5 Proposition For M e ET , there is a functor

T MTC - A,TC defined by restriction. [

MZ

§2 The isomorphism ATC =+ ApTC

This section is concerned with the proof of the following

result.

2.1 Theorem The categories of simplicial T-complexes and

AIT—compZexes are isomorphic.
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Since AI is a wide subcategory of the simplicial
category A there is a forgetful functor £&:simplicial sets -
A; - sets . A T-complex structure on a simplicial set X is

inherited (insofar as it applies) by £K . We obtain easily:

2.2 Proposition & defines a functor ATC » A{TC . O

The simplicial T-complex nK associated with a
AIT-complex K 1is obtained by equipping K with a set of
degeneracy maps. Various authors [24, 33, 391 have shown

that a Kan A;-set K admits a (non-canonical) system of

I
degeneracy maps. In particular, Fritsch [24] wuses certain
sequences of fillers of boxes to construct degenerate elements.
By following Fritsch's method, but using only thin fillers, we
can construct a canonical system of degeneracy maps for a

AIT~comp1ex K such that each degenerate element is thin;

that is, we can define a simplicial T-complex.

We write di and S; for the standard face and degeneracy

maps of a simplicial set. For L a simplicial set and

O<n<mn let A(n,m) be the set of maps a:Ln + L of the

m
form a = s, s; cee Sy , where k=m-n -1 and
k (k-1) o
io < i1 < 4e. < ik .
2.3 Definition [24] Let a = S;. Si cee Sy and
k (k-1) o)
a' = s. sS. e S be elements of A(n,m) . We say that
Ik I (x-1) Jo
a' 1is a predecessor of a if a # a' and there exists
j € 10,1,...,m} such that dy Sik+1 a =a'.

2.4 Lemma [24]1 The relation 'predecessor of' generates a

partial order s on the set A(n,m) N

-
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Proof Clearly, a reflexive, transitive relation Sp is

generated.

If a' 1is a predecessor of a then iq < jq for

q=0,1,...,k-1 and ik = jk . Hence Sp is antisymmetric.[

2.5 Lemma There extists a (non-canonical) total order st

on A(n,m) such that a' spa 3> a' <2 -

Proof This follows from the properties of a finite poset. 0

A system of degeneracy maps for a AIT-complex K can
now be defined inductively. It is sufficient to construct all
(well-defined) degenerate elements s. s. ...8. z for

Tk T(x-1) To
k =20, io < il <ees < ik », and 2z a non-degenerate element
of X . Setting a = S; S5 -.. S; , az is defined as a
k “(k-1) o)
face of a thin element Zg -

Assume the following hold.

(1) For each non-degenerate element y of K of dimension

<n and for 1r =2 0 , each element s .S

. S. .

Jr J(r—l) Joy ?
jo < j1 < ve. < jr , has been defined.

(ii) For a non-degenerate element 1z « Kn and
O<r<k=m-n-1, each element s. s. ceeS: Z

Jr J(r-l) Jo

jo < j1 < eee < JL has been defined.
(iii) Each

element bz such that b Sp a in A(n,m) has been

defined.

The element az 1is given below. If b is a composite
of degeneracy maps, gjb represents the map obtained by moving
dj as far as possible to the right, using the simplicial set
identities; thus g354s1 represents 5352ds . There are

two cases:
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(1) iy > igeq)*l (end k=0)

Let zé be the thin filler of the box

(anz , glaz sy «os 5 d. az , - , +23% 5 st s gmaz )

Form the box

- 1
(gosikﬂaz’ e ’éik-lsikﬂaz’ 223 zé’§1k+3sik+1az e ’§m+1sik+1az)
and denote the thin filler by z_ . Let az =d. z_ .
a - i "a

(2) i = igeqy *1

Set a' = s ses S, and let

. S.
k-1)  T(k-2)
T = min'{r'ldr.a = a'}l . By the inductive hypothesis a'z

is a face of z Form the box

al

(gosikﬂaz,. .o ’Sr-lsikﬂaz’_’za' st za,,;ik+3$ik+1az,...',gmﬂsikﬂaz )
thin :

and take Zg to be theAfiller. Let az = dr-za .

The induction starts as follows. For 2z an O-dimensional

element of X and a = S (case (1) ) , zé is the thin filler

of the box (anz,-) = (z,-) ; Z, is the thin filler of the

box (-,zé, zé) ; and az = d_z

It is easily - checked (making use of 2.4, 2.5) that the elements
of the bdxes used in cases (1), (2) have been defined earlier

in the inductive process.
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The degenerate elements satisfy the simplicial set
identities, and a simple inductive argument shows that each
degenerate element is thin. If we write nK for the
A;T-complex K together with the system of degeneracy maps,

we have:

2.7 Proposition nK <s a simplicial T-complex. [

There is an obvious alternative characterization of nkK .

2.8 Proposition For K a AIT-compZex, the simpliecial )
T-complex nK associated with X <s the complex K together
with the system of deganerécy maps defined inductively as
follows, For mn 2 0 and z an n-dimensional element,

552 (0 s i< n) <s the unique thin filler of the boz.

biZ = (si-ldOz’ ooy Si_ldi_lz, Z,’ ' sidi+lz, CRCE Y Sian) .

(For dimz =0 , boz reduces to (z, =) .) O

Notice that though the definition of nK given in
Proposition 2.8 1is neater it is necessary to go through the
work leading up to the first definition. When the box biz

s.z2 of s.z 1is not

is filled with SiZ the free face di+1 i i

known. Reasoning similar to that used in connection with
Proposition 2.7 is required to show di+1siz =z , so that the
simplicial set identities are satisfied.

Since a A;TC -morphism f: K - L preserves thin elements
it is compatible with the degeneracy maps given above. There

is thus a canonical ATC -morphism nf: nK - nL associated with

f . We obtain:

2.9 Proposition n defines a funetor AITC - ATC . 0O
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It is immediate that & o n = 1AITC .

For K a simplicial T-éomplex and z ¢ K 552 is the

n’
thin filler of the box
(si_ldoz,...,si_ldi_lz,z,-,sidi+lz,...,sidnz) . It follows
from Proposition 2.8 that n o £&K = K and we find that

neg =1 - This completes the proof of Theorem 2.1

§3 Structures and collapsing

We now start on the geometric preparation for the proof
of the equivalence MTC =+ A;TC for M ¢ ET . The first step
is to introduce collapsing in the context of cone-complexes and
also the notion of a thin expansion of a structure in an
MT-complex.

We will be particularly concerned with AI and the

categories in ET . For convenience we write ET’ = ET u'{AI}

A cone-complex is a CW-complex. The notion of CW-collapse
is one of the basic ideas in Whitehead's simple-homotopy theory.

We quote the definition given in Cohen [18, p.14]1 .

3.1 Definition Let (X,Y) be a finite CW pair. Then

x ¥ Y , that is , X collapses to Y by an elementary

collapse if

(1) X=Yu "l e where e® and e™ ! are not in Y ;

(1™, 1%y and a

n

(2) there exists a ball pair (Qn,Qn-l)

map ¢: Qn + X such that

. s s -n
(a) ¢ 1is a characteristic map for e ,

(b) <lf>|Qn"1 is a characteristic map for gn-1 ,

(c) ¢(Pn_1) c Yl here P71 - c1(3qQ® - Qn_l)
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(Here the term 'characteristic map' has its ordinary meaning

and does not refer to our special map Coe™ = & )

We take 3.1 as our basic definition of an elementary

collapse of a cone-complex. However, we are mainly interested
—

in SC - complexes (definition II 1.10)' since the objects of
—

‘M e ET*  are S-polycells (cells of sC - complexes). By

Proposition IT 1.8 » condition (2) of 3.1 1is satisfied by

—
any pair (X,Y) of SC -complexes for which (1) holds and
-
N1 c gn Hence 3.1 reduces in the SC - complex case to

a form precisely analogous to the usual simplicial definition

of an elementary collapse, namely:

—

3.2 Definition Let (X,Y) be a pair of SC - complexes. There

is an elementary collapse from X to Y , written X N Y , if
for some s 2 1 there is an open s-cell a of X and an
open (s-1)-cell b < a such that

X=Yva,Yna= 3a-5b.

We say that X collapses to Y , X N Y, if there is a

sequence of elemehtary collapses

- e e e -
X—Xo\Xl\...\Xo Y .

(3

The cell a in definition 3.2 1is referred to as the
major cell of the elementary collapse X ¥ Y and b is called

the minor cell.

-—

3.2 Definition For M e ET" » an SC - complex each of whose
—

faces is SPoly - isomorphic to an M-cell is called an M-SC -

eomplex.

It is standard that an ordered simplicial complex defines
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a simplicial set. Similarly, for M e Er’ , an M-set can be
—_—

associated to each M-SC - complex .

—

3.4 Definition For M e EI” , let U be an M-SC - complex.

The M-set Uy: M°P > set is defined on the objects of M by

—
Uy(X) = ‘{k]k: X+ U is an SC -morphism } and on morphisms by
xSy Ly = x Xy,
-— —

For M-SC -complexes U, V and an SC -morphism

g: U~=> YV a morphism gyt Uy > Vy of M-sets can be defined by
k _ gok
gM(X — U) = X V.

We thus have a faithful functor from the full subcategory of

— -
SC whose objects are M-5C - complexes to the category of

M-sets.
—
Let Z be a face of the M-SC -complex U of definition
—~—adn
3.4 and let Z' be the M-cell SC -isomorphic to Z . Let the

-_—

cell Iy € UM(Z') be‘the SC -morphism Z' = U with range 2
An important épecial casé of 3.4 'is U = an n-dimensional
M-cell. Then ﬁM: U' = U 1is the single top-dimensional cell
of the M-set Uy . That is, Uy is the free M-set on the

n‘Cell UM € UM(UI)'

From now on we omit the suffix M and write U for the

" M-set UM and Z for the cell ZM € UM(Z')
e

3.5 Definition For M ¢ Er” , let U be an M-SC - complex.

For any M-set K , a morphism U: U + K of M-sets is called

a (U-) structure in K .

The notions of a structure and a collapse can be used to

give a definition equivalent to 1.2 of a box in an M-set.
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(Although we only deal with M e Er here, the definition is

easily extended to all M e T ) .

3.6 Definition For a category M e Er’ » let X by an M-cell

and let X ¥ H be an elementary collapse of X . A box in an

M-set K 1is a structure H: H - K .

A filler of the box 'H may be defined, equivalently to
1.3 , to be a structure X: X » K extending H . (That is,
Xoi= H , where 1i: H » X 1is the inclusion).

If K is an MT-complex there is a unique thin filler of
H . Intuitively we have, corresponding to the elementary
collapse X N . @ dual operation of filling the box H

thinly. This idea can be generalized as follows.

3.7 Definition For M e Er" , let V < U be a pair of
—n

M-SC - complexes and suppose there is a collapse C: U \\V .

For K an MT -complex and V: V > K a structure in K , we
say that a structure U: U + K 1is a thin expansion of -V
corresponding to C if U extends V and U(a) is a thin

cell of K for each major cell a of C .

3.8 Proposition There exists a unique thin expansion of V

corresponding to C .

Proof Suppose C is the collapse U = Ué N Uy X ... Y Uq =V.

Assume that there is a unique structure Uj: Uj > K extending

V such that Us(a) is thin if a is a major cell of C .

Let a., b. be the major and minor cells respectively of

373
the elementary collapse Uj_l\f Uj . The restriction of uj.
to eaj-bj defines a box H in K . We obtain a structure
Uj_lz Uj—l +- K extending uj by setting Uj_l(a) = thin filler

of the box H .
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The result follows by induction, taking Uq_= v . 0O

It follows from Proposition 3.8 that we can define
certain structures in MT-complexes by means of collapses of
M-;E-complexes. The next two sections are concerned with
collapses required for the proof of equivalence MTC =+ ATC .
The idea behind the proof is to 'barycentrically subdivide'
the cells of an MT-complex K , that is, to think of
x € K(X) as the 'sum' of a collection of simplices of K
defined by a structure SdX - K in K . In order to work with
such structures we need to describe certain collapses of
SdX and VX where X 1is an S-polycell (see definitions

— —

IT 2.1, 2.2). Note that, for Z a CC- or SC-complex,
—
CZ and SdZ denote the CC -cone and subdivision unless

otherwise stated.

§4 Particular collapses in SdX and VX

For X an S-polycell, we specify collapses in SdX
using a total order cs(X) on the set of cells in the interior
of SdX . Recall that there is a total order (X)) on the set

of faces of X (I 5.3)

4.1 Definition The order. CS(X) is defined by induction on

the dimension of X .

Assume that ¢ (Y) is defined for dimY<n and let
dimX=n . To each open cell e, in SdBdX associate an
ordered pair (i,j) where i 1is the position in (X)) of the
unique face Z of X with ey, ¢ IntZ , and j 1is the position

of ey in CS(Z) . Let cs(BdX) be the lexicographic ordering
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of the cells of SdBdX . Treating SdX as CSdBdX with
cone point v, cs(BdX) induces an ordering of the cells of
Int SdX - v . The ordering ;S(X) is obtained from this by
taking v to be the greatest cell.

There is no difficulty in starting the induction since,

for X an O-polycell, SdX = X = an O-cell.

4.2 Example Consider the (Poly-) 2-simplex

a% =

The order C(Az) is 6]

(4] £11 £51

For any l—poiycell Y , CS(Y) is defined by

o] Y [1]
. > —
Sdy
— - < »

o1l £21 (11

Therefore we can assign ordered pairs to the open cells of

SdBdA2 and obtain ;s(BdAZ) as follows
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[111]

(6,0)

£41(2,1) 3,1) (7]
(51 (2,2) (3,2) [81

£31 (2,0) 3,0) [6]

d
(4,0) (1,00 (1,2) (1,1) (5,0)
[91] o] [2] [1] [10]

(Numbers in square brackets refer to the order ;S(BdAZ) .)

This gives ;s(Az) =

A crucial feature of CS(X) is that it follows the order
z(X) because of the lexicographic ordering used in defining

. Tg (BdX)

A method of associating collapses with orderings of cells
is required. Let U, V be gg-—complexes such that there is a
collapse U Y\ V . For any subcomplex -U' of U containing
V , a good elementary collapse U ¥ U" is one which is part

of a collapse U' N\ V .
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4.3 Definition For any total order w on the set of open

cells of U - V the collapse U NNV associated with w
is defined as follows.

»Suppose U has been collapsed to U' . The next
elementary collapse has major and minor cells a and b ,
where a is the least cell of U' in the order «® which can
act as a major cell in a good collapse of U' , and b is
the least cell of U' which can be paired (as minor cell),

with a 1in a good collapse of U' .

We now show that certain collapses are possible in sdx s

where X is an S-polycell.

4.4 Proposition For n 21 and X an n-dimensional

S-polycell there is an (n-1)-simplex F, of SdBdX
—

such that SdBdX - Int Eg 18 SC -collapsible (to a point).

Proof By Proposition II 1.9, SdBdAX 1is shellable. Let
Fl’ FZ’ ceey Ft be a sheiling. Then SdBdX - Int Ft has a
shelling Fi» Fy5 «.., Fr_; satisfying condition (ii) of
Definition II 1.1 at each stage.

It is standard (Rushing [34, p.17] ) that a simplicial
complex with such a shelling is (simplicially) collapsiblf;

For the complex SdBdX - Int F. the notions of SC

and simplicial collapsing coincide. [

—
Let U <Y be a pair of SC -complexes and consider the

——p
CC -cone CU . Here, and in the sequel, we identify U with

Ux{0} e CU wusing the canonical isdﬁorphism i and write

CU v Y for the adjunction space CU Uy Y . C(Clearly, CU u Y
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—n
is an SC - complex. For any collapse C: U NV there is an

EE collapse CU Y YN CV Y Y induced by C defined thus:
follow the sequence of elementary collapses of C but, at each
stage, instead of deleting the major and minor cells a , b
of C delete 1Int Ca v Int Cb .

For a collapse UNV , Vv = a vertex, there is an induced
collapse CU U Y N Y consisting of the induced collapse

CU uYN Cv uY followed by the elementary collapse deleting

(Int Cv) v cone point. For example, take C: UN v to be:

e U S
U

(cells to be deleted are indicated at each stage).

The collapse CU u Y Y induced by C 1is:

v v v v
\ € N € N
cone

point
CUvuY Y
For X an S-polycell with dimX=> 1 , SdX can be
identified with CSdBdX . Therefore a collapse
SdBdX - Int F, N vertex as in Proposition 4.4 induces a

collapse SdX - Int CF, = C(SdBdX - Int Ft) v SdBAX

N SdBdX .

We thus have:

4.5 Proposition For n 21 and X an n-dimensional

S-polycell there is a ?simplicial) open n-cell e of SdX
such that there is a collapse SdX - e™ \ SdBdX . [
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4.6 Definition The open mn-cell pX of SdX 1is defined to

be the least cell in the order CS(X) such that there is a
collapse SdX - pX '\ SdBdX .

For Y an O-dimensional polycell we set pY = SdY =Y .

4.7 Definition For n =21 and X an n-dimensional

S-polycell, the collapse
A(X): SdX - pX \ SdBdX
is the collapse associated with the order cs(X) on the set

of cells of IntSdX - pX

4.8 Example In 4.4 the order CS(AZ) was given. We

continue with this example and describe the collapse A(Az) in

SdA2 - pAZ

.
7 =
pA2 =/[O] is deleted

SdA2 - pA2

Ko.
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G

- &

SdBda2

4.9 Proposition Let X be an n-dimensional S-polycell

(n 21) . For each (n - 1) ~face t of SdBAX there Zs a

unique sequence

t = to’Tl’tl’TZ’tZ""’Tq’tq’Tq+1'= rX , q

[\
o

IA
[
A
Kel

(1) dimﬂTi= n, dim'ti= n-1 ;
(i1) IntTi and Int'ti are a pair of major and minor cells
in the collapse A(X) in SdX - pX ;

(iii) t; < Ti n Ti+1 and t c T1 .

Proof Now SdX is a weak n-pseudomanifold with boundary.

Hence the (n-1) -face t < SdBdX = BdSdX is contained in
exactly one n-face T1 . Either T, = ;i or IntT1 is a
major cellef the collapse A(X) . (Each n-cell of
SdX -‘pX is deleted in A(X) and, being of maximum dimension,
must be a major cell.) If T1 = ;& we are done. If Int T1
is a major cell there is an (n-1) - face ty of T1 such that
Int‘t1 is the minor cell paired with Int'I‘1 in A(X) .
Assume that there is a unique sequence tO,Tl,tl,...,Tr,tr
satisfying conditions (i)-(iii) . By the definition of

A(X) , tr'¢ BdSdX and so there is exactly one n-face of SdX
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other than Tr containing t. - Denote this n-face by

T In A(X) , the elementary collapse deleting

T+l °
IntTr ulnt t. must precede the elementary éollapses deleting

Int T. viInt t.

, 1 < i< r . This can not occur if t_ < T.
i T i

i
for 1 f_i < r . Hence Tr+1 # Ti for 1 s i< r . Either

Tr+1 = pX or IntTr+1 is a major cell of A(X) and(there is

an (n - 1) - face t ‘c Tr+1 such that Ir_1t'tr+1 is the mlnpr

T+l
cell paired with IntTr+1 . _
The sequence t = to’Tl’tl"'°’Tq+1 = pX 1is thus defined

by an inductive process, which (since SdX has a finite numbér

of n-faces) must halt at pX . [

4.10 Definition For n 21, X an n-dimensional S-polycell

and t an (n-1) - face of SdBdX the tube T(t) on t in
SdX is defined to be the subsequence

t = to’Tl’tl""’Ta’tq

of the sequence given in 4.9 .

If q =0 then T(t) = {t} 1is a trivial tube.

4.11 Definition Let X be an n-dimensional S-polycell

(n 21) . For an (n-1) -face t of SdBdX the collapse

B(X,t) : SdX N\ SdBdX - Int t

proceeds as follows. Take the tube T(t) to be t = to,Tl,...,t

and set Tq+1 =pX. For i=1, 2, ..., q+1 , perform the

q

elementary collapse deleting Int'Tiu Int'ti_1 . Then follow
the collapse A(X) , ignoring an elementary collapse if its

major and minor cells have already been deleted.

We have immediately :
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4.12 Proposition For any (n-1) -face t of SdBdX

the major cells of the collapses B(X,t) and A(X) coincide

except that pX <s a major cell of B(X,t) Dut not of

-

A(X) . O

4.13 Example Compare the following collapse B(Az,t) in
2

SdA With the collapse A(AZ) given in 4.8 .

& — - 7'y

Sd Bd A% - Int t
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Two collapses in VX , for X an S-polycell, will be
needed later on (see Definition II 2.2 and Remark II 2.3(ii) ).
For any face Y of X , we refer to the subcomplexes Yx{0},

Sd(Y x{1} ) of VY as Y , SdY respectively.

The fact that, with the standard order Z(X) on the set of

faces of X, dimY >dimZ =Y <§(X)Z ensures that the following

definition is meaningful.

4.14 Definition For X an S-polycell, the collapse

AO(VX): VXM X proceeds as follows. In the order z(X) , for
each face Y of X , perform the elementary collapse deleting
(IntVY) v pY then carry out the collapse A(Y) in SdY - pY .
(IF dimﬁY# O pY = SdY so that there is no collapse A(Y)

4.15 Example

(71 [4] [8]
> —4
[21 N [0] M3
[5] (1] (6]
12
vIZ

(order ¢ (Iz) in
square brackets)

The first elementary collapse of AO(VIZ) deletes
(Int'VIZ) u pI2 . Next comes the collapse A(IZ) in SdI2 - pl

leaving



\c r :g) \?...\?

I11/23

The process is repeated for each face of I2 in the order

(1%

Lo

The second of our two collapses in VX 1is roughly inverse

to A0 .

4.16 Definition .For X an S-polycell, the collapse

Al(VX): VX X SdX proceeds thus: for each face Y of X,
in the order z(X) , perform the elementary collapse deleting

Int VY viIntY

4.17 Proposition Each major cell of the collapse Al(VX)

18 major in AO(VX) . The only cells which are major in

AO(VX) but not in Al(VX) are the major cells of the collapses

A(Y) , Y a face of X . O
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|

920}

4.18 Definition Let Z be a subcomplex of the C - complex

U . A collapse CZ: Z\Szl is said to be a restriction of a
collapse CU: U\U1 if each elementary collépse in CZ is

also an elementary collapse in CU .:

Note that the elementary collapses which belong to both

C and CU need not occur in the same order in CZ and CU.

Z
If Y 1is a face of an S-polycell X the order ¢(X)Y induced
by z(X) need not agree with z(Y). Thus the order in which cells of VY

are collapsed out in A, (VY): VYNY (or Al(VY): VY ™\ SdY )

may differ from the order in which they are collapsed out in

Ao (VX) (respectively Al(VX) ). However, we obviously have:

4.19 Proposition For any face Y of an S -polycell X ,

the coZZ&pse Ai(VY) (i = 0,1) <Zs a restriction of the

collapse Ai(VX) . 0

§5 The collapse A(An)_ in SdAn-pAn

The collapse A(An): saa® - pAn‘\ sdpda™ , where AT
is a (Poly) n-simplex, is particularly important in the proof
of equivalence MTC ~» A;TC for M e EI' . Here we derive the

crucial properties of the collapse.

There is no difficulty in proving that, for n 21 and
any n-simplex F of Sd A" , there is a collapse

SdAn - Int F\ SdBdA™ . We therefore have (see Definition 4.6 )::

5.1 Proposition The cell pA" of SdA" is the least cell

in the order CS(An) . 0O

t There is an abuse of language here. Precisely, we require that each
pair of major and minor cells of CZ is also a pair of major and minor

cells in Cy
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There follows immediately from the definition of cS(An)

ma—

5.2 Corollary For n 21, (pAn)*_= p(AE) @

Example (See 4.2 and 4.8 )

2
pa2 = pa®), = p@a%y)

In order to define a particular collapse CSdA™ sda™

we note:

(1) The collapse A(An): sdal - pAn‘N SdBda™ obviously

defines a collapse
saa™ - (pA" u pa?) \ SdBdA™ - pAy  which will also
be denoted by A(A™Y) . '

—_—
(2) Since there is a canonical SC - isomorphism

a——

saa™ » cSdBda™ which maps pAn onto CpAE there is a

collapse A(An): cSdBda™ - Int CpAE‘\ sdaa .

5.3 Definition The collapse p:csda™ \y sda® , n =21,

proceeds as follows. First Int(jgzﬁ u Int CpAE is deleted.
Then the collapse

c(sda™ - (pa™ u pa™)) u Sda™ N\ c(SdBdA™ - pal) u sda®

induced by the collapse A(A™)  in sda® - (pAn u pAE) is
performed. Finally the collapse A(An) in CSdBdA™ - Int CpAE

is carried out, so that sdA™ remains.
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A central result of this section can now be given. For
an example of the process involved see 4.8 . We identify

SdA™ with cSdBda” .

5.4 Proposition For n 2 2 , the collapse A(An) in

Sda™ - pA™ = c(SdBdA™ - pA) v SdBAAT satisfies :

() A(A") is the collapse C(SdBAA™ -pAl) u sdBdA™ i sdBda™
induced by a collapse C_: SABAA™ - pA} \s vertex which
regtricts to A(Y): SdY - pY \ SdBAY for each face
v( 2 oK, kx <n) of dimension =1 in BaAD .

(7%Z) For each face X of BAA™ such that dimX 21 and

X ¢ AE , A(An) restricts to the collapse D: CSAX\y SdX .

Proof .The proof starts with the definition of a collapse
Cn: SdBdA™ - pAE‘\ vertex such that the induced collapse
c!: C(SdBdA™ - pa}) u SdBAA™ \y SdBdA™ satisifes (i) and (ii)

above. It is then shown that Cﬁ = A(An)

"Now SdBdA™ - pAl can be identified with
SdCBdAE U (SdAE - pAE) , Wwhere the cone point is the unique
vertex v, of A" - AE . We start Cn by carrying out the
collapse A(AT): sdaT - paT \. SdBdAT . This leaves SdCBdAT
which is collapsed to the vertex v, by downward induction on
the skeleta of BdAQ = (AE)(H"Z)

Suppose that SACBAAT has been collapsed to SdC(Ar*l)k .
where O < k < n-2 . Denote the faces of A" in the order
z(&™) by A" =A%) , AT = A", A"(2) , ..., A%(Q) .

By fhe definition of c(An) there exist r, s =2 1 such that
K = {a%(r+1), A" (r+2), ..., An(r+s)}_ is the set of
(k+1)-faces of Cc(AMH¥ and

K' = {A(r+s+1) , AP (r+s+2) , ..., AT (r+2s)} is the set of
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R —
k-faces of AE . Further, the SC structure of C(AI,})k is

such that K' is identical to the set of distinguished faces
of elements of K .
(Ea) For i = (r+1),(r+2),...,(r+s) , carry out the
elementary collapse deleting pAn(i) u pAn(i)* then the
collapse A(A"(W)) in SdA™(i) - (pA™(i) v pa"(i).) .
(It is clear that the k-face pA"(i), © Sd(AT)X is a
(X n,. ‘

free face of pAT (i) .).
(b) Then perform the collapse A(AnﬁhISdAn(i) - pAn(i)

for i = (r+s+l), ..., (r+2s)
XE this stage, SdC(AE)k has been collapsed down to
sac(a™ (1) | Thus (taking pAP(i), = (i), for AT(i), an
O-cell at k = 0 ) the collapse Cn has beeh defined
inductively.
It is obvious that the collapse Cﬁ induced by Cn satisfies

conditions (i) of the Proposition . Consider (ii) .

Let X be a face of BdA" such that X ¢ AE and

[

dimX= k=21 (X Ak) . We have to show that each elementary
collapse of D: CSdX \ SdX also belongs to C! . That the
elementary collapse deleting Int CpX u Int CpX., and the collapse
C(SdX - (pX u pXy)) u SdX \y C(SdBdX - pX4) v SdX occur in
Cﬁ follows from part (a) of (x)k_1 . There remains the
collapse A(X) in (CSdBdX - Int CpXa

It is proved below that A(X) in CSdBdX - Int CpX. is
identical to Ck: C(SdX - pX.) u SdBAX N SdBdX , induced by

of X-X. . Since Vv is

Ck: SdX - pX« N\ unique vertex v x

x
the vertex v, of A" , the elementary collapse of Ci with

major cell Int.Cvx belongs to Cﬁ . Thus (ii) follows if

the elementary‘collapses of Ck belong to C The collapse

n .
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A(X,) in SdX, - pX. occurs in the step (X)(k—l) (b)
of Cn . For j < k-1, the stage (X)j of Ck is part of

the stage (x)j of Cn . _Therefore Cﬁ is as required.

We now prove*tﬂat Cﬁ ii the collapse A(An) .

For- U< V a pair of SC -complexes , let w be a total
order on the open cells of U - V . We say that a collapse
C: UNV follows w if , when U has been collapsed to U'
and the next elementary collapse of E has major and minor
cells a and b , then a 1is the least cell of U' - V in
the order w and b is least cell of U' - V which can be
paired with a 1in an elementary collapse of U' . It is
clear (see definitions 4.1 , 4.3, 4.7 ) that if Cﬁ follows
the order Cs(An) on the set of open cells of Int Sd A" - pa™
then Cﬁ = A(An) . Furthermore, (by the use of Cs(BdAn)
in the definition of Z_ (4") and the fact that C! 1is the
collapse induced by Cn ) if Cn: sdBaa™ - pAE‘\ v follows
the order Cs(BdAn) on the set of open cells of
SdBda™ - pal - v, then CL follows cé(An) . We therefore
have to show that Cn follows cs(BdAn) .

Assume that, for k <n , Ck follows cs(BdAk) .

Suppose that Cn has collapsed sdBaa® - pAE

to U and that
the next pair of major and minor cells of Cn is (a,b)
There are two cases. |
1. a and b belong to the collapse A(Y) for
Y < Baa® , dimY=1r21 ;

2. a=pX, b =pXy where X c BdA" , X ¢ AE and dimX= 1
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Case 1 The definition of Cj is such that if Z 1is a face
of BdA" with Z < c(An).Y- then Int SdZ has already been
collapsed out. From the inductive'hypothesis Cr follows
cs(BdAr) so that A(Y) = C} follows CS(Y) . Hence, by the
lexicographic nature of Cs(BdAn)., a 1is the cell of U - v,

which is least in cs(BdAn) and b 1is the least cell of

U - vy which can partner a in an elementary collapse‘of U.

Case 2 As 1in case 1; Int SdZ has already been collapsed oﬁt
for any face Z < Bd " such that z <c(An) X . Thus the cell
of U which is least in Cs(BdAn) is a =pX .

The choice of b must come from the top-dimensional cells
of Bd®X . So far no cell of SdX has been deleted therefore

no cell in Int SdX may be used as b . This leaves only pX.

It has now been shown that Cn follows CS(BdAn) . The

inductive process is started by taking Ci = A(Al) . O

The results which follow are, in varying degrees,
consequences of 5.4 . Again, SdA™ is identified with

CcSdBda™

5.5 Definition For n =2 0O , let Wy be the unique Poly -

isomorphism A" > pAn .

5.6 Proposition For n 2 2 and each (n-1) - face X # AE

of Bda® , the tube T(pX) = '{to,Tl,tl,...,Tq,tq} 18 as

follows: t, =pX , Ty = cpX , ty = CpX« and, for j > 1,

Ty = CTi g » t; = Ctl_; where Tj_i » ti_q belong to the tube

T'(pX,) = {pXe = té; Ti, ceny ta-l} in SdAE . Furthermore

ty = u (X) < pa™ .

n

The tube on phA, s trivial, with T(pAE) {pAl}
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Proof Obviously, T, =Cp and, by the definition of
D: CSdX \ SdX ,'tl =CpXs . Since pX, is a face of SdBdal ,

there is a tube T'(pX.) = {pX.= tl, T{s «v tc'i-l} in

SdAE . The collapse A(An) in Sda®" - pAn restricts to the
collapse C(SdAE_- pAE)\» CSdBdAY induced by the collapse

A(AY) in SdA" - pay . Hence T; = CTi_;, t; = Ct} for

J J j-1
j=2, ..., q .

Induction on the dimension n 1is used to show that

tq = un(X) . This is clearly true for Al + Assume true for
n‘l [ - '—-n =
A . Then 1:(1:_1 = un_l(X*) c pdy and tq th'l_1

unique face of pAn containing un_l(X*) and the single vertex

is the

in pAn- pAE . Now B, agrees with ﬁn-l on AL and maps

the single vertex v, in A" - AE to the vertex in pAn- PA,

X 1is the unjque face of Al containing X, and v, - Hence

tq = un(X) . 0O

5.7 Definition For n =22 , let X and Y be (n-1)-faces

of A" and denote the (n-2)-face in which X and Y intersect
by Z . We say A" is a pseudocylinder A": X=>Y if the
unique Poly-isomorphism X =+ Y maps Z < X onto Z c Y .

For n =1 , we say there are pseudocylinders
1, ,1 1

1. 1 _. A1 ‘ - 1 1
A~ Ao => Ay and A A7 => A, , where &, » Ay are the

.vertices of Al
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For example, A2 is a pseudocylinder X =>Y and Y => W
but not X => W .

Note that if A": X => Y 1is a pseudocylinder then so is
AR Y => X . Definition 5.7 1is a special case of a concept
developed in §2 of the next chapter (where the use of the

term 'pseudocylinder' is explained).

5.8 Proposition If.An 18 a pseudocylinder X =>Y then

cA is a pseudocylinder CX => CY .

—n
Proof 1In the CC cone ca (Definition I 6.4) X and Y
retain their marked face structures and, for each face A of

A , (CA)*‘= A . Hence, if I

[}

X nY , the unique Poly -

isomorphism CX - CY maps CZ CX n CY onto CZ . a

5.9 Proposition For n 21, let X # A? be an (n-1) =-face
n

t ,T ,t .} 4n  SdA™ .

1281200 Tty

Then Tj: tj-l => tj 18 a pseudocylinder for j = 1,2,...,Q

of A" with tube T(pX) '{tO,T

Proof Induction on dimension is used.

The result is obvious for Al . Assume it is true for

-1

AT and consider the tube T(pX) 1in saa? .

We have t_=pX , T, = CpX and t, = CpX. . The marked
o .1 S 1
face structure of pX 1is that of a CC cone on the face

pXx < pX . Hence T1 _1s a pseudocylinder ty => t; - For

j = 2,3,...,q4, Ty =CTi; and t; = Ct},

ti g ‘belong to the tube T'(pX«) in SdAT. By the inductive

where Tj-l and

hypothesis, Tj_l' is a pseudocylinder t5_2 => t3_1 . Thus,
.from 5.8 , Tj is a pseudocylinder tj—i => tj . 0

In preparation for §7 we have to consider certain cells
of saa" - pAn which are related to major cells of the

collapses A in subdivided faces of AR
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5.10 Definition (Recursive) An open cell ek (k =2 1) of

sdaat - pAn

(1) ek is a major cell of the collapse A(Y) in SdY - pY

for some face Y of A" ; or

is said to be an AAn - cell if either

(ii) there is a (k + 1) -cell a with ek’c'aa such that

a and each k-cell of 3a - ek is an AAn'—cell

5.11 Proposition For n 21, let X # AE be an (n-1)-

n . — : . n
face of A" with tube T(pX) = {to,Tl,tl,...,Tq,tq} in  SdAT .
Then for j = 1,2,...,q each (open) cell in T, - (tj-l u tj)

<8 an AAn - cell

5.12 Lemma Identify SdA® with CSABAA" and let Y (% A

be an (n-1)-face of A" If a cell ek of SdY - pY <s an

A

¢ —cell then Int C8* s an Ay -cell

Proof First we associate an integer with each AAr—cell in
sda¥ - pAr (r 2 1) . Let the major cells of each collapse A
in SdaT - pAr be (AArf, 0)-cells . For i >0, ek is an

(AAr , i)-cell if i 1is the least integer such that there is

a (k+l)-cell a withl ek'

k

c da and a and the k-cells of
9a - e are (AAr, j)-cells for j =i -1.

The Lemma is proved by induction.

By 5.4(i) , if e* is an (Ay, O)-cell (that is, a

major cell of a collapse A in SdY - pY ) then Int cef s

‘an AAn-cell . Assume the result holds for (AY, j)-cells

3 <i-1. For ek an (AY, i)-cell , there is a (k+l)-cell

a with ek c 3a such that a and k-cells of 9a - ek are
(AY, j)-cells for j < i - 1 . Hence (note that the AY—cell

a is an A p-cell ) each cell of dimension 2k +1 of Ca
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other than Int C&¥ is an A,;-cell. Thus 1Int ce¥ is an

AAn~ce11 . 0O

Proof of Proposition 5.11 We use induction on dimension.
Assume the result holds for A™ 1 | Consider

T(pX) = {pX = to,Tl,tl,...,Tq,tq = un(X)} . By 5.6 , for

2 <j<gq, Tj = C'I‘J'._1 and tj C t5_1

belong to the tube T'(pX,) in SdAT . By the inductive

where T5~1 s tj-l

assumption, each cell in ijl - (t:'i_2 v ti_l) is an AAE-cell

Hence, using 5.12 , we find that each cell in Tj - (tj_1 u tj)
for j =2, 3, ..., q 1is an AAn-cell.
The case of T1 = CpX remains. Consider the cone

CSdX = CSdBAA™ = SdA™ . Since X is an (n-1) - simplex there

. — e, X x X -—

is a tube Tx(pY) = {pY = ts T1 s see 5 o= UX{Y) < pX }
'in  SdX for each (n-2) -face Y # X, . Hence there is a
sequence CpY = Ct§, CT?, ceey Ct? = C uX(Y) < CpX of faces

of (CSdX such that CT?: Ct}jc_1 => Ct? is a pseudocylinder
b X

( 5.8, 5.9 ) . We have immediately that if v: Ctj_1 - Ctj

is the unique Poly - isomorphism then, for k =2 O and each
k-face Z of Ct?_1 , either Vv(Z) =Z or Z and v(Z) are

both faces of a (k+1)-face L, < CT? such that

X - X _
By the inductive assumption, each cell of T? - (t)jc_1 U t?)

is an A)(cell so that (5.12) each (open) cell of

CT? - (Ct§-1 v Ct?) is an Agn—cell. Therefore, when 2, v(Z)
are faces of LZ , the cell IntLZ and the k-cells of

Lé - (Z v v(Z)) are AAn-cells. Thus if Z 1is an AAn—cell

then so is v(Z). It follows, denoting the unique Poly -
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isomorphism CpY -+ Cuy(Y) by vy , that vy(Z) 1is an

A n-cell for each AAn-cell Z of CpY .

Now the collapse A(An) restricts to the collapse

A(X): CSdBdX -~ IntCpX, N SdBAX ( 5.4 (ii) ) . For each (n-2)-

face Y # X. of X , the tube TCOWPBIX(59) in cSdBAX has
thdBdX = 7Y , TgséBdX = CpY , tSSdBdX = CpY. . Hence each

cell of CpY - (pY v CpY,) is an Agrcell. Clearly,
ngﬁv) = uy(Y) and vy (CPY.) = C uy(Y) »  so that, from
the previous paragraph, each (open) cell of-
CpX(Y) - (uﬁﬁ)u C ﬁx(y) + ) is an A p-cell. Each cell of
CpX - (pX u CpX,) apart from Int CpX is a cell of Cuy (V) -
(u{ﬁ U C,ufﬂ .)  for some (n-2)-face Y . Thus, since
Int CpX is a major cell of A(An) , each cell in
CpX - (PX v CpXy) =Ty - (t, v t;) 1is an A j-cell.

To start the inductive process we note that the

1

proposition is obviously true in the case of A 0

§6 The functor from A;T-complexes to MT-complexes

€

We now construct a functor ey: AfC +~ MTC for each
category M in our class ET (definition 1II 2.4 ) of special
model categories.

Let ET’ = EF u {A;} . Recall that, for M« ErT ,  we
can define M-sets (that is, functors K: moP + Set ) and

— —
also M-SC - complexes, namely SC - complexes built from the models.

——n

Further, each M- SC - complex U defines an M-set (definition
3.4 ) which we also denote by U. An U-structure in K (3.5)
is then a morphism of M-sets U: U =+ K .

Now let K be a AIT-complex. Our aim is to define an

extension eMK: M°P 5+ set of K such that eMK is an
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MT-complex. It might be thought, since- AI is a subcategory
of M, that eyK could be defined directly as a Kan
extension. Certainly we can extend K: A?p + Set to a functor
K': M°P » set in this way; but we require that if K 1is a
AIT—complex then the extension is an MT-complex, and this
property seems unlikely to be given by the Kan extension
process.

Instead we use a subdivision process. Note that, for K
a AIT—complex and X an M—polycell; we could define an
X-cell in the M-set eMK to be a SdX-structure in K (map
of AI—sets SdX - K ). 1In fact we take the X-cells of eMK
to be SdX-structures of a particular kind which depend on the
T-complex structure of K and the collapse
A(X): SdX - pX \ SdBdX described in Definition 4.7 . It is this
tight control which allows us to obtain the isomorphism
L eMrM(L) in 8§88 .

-—

6.1 Definition For K a AIT—complex and Z an SC-

complex, let U be alsubcbmplex of 8SdzZ céntaining' SdYy - pY

for each face Y of Z of dimension 21 and let U: U » K

be a structure in K . We say that U 1is speectal if, for each
Y and each major cell a of the collapse A(Y)

in SdY - pY , U(a) is a thin cell of K .

In other words U is special if, for each face Y of 1Z ,
the restriction of U to SdY - pY is the thin expansion,
corresponding to A(Y): (SdY - pY) ™ SdBdY , of the restriction

of U to SdBdY (see Definition 3.7 ) .
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6.2 Definition Let X be a A;T-complex. For M e ET ,
the M-set eyK 1is defined as follows.
For an M-cell X ,
eMK(X) = the set of special SdX-structures in X ;
and, for an M-morphism £:X > Y ,
eMK(f)(UY) = UY o sf , where sf 1is the map of AI—sets
SdX + SdY induced by £ .

For n 21, let the n-dimensional M-cell X have (n-1)-

X X

faces X Y and denote the M-cell corresponding

0’ N1 o

to Xi by Xi .

q’

6.3 Proposition If B Zs a box { Vos Vis ovvs Vq } in

eMK with Vi € eMK(Xi) then there i8 a unique filler

u e eMK(X) such that U(pX) <s thin in K .

Proof
Existence Let H =X - (InptX uIntY) . The box B defines
a special structure Vy: SdH > K with VHlSdXi = Vi 3

( ji = the canonical Arset morphism SdXi - SdXi ) . The
collapse A(Y): SdYV— pY y SdBdY defines a collapse

SdBdX - pY ™ SdH . Let Vys (SdBdX - pY) =+ K be the thin
expansion of VH corresponding to the latter collapse. The
SdX-structure U 1is defined to be the thin expansion of VJ

corresponding to the collapse B(X,pY): SdX \ SdBdAX - pY

(see Definition 4.11 ).

Uniqueness By Proposition 3.8 , VJ is the unique special
(SdBdX - pY) -structure in K extending VH . By Proposition
.4.12 the only major cell of B(X, pY) not major in A(X) is
PX . Hence any filler U' e eyK(X) satisfying utr(pX) is thin

must be an SdX - structure extending VJ such that U'(a) is
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thin in K for each major cell of B(X, pY) . That is ,
( Propositioh 3.8 ) U' must be identical to the unique thin

" expansion U of vy . O

6.4 Proposition For n 22 , let X be an n-dimensional

M-cell with (n-l)-faces Xo, Xl’ i Xq’ Y and consider
U e eMK(X) (that 78, a spectal SdX -structure U in K )
If U(pX) and U(Eii) for i=0,1, ..., q ave thin elements

of K then so is u(py) .

Proof If Z is an (n-1)-dimensional M-cell each (n—l)—céll
of SdZ - pZ 1is a major cell of the collapse A(Z) . (Each
(n-1)-cell is deleted in A(Z) and, being of maximum dimension,

must be a major cell.) Thus U(En_l)

is thin in K for each
(n-1)-cell "1 of sdpax - pY .

| Suppose the collapse B(X,pY): SdX N SdBdX - pY proceeds:
sax = v, ¥ v; ¥ ... ¥ V_ = SdBIX - pY . Assume U(S"1) s
thin for each (n-1)-cell R V; and let a and b
be the major and minor cells of the elementary collapse
Vi1 N V; . Since U 1is a special structure with U(px) thin,
U 1is the thin expansion corresponding to B(X,pY) of the
restriction of U to SdBdX - pY . Thus U(a) is thin, which
deals with a = an (n-1)-cell . Further, if b 1is an
(n-1)-cell then U(b) is an (n-1)-face of a thin n-element
of K whose other (n-1)-faces are thin. Hence U(E) is thin
by axiom (T3) for the AIT-—complex K .

We therefore have, by induction, that U(én—l) is thin in

K for each (n-1)-cell el of sax . It follows that
U(pY) is thin . O /

In view of Propositions 6-3 , 6.4 there is no difficulty
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in proving:

6.5 Proposition For M e EI' , there is a functor

QM: AITC + MTC defined on objects by K ~» eMK s Where a cell
u: 8dX » K of eyK(X) s thin if U(pX) <s thin in X
For a AITC-morphism f: K»L , the WMTC - morphism

er: eMK - eML is given by er(U: SdX -+ K) = £ o U: SdX >~ L . 0O

§7 The natural equivalence rye ey =1

Recall that a functor ry: MTC~ AITC for each M € ET
was defined in 8§81 . We now show that there is a natural
equivalence Ty ° ey = 1. Our proof makes use of work of §5 ;
the lemmas below translate the geometric results of that section
into T-complex language.

n

Take A to be the Poly n-simplex in Ob(AI) .

7.1 Lemma For K a AIT-compZex, let X € K(An) . If

ALY => 2 {s a pseudocylinder and dpX i8 thin for each face

FéYuzZ of A" then ayx = 3 (See 1 6.2 for the

YX zX

notation an . ) -

Proof The standard order C(An) on the set of faces of A"
induces a total order Co(An) on the vertex set (see I §5 ).

Denote by Ag the unique (n-1)-face of A" not containing
n-1

the vertex Vs in co(An) and 1et %} A A" be the

unigue Poly -morphism with image A? . The canonical
isomorphism between our category Ag and the usual
combinatorial version ( I §6 ) is such that, writing di for.

the usual face maps of the Ar T -complex K , di: Kn -+ Kn—l

is the image under K of §;: L
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Without loss of generality, we can assume Y = AR s
Z = A? and j < k . Then, since the vertex - orderings
Co(Y) and CO(Z) are compatible with the vertex - orderings
induced by co(An) on Y and Z respectively, vj is the
j'th vertex in CO(Y) and Vi is the vertex in position
(k-1) of CO(Z) . The unique Poly - isomorphism £f: Y =+ Z
preserves the order ¢ _(Y) . From the definition of a
pseudocylinder, f(vj) = vy - Hence vy is in the position
. . . . S !

j of CO(Z) ; that is, j =k -1 and Y = Aj+1 . If we

take a 'face' of x € K(An) to mean X oOr any element

di d; eee di X , BFx is thin for each face F ¢ Y u Z
k “(k-1) 0 .

of Al implies (K)j: each face of x apart from faces of

djx and dj+1x is thin.

Using Proposition 2.8 and induction on dimension, we
can show that if (K)j holds then x 1is a degeneréte element
S3Y in the simplicial T-complex nK associated with K .
Hence djx = dj+1

For any Poly n-simplex A" let Uy be the unique

x ; that is, BYx = Bzx . 0

Poly - isomorphism AT > pAn (5.5) .

7.2 Lemma For n =21, <zf U: (SdAn - pAn) ~ K Zs a

spectal structure in the A T-complex K then UpXx) = U(u_ (X))
I p p n

for each (n-1)-face X of At

Proof In the case X = A" we have pX = un(X) so that the
result follows trivially.
Take X # AE and consider the tube

T(PR) = {ty, Ty, ty, «oop Tyr tg) in sdA®™ . For j =1,2,...,9 ,

12 "1’
=> tj is a pseudocylinder (see 5.9 ) and each cell in

aq’

Tj: tj—l
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Tj - (tj_l,u tj) is an AAn—cell (5.11) . It is clear,

since U 1is special, that U(ék) is thin in K for each

j=1,2,...,q . From 5.6, t = pX and ty = w, (X)  so

-cell ek . Hence, by 7.1 , U(tj_l) = U(tj) for

that we have U(PX) = U(n (X)) .O

7.3 Lemma For n 2 O , g speeial structure U: sda™ - K

in the AIT—compZex K <s uniquely determined by the simplex
.n
U(pa™) e Kn .

Proof We use induction on n . Since pAO = A° , Uu: sda® - K
is obviously determined by UC;ZO) .

Assume the result holds for dimension n-1 and let
u: Sda™ ~ K be special. Then, by 7.2 U(PX) = U(u (X)) for
each (n-1)-face X of AR By the inductive hypothesis,
U(pX) determines the restriction U|SdX of U and so
ujsdBda™ is fixed. We have U] (Sda™ - paA™) is the
unique thin expansion of UISdBdAn corresponding to the
collapse A(An) . Therefore U is uniquely determined by

upa™ . O

7.4 Proposition For each category M <n El , the funectors

Iy © €y > 1: A;TC » AITC are naturally equivalent.

Proof Let A" denote the n-simplex in Ob(M) . For a A;T-
complex K and each n 20 , (rM ° eMK)n is the set of
special SdA™ - structures in K . Define ©: Ty ° eMK + K by
6, (u: sda™ » k) = U(;Zn) . We prove that 6 is a A;TC-
isomorphism using induction on dimension. '

Clearly, 60 is a bijection (rM ° eMK)o -+ Ko .. Assume

that © el, ooy en-l satisfy the conditions for a AITC -

0,
isomorphism insofar as they apply.
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Let x € K . By the inductive assumption, the set

n:i 3yx|Y an (n-1)-face of A"}  of special saa™ 1 -

structures in K forms a shell in Ty °© eMK . Hence there is

{8

a special sdBda™ - structure U; such that

-1 . . .
U;ISdY = (8,21 X) ° Jy (jy = the canonical Ap-set

n-1 ). The thin expansion U, of U}

isomorphism SdY - SdA
corresponding to A(A™) sda™ - pAn’\ SdBdA™ is a special
(SdAn - pAn) - structure in X so that (7.2)

ur (u,(Y)) = Uy (pY) = d3yx . Hence we can form 2 special
SdA™ - structure UX extending U% in X such that

UX (pAn) =x . It follows from 7.3 that en has an inverse

defined by 6;1 (x) = U . Clearly, &) is compatible with
face maps and en, 6;1 preserve thin elements. Hence
eo, el, cees en satisfy the conditions for a AITC -

isomorphism insofar as they apply. There is thus an
isomorphism 6: ry ° eyK > K .
It is easily checked that 6 1is a natural equivalence

=1 . 0O

§8 The equivalence of categories

We now construct a natural equivalence 1 = ey ° Iy for
M ¢ ET using the construction VX (see II 2.2 and 1ITI 8§84 ).

Recall that for each M-cell X there is an M-cell
V'X Poly - isomorphic to VX . We can thus define VX -
structures in an MT - complex. As before, we identify X with
X x {0} < VX and SdX with SA(X%{1}) < VX .

For K an MT - complex, the cells of ey ° rMK(X) are
special SdX - structures in 'rMK . Since rMK is defined as

a restriction of K we can obviously identify each cell of
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ey ° rMK(X) with a special SdX -structure in X .

8.1 Definition For M e ET , let K be an MT - complex.

For an M-cell X and a cell x ¢ K(X) , the structure

ox: VX -~ K is defined as follows. First specify the structure
%°x: X - K by Qox(X) = x then let ©&x be the thin

expansion of o%°x corresponding to the collapse

AO(VX): VXN X .

Let d¢x: SdX - K be the restriction of 9x to SdX .

8.2 Lemma

() For Y a face of X , the restriction of ®x to
VY ¢ VX <s the structure (QBYX) ° dyy ¢ VW > K
(where, if Y' <is the~ M-—celZi Poly - tsomorphic to Y ,
gy i8 the Poly - {gsomorphism VY =+ VY' ) .
(1) There is a map ¢X: K(X) ey ° rMK(X) defined by
X - X .

Proof
(i) This followshfrom Proposition 4.19
(ii) The collapse AO(VX) restricts to the collapse A(Y)
in SdY for each face Y of X . Hence the restriction

¢x is a special SdX -structure in rMK(X) . O

8.3 Definition For X an M-cell, let U be a cell of

ey ° rMK(X) , that is, a special SdX -structure in K . The

VX - structure YU: VX - K is the thin expansion of U
corresponding to the collapse Al(VX): VX N\ SdX . The cell

U € K(X) is Yu(x) .

——

-~ We have immediately.
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8.4 Lemma There ts a map VYyi €y ° rMK(X) + K(X) given by

U= pu . 0

8.5 Proposition For each category M of EI' there is a

natural equivalence of functors ¢: 1 » ey ° Ty

Proof Let K be an MT-complex , M e ET . We show that

there is an MTC - isomorphism ¢: K ~ ey ° rMK with inverse

Yo .
Let Y be a face of the M-cell X and take X ¢ K(X) .

By 8.2 (i) the structure éx: SdX = K restricts to the
structure (¢3Yx) o siY . 8dY + K (where, if Y' is the
M-cell Poly - isomorphic to Y . siY: sdY -~ SdY' is induced
by the Poly - isomorphism iy: Y = Y') . Hence the maﬁs

ox: K(X) ~ ey ° rMK(X) , X an M-cell, are compatible with
face maps.

The maps ¢X and by are inverse if :

(i) for each x ¢ K(X) , &x = ¥éx
(ii) for each U e ey ° rMK(X) , Yu = U

Consider (i) . The restriction to SdX of each of the
structures ox , ¥¢x : VX > K is ¢éx . By 4.17, ox (a)
is thin in K for every major cell a of the collapse
Al(VX) . But Yé¢x is the unique thin expansion of ¢x
corresponding to Al(VX) . Therefore o&x = ¥Yox .

In case (ii) we have that YU and oYU Trestrict to
the structure %l: X » K . Since U is a special SdX -
structure YU(a) is thin in K for every major cell a of
AO(VX) . Thus, as &pU 1is the thin expansion of @°¢u

corresponding to AO(VX) , Yu = oyu .
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We have now shown that ¢:K - ey ° ryK is an
isomorphism of M-sets with inverse V: ey ° TyK = K .

Let X be an n-dimensional M-cell. By the definition
of Ao(VX) s the cells @x(VX) and ®x(Y) , for Y an n-face
of VX other than X or pX (¢ SdX) , are thin in K . Hence
(axiom T3 ) x is thin in X if and only if ¢x is thin in
ey ° rMK . Thus ¢ and ¢ preserve thin elements and ¢ is
an MTC - isomorphism.

There is no difficulty in checking naturality. 0O

Combined with 7.4 , Proposition 8.5 gives the main

results of this chapter. First

8.6 Theorem For M e ET , the functors rT,: MTC +A;TC

M

and ey: AITC + MTC are inverse equivalences of categories. [

-

Secondly, using the isomorphism AITC + ATC , where ATC

is the category of simplicial T-complexes (see §2 ) :

8.7 Theorem For M e ET , there is an equivalence of

eategories MTC - ATC . 0

It was shown in Proposition II 2.7 that EI contains
an infinite number of non-isomorphic categories. We have
therefore constructed an infinite set of non-trivially

equivalent algebraic categories.
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CHAPTER 1V

DEGENERACY STRUCTURES IN MT-COMPLEXES

The model categories M ¢ T' which we have defined have
only injective morphisms. Thus there is no structure of
degenerate elements in M-sets. It would be of interest to
have generalized model categories C with non-injective
morphisms and hence C-sets equipped with degeneracies.

For M e I' , we might define a category MD by taking .
M and adding non-injective morphisms. Checks on the
suitability of M, as a model category could be to obtain
(i) a Kan M-set K admits a set of degeneracies which give
K an MD-set structure; or (ii) the categories of MT-
complexes and MDT-complexes are equivalent (compare with
III §2). The definition of MD is not obvious, however.
There is a wide variety of non-injective morphisms preserVing
the cell and marked face structuresof M-cells and it is not
clear which should be included in Mg

We do not take this approach here. Instead we note that,
for K a cubical or simplicial T-complex and X e Kn y @
degenerate element €;X OT S;X € Kn+1 may be characterized
as the unique thin element having two faces equal to x and
certain degenerate elements -as other faces, the arrangement of

the faces being governed by a cylinder structure on m+l

or a pseudocylinder structure on An+1. We define
pseudocylinder structures on certain S-polycells. Then, for
M ¢ ET and X an MT-complex, a degenerate element

€3X € K(U) 1is defined to be the unique thin element with two
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faces equal to x and other faces degenerate according to a
pseudocylinder structure J on U . It can be shown that,
for M e ET , an MT-complex has a canonical degeneracy
structure (Theorem 4.2) .

A skeleton P of the category Spoly of S-polycells
is an important member of the class EI' . As a consequence
of the degeneracy structure jn a PT-complex there are
functors |

: PTC - OTC

PTC > ATC , °g ¢

Pa
defined essentially by restriction. The degeneracy structure

in a PT-complex allows us also to define a pair of functors
g : Ogic = ATC , Tt : ATC = 0OTC
which we claim are inverse equivalences of categories.

Throughout this chapter, the face and degeneracy maps
of a simplicial set are denoted by di > Sy respectively and
the face and degeneracy maps of a cubical set are denoted by

> €5 -+

§1 An approach to degeneracy structures in MT-complexes.

We now look at degeneracy maps in cubical (O0) and
simplicial (4) T-complexes. It is clear that the following

holds.

1.1 Proposition

(i) For K a OT-complex and X € K ejx (1 £ j < n+l)

is the unique thin element of Ki+1 with
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(ii) For L a AT-complex and 2 € L, » sjz (0 <=3 <n)

18 the unique thin element of Zn+1 with

d.s.z = Sj-ldiz R i< j

N
-
[
]
.
-
L]
E
-

Recall (I 3.1) that, for a cone-complex X , the
eylinder on X 1is the complex X x I . For n 20 the
complex In+1 has n+l1 cylinder structures defined by the
isomorphisms
Yo atxn - ™1 1< <1

( (tyseeesty),t) = (tl,...,tj_l,t,tj,...,tn)

+ . .
i 1 not contained in

Each face Y of
YJ.(I.n x {0} v yj(In x {1}) has a cylinderstructure induced

by Y; - We say Y has the structure of a sub-cylinder

of yj(In x I)

For K a 0OT-complex and x ¢ Kn , the.degenerate element
ejx can be associated with Yj(In x I) . From 1.1 we have
ejx is the unique thin element in Kn+1 such that
B;xejx = x and every other (n-)face of ejx is a degenerate
element associated with a sub-cylinder of Yj(In x I)

Degenerate elements in simplicial sets are related to
pseudocylinder structures A": X => Y on a". (See
Definition III 5.7 and the proof of Lemma III 7.1 . We can
treat the object A" of the simplicial model category A as

a polycell because a vertex-ordering on a simplex is equivalent

to a marked face structure.) The term pseudocylinder is used
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to emphasize the analogy between A": X = Y and the
EE-cylinder XxI (I6.3) . If v:X=>Y 1is the tC-
isomorphism and A 1is a k-face of X then either v(A) = A

or there is a (k+l)-face JA such that JA n X =A,

JA nY = v(A) .
X3 v(A)
A N Y l\
— Xx (0} A
X X x I A%: X = Y

Moreover, A": X => Y induces a pseudocylinder structure

J A = v(A) on JA . We say JA: A => v(A) 1is a

AS
sub-pseudocylinder of A" X o=> Y

n+l1
j
not containing the vertex j . For L a AT-complex

For j =0, 1, ..., n+tl , 1let A be the n-face

of An+1

and z e Ln , the degenerate element sjz can be associated

n+l _ n+l
R

the unique thin element in L

n+l,

with A : A . From 1.1 we have that sjz is

n+1 such that

djsjz = dj+lsjz = z and every other (n-) face of sjz is a

degenerate element associated with a sub-pseudocylinder of

n+l, ,n+l __  ,n+l
A : Aj > Aj+1

In view of the remarks above it is reasonable to attempt
to define degeneracy structures on MT-complexes by means of
pseudocylinder structures on M-cells; that is, to define a
degenerate element €;X in an MT-complex as a thin element
with shell determined by a pseudocylinder structure J .

One point must be borne in mind, however. For each shell
of the form 1.1 (i) , (ii) in a OT (respecgively AT) -

complex there is, by definition, a thin element whose faces
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agree with those of the shell. Given an analogous shell in
an MT-complex K , we have to show that there exists a thin
element in K with the required faces. This can not be done
for all model categories M ¢ T' . Consider As and DI s
the wide subcategories with injective morphisms of the
simplicial and cubical model categories A and 0O respectively.
While a AIT-complex admits a canonical degeneracy structure
to become a AT-complex (III §2) the situation is different

for DI

1.2 Example (R. Brown) We define a DIT-complex

DIZ as follows:

(DIZ)n = the set of sequences
{m,m+1,...,m+n} , meZ ;

for i =1,2,...,n,

{m,m+1,...,m+n-1}

32'{m,m+1,...,m+n}

3% {m,m+1,...,m+n} {m+1,m+2,...,m+n} ;

each element of DIZ of dimension =1 is thin.

Since there is no element of (DIZ)l with identical

O-faces, U{Z does not admit a degeneracy structure.

We will show that if M is one of the 'nice'model
categories in EI' then a degeneracy structure may be defined
in an MT-complex.

The next two sections consider pseudocylinder structures
on §ﬁ—comp1exes (S-shellable marked cone-complexes) and give
the geometric preparation for §4 , where degenerate elements in

MT-complexes are discussed.
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§2 Pseudocylinder structures on §f—comp1exes

For X an §E—comp1ex, a pseudocylinder J(X) should
resemble the cylinder X x I . On the other hand, a fairly
general structure would be of interest. In our notion of a
pseudocylinder, A x I (for each face A of X ) 1is replaced

by a 'stack' of faces satisfying certain conditions.

2.1 Definition Let X by an n-dimensional §E-comp1ex.

A pseudocylinder J(X) consists of:
(1) an (n+l)-dimensional §E-comp1ex uJ ;

(ii) two subcomplexes Xo, X1 of UJ with §E—isomorphisms

(iii) for k-2 O and each k-face A of X , a stack on
A , namely a sequence

~

. ~ .1
J, = i) = AgsApsArs-esAL Ay = iT(A)}, g 20

of (distinct) faces of UJ such that the sets JA partition

the set of faces of UJ and the following hold for

j=1’ 2, <.+, q

(a) Aj is a (k+1)-face, Aj is a k-face;
Ao c Al, Aq c Aq ; and, for j =1, 2, ..., q-1 ,
(A1 U e0e U Aj) n Aj+1 = Aj n Aj+1 = Aj

(b) There is an SPoly-isomorphism vj: A~ Aj
For B a (k-1)-face of A , the (k-1)-face vj(B) of

Aj belongs to JB and j < 2 => vj(B) < vz(B) in JB

(c) The k-faces of Rj are Aj-l’ Aj and, for each (k-1)-

face B of A , the k-faces which lie between vj_l(B)

and vy(B) in Jp . (Set vy =i%|A,A L)

B
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(Where there is a possibility of confusion we write

Xg , ig for X* , i% (a=01) .)

If J, = {i°A) = i'(A)}  then J, is said to be a
trivial stack on A .
We define the trivial pseudocylinder @(X) to be the

complex X with the trivial stack @, = {A} on each face A

of X.
Examples ila)
A JA
— >t L <
i (A)
X J(X) .

J(X)
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— 4

/N N

.:=?==

0 1
X

2.2 Remarks

(i) A “Somplex UJ may have a multiplicity of pseudocylinder
structures J(X) . That is, there may exist distinct
pseudocylinders J(X), J'(X) with UJ = UJ' . In the third

example above, J(X) and J'(X) can be defined with
uJ =0uJ' , Xg = Xg, and ig = ig, (o = 0,1) . The structures
i

of J(X) , J'(X) are indicated by the stacks Jol’ J01

on the 1-face 01 of X .

~

{01,02541,25,2365,36,30176,01}

Jol

ol {01,02541,45,456798,67,30176,01}

J

Examples of distinct pseudocylinders J(X), J'(X) with
UJ = UJ' (but with Xg #X%. ) occur in (iv ) and (v)

below.
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(ii) We will be particularly concerned with pseudocylinders
J(X) such that X and UJ are S-polycells. In this case,
the choice of faces Xo, Xl c UJ determines io, il (the
unique SPoly-isomorphims X =+ x° , X > X1 ) and the stack

Ix (= {XO,UJ,XI}) . The example considered in (i) above
shows, though, that even here J(X) is not determined by UJ ,
x°, xt .

(iii) For any §E-comp1ex X , the cylinder X x I has a
canonical pseudocylinder structure T(X) where UI = X x I;
x° = x x {0} , xt = x x {1} ;o i9, il are the canonical
isomorphisms X - X x {0}, X =+ X x {1}; and, for each face

A of X, @M, = {Ax {0}, AxTI, Ax{1}].

(iv) The definition (III 5.7) of a simplicial pseudocylinder
is a special case of 2.1 . For n 2 1 , each simplicial
pseudocylinder A": X => Y defines a unique J(An-l) with

us = A", %™y = x ana ila™1y =Y . Also, for each
n

pseudocylinder structure J(Ancl) on A we have

2% 19™h = 13 h |

(v) For each pseudocylinder J(X) there is an 'inverse'
37Xy where It =us, 13-y = i}, iy-1 = i end if
Jpy = {Ao, Rl’ Aps oees Rq’ Aq} for A a face of X then
5l - g Ags Agiys - os Ay, A}

Propositions 2.4, 2.5 below bring out the analogy between
cylinders and pseudocylinders. Conditions (a) , (b) , (c)
of 2.1 are tailored to give these results and to allow us
to define sub-pseudocylinder structures on certain faces of a

pseudocylinder (2.8)
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2.3 Definition Let J(X) be a pseudocylinder. For A a

face of X , 1let Jy be the union of the faces in the stack

JA .
We define J to be the space UJ with the following
CC structure. The closed cells of J are the closed cells of

x° ’ Xl , and QA for each face A of X with non-trivial

stack JA . An arbitrary choice of characteristic maps is

o) 1

made. We take X u X to have the inherited marked face

structure and set (gA)* = io(A) c x° .

2.4 Proposition For J(X) a pseudoecylinder, J s a

EE-compZex.

Proof The result follows if we show that J 1is a regular

cell complex.

~

Consider the non-trivial stack Iy = {Ao,Al,Al,...,Aq,Aq}

on the k-face A . Forj =1,2,...,q9, Aj is a PL (k+1)-

ball and Aj is a PL k-ball (Proposition II 1.7). Assume

~

Aj uAyu ... uA , t21,isa PL (k+#1)-ball. By 2.1(a) ,

(Rl U ses U Rt) n At+l = At and so Rl U oo U Rt+1 is a PL

(k+1)-ball with boundary Bd(A; u ... u A) v BdA,,

We thus have JA = (A1 U eeo U Aq) is a (k+1)-ball with

- IntAt

(see 2.1(c) )

Bd J, = i°(A) v it(A) v WU Jg
J ;U

and IntJ, = Int Aj v IntA; V... U IntAq

Since X° u X1 is a regular complex each closed cell of

J 1s a ball.

Since the sets JA partition the set of faces of UJ ,

either an open cell e\ of UJ is a cell of X° u X1 or
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there is a unique cell Int QA of J containing ey - Hence
the open cells of J partition the space UJ .

It follows from the definition of Bd QA that the boundary
of a closed n-cell of J (n 2 0) is contained in g(n—l)

We now have that J 1is a regular complex. [

For X an 3SC-complex, let igr X > X x {0} ,

;0 X > X x {1} be the canonical isomorphisms.

2.5 Proposition If J(X) <s a pseudocylinder with no trivial

stacks then there is a Eﬁ—isomorphism X x I ~+>J which

restricts to the itsomorphisms

1 1

c X x (0}~ x°, il apT

i9 . (io)’1 X x {1} » X

and whiech maps A x 1 onto EA for each face A of X .

Proof Since X° n Xl = () there is an isomorphism

1

(X x {0}) v (X x {1}) ~ X° u X* which restricts to

-1°
. . -1 -1 . -1
13- o (10) s 1J ) (11) .

£

Assume, for k 2 O , there is an isomorphism

k-1) o} 1

£ ¢ (xx(0}) v (xx{1h) v (xE Dy > x%uxtu v J
-1° € ) v (X ) u( ) s (k-1) 7B
which restricts to ig ° ('10)-1 , i} o (il)_1 and satisfies

fk_l(B x I) = Jp for B a face of X(-1) | cConsider a

. _:0 .1
k-face A of X . Since Bd.{A —1J(AJ u1J(A) u BgA {B

we have fk_l(Bd(A x 1)) = Bd.gA . As (AxI), = Ax{0} and
QA)* = ig(A) , the cone structures of A x I and {A may be
used to extend £, _;| Bd(A x I) toa CC-isomorphism

AxTI=>J, . We thus have a CC-isomorphism

(X401 v (Xx{1}) v (X’x1) » XPu xt v U I,

f
Acxk

k:
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of the required form, and the result follows by induction. 0O

2.6 Definition For X an §ﬁ‘comp1ex, let J(X) be a

pseudocylinder. For Y a subcomplex of X , a sub-pseudocylinder
of J(X) 1is a pseudocylinder L(Y) such that:
(1) UL 1is a subcomplex of UJ ;
(ii) for each face A of Y , iE(A) and ii(A) belong to
the stack JA )
(1ii) each stack of L(Y) 1is a subsequence of a stack of

J(X)

We obtain:

2.7 Proposition

(i) 4 sub-pseudocylinder L(Y) of J(X) <Zs uniquely

1 are the

characterized by UL , The subcomplexes Y° s Y
unitong of the faces of UL which are earliest, respectively

latest, in stacks of J({X) .

(ii) Let Y and V Dbe subcomplexes of X and Ay J&
respectively. There s a sub-pseudocylinder L(Y) of J(X)
with UL =V <f and only <if, for each face A of Y

(a) The set of elements of JA contatned itn V 1is non—empty

and is of the form {A AS,AS,...,At,At} were

s-1°
l1<ss<t.

(b) If dimA =k =21 and B <s a (k-1)-face of A then
the unique face of As(At) in J3 18 the first (last)

element of Jp contained in V . a

2.8 Pfoposition Let J(X) be a pseudocylinder and let

A LA LAY

A be a face of X with stack J, ='{AO,A 127" a’?q

1’
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We have:

(i) There is a unique sub-pseudocylinder JO(A) of J(X)

. ~ e e .0 .0
with UJc = Al U A2 U «e. U A . Here 1J0(A) = 1J(A) = A

q o)

1 ! _ .

and 1J0(A) = 1J(A) = Aq .

(ii) For each face Aj (1 =3 =q) in JA there 18 a unique

sub-pseudocylinder Jj(A) of J(X) with UJj = Aj . Here
o}

. _ .1 _

1Jj(A) = Aj_1 and le(A) = Aj . O

In preparation for a T—complex construction given in
§4 we specify a collapse in certain pseudocylinders. Recall
(I 5.3) that there is a total order ¢(X) on the faces of a

polycell X .

2.9 Definition Let X be an S-polycell and let J(X) be

a pseudocylinder such that the stack JA on a face A of X

A ..,R sA,} . The collapse C(j: uJ N X° proceeds

12712 q’’q
as follows. For each face A of X , in the order z(X) ,

is {AO,A

carry out the sequence of elementary collapses deleting

Int Aqu Ivnt Aq , Int Aq-l ulnt Aq_1 » eee 5 INt A4 ulnt Ay

We have immediately from the definition (III 4.18) of a

restriction of a collapse:

2.10 Proposition With the notation of 2.9 , for any face

Aj in JA the collapse CJj : Rj‘N Aj-l 18 a restriction of
the collapse CJ . 0

§3 Rectifiers on pseudocylinders

"The notion of a rectifier on a pseudocylinder is central
to the proof given in the next section of the existence of

degeneracy structures in MT-complexes.
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We first define 'sums' of pseudocylinders. Note that
if (Y,Z) 1is an §E—pair and f: Z > W is an §E—morphism
then the adjunction space W UfY has a canonical §E—complex

structure.

3.1 Definition For X an §E—complex, let J(X) and L(X)

1
be pseudocylinders. We define (J+L)(X) to be the

pseudocylinder such that:
Uu(J +L) = UJ Vg UL

where f 1s the §E-morphism XE + UJ 1induced by

-1 .0n-1 | (o 1 . .o - 30 -1 P |
i e (1L) DX Xy o5 deg,py =iy s igan ir
. .0 _ ~ ~ _ .1
and if J, = {1J(A) = Ao’Al’Al""’Aq’Aq = 1J(A)} ,
. ~ ~ .1
Ly = {1E(A) = Aé,A',Ai,...,A;,A% = 1L(A)} for A a face

of X then (J+L), ='{AO,RI,A1,...,Rq,Aq =.A8,Ri,A1,...,R},Ar}

We are particularly concerned with the following special

case. Recall that the pseudocylinders 1II(X) and J-l(X)

were discussed in 2.2 (iii), (. v)

3.2 Definition For J(X) a pseudocylinder, the extension

EJ(X) 1is defined to be the pseudocylinder (J + H—l)(X) .

Example
O ——
o R 1
4 L X < . Xn—l = Xx{0}
J J Xx1{1}
\ / \
J(X) 11

* UJ and UL are required to be disjoint. Later on, we use the pseudocylinder
EM(X) = (IT+ 17" ) (X), where U= UM~ = XxTI. In this case we take U~
to be a distinct copy of Xx1I.
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X2 =x° Xs. = X x {0}

EJ(X) = (J + I 1) (X)

For each face A of X , the stack HAl is non-trivial

1

so that the stack (J + I )A is non-trivial. Hence, from

Proposition 2.5 , we have

3.3 Proposition For any pseudocylinder J(X) there is a

EEQisomorphism X x I > EJ which restricts to the iﬁomorphisms

-1 1

igJo(io) : X x {0} +xg , 1,0 (i) @ X x{1} » X x {0}

and maps A x I onto EIA for each face A of X . O

This result ensures that the definition below is

meaningful.

3.4 Definition For a pseudocylinder J(X) , a rectifier RJ

on J(X) 1is the space UEJ x I with a € structure as
follows. Identify UEJ x{0} with UEJ . For each k-face
A of X let

RJA = E{A x I

and

rJ (A) xI) v (B, x {11 v (ig (&) x T)

_ -0
A = Ugg
Let RJA be a closed (k+2)-cell of RJ and rJA be a

closed (k+1)-cell . Set (RJA)* = rJA and (rJA)* = igJ(A)

The characteristic maps of RJA and rJA are not

specified (so that there is a multiplicity of rectifiers on

J(x)).
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The subcomplex rJ of RJ 1is defined by rJ = U T, -
AcX

Example

1 .
o 1 _
o XEJ XEJ = Xx{0}
J
= x°
J
o) © ) & il (A)
S(a) (A) EJ R%A E
J(X) . EJ(X)
p--
)
J /
oA
f
T
RJ AN
RJ
We have easily (see the Appendix for S-shellability):
3.5 Proposition Let J(X) be a pseudocylinder . Then:
(1) a rectifier RJ is an §E-complem;
(ii) for each face A of X, RJI, 18 a rectifier on the
sub-pseudocylinder JU(A) of J(X) (see 2.8)
(iii) there Zis an §E—isomorphism k: X x I » 1rJ which restricts

to the iéomorphisms

-1

i0 ocio)‘l ;X x {0} > X3 5 iy e (ip) X x {1} » X x {0}

and maps A x I onto rJA - for each face A of X
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We are mainly interested in rectifiers on pseudocylinders
J(X) with X an S-polycell. Here RJ 1is an S-polycell,
rJ = rJX , and « : X x I+ rJ 1is the unique SPoly
isomorphism.

For such pseudocylinders, a particular collapse in RJ 1is
required to specify a construction in MT-complexes given in
the next section. The total order Z(X) on the faces of a

polycell X (I 5.3) 1is used.

3.6 Definition Let X be an S-polycell and let the faces

of X be X =X, X(1), ..., X(r) in the order Z(X)
For J(X) a pseudocylinder, the collapse CR : RJ y UEJ

proteeds
. ,
RJ Y RJ - (Int RIy(oy Y Int rJX(O))
e
N RJ - (Int RJX(O) v Int rJX(O))

Ny

X UEJ

§4 Degenerate elements in an MT-complex

Throughout this section, M 1is a model category in the
class EI' . A pseudocylinder J(X) with UJ = an M-cell
is called an M-pseudocylinder.

We define a structure of degenerate elements in an
MT-complex K by assigning to an element Xx ¢ K(X) and an
M-pseudocylinder J(X) another elément €5X € K(UJ) with

correct properties as regards faces.
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Before giving a precise definition we recall some points
concerning J(X) . For A a k-face of X 1let the stack

A 1""’Aq’Aq} . For j =1,2,...,q9 there is

a sub-pseudocylinder Jj(A) of J(X) with UJj = Aj (2.8)

By the definition of (the skeletal) M there are unique

J. be {Ao,Rl,A

-~

M-cells A?', Rj SPoly-isomorphic to A and Rj respectively.
We write Jj(A') for the obvious pseudocylinder structure on

Al .
J

The notation an (Definition I 6.2 ) 1is used.

4.1 Definition Let K be an MT-complex. A degeneracy

structure in K assigns to each M-cell X and M-
pseudocylinder J(X) a function

€5 K(X) » K(UJ)
such that the following hold for each element x e K(X):
(1) €5X ¢ K(UJ) 1is thin;

(ii) 3 erX = 23 E-X = X

(iii) taking dimX =n , for each (n-1)-face A of X and

~

each face Aj € JA )

B(Rj) erx = €3

We say ¢e; is a degeneracy map and € 5X is a degenerate

element in X .

Note that the faces Aj in condition (iii) above are

the n-faces of UJ other than X° and Xl

Thus an n-face of €% is either x or a degenerate element

associated with a sub-pseudocylinder of J(X)
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- Examples
t
. ——pnnmy
a a a
€ a
%
X X
X X <t t 1
——Pe S5, —- 35
a a P rd
X a €2 a a € 2 a €pa a
eK(X)
-~ v

‘e

35X, for various J(X)

(t denotes a thin element)

The remainder of this section is devoted to the proof of:

4.2 Theorem For each M e¢ ET , an MT-complex has a untique

degeneracy structure.
First, we have:

4.3 Proposition If there is a degeneracy structure in an

MT-complex K then the structure is unique.

Proof Suppose that there is a degeneracy structure in K and
use induction on dimension.

Assume that, for each M-cell Y of dimension <n and
M-pseudocylinder L(Y) , there is a unique degeneracy map
€y " K(Y) - K(UL) . Let X = an n-dimensional M-cell and
J(X) = an M-pseudocylinder. By the existence of a degeneracy

structure in K and axiom T2 (III 1.4) we have that, for
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x € K(X) , there is a unique thin element ¢€;X satisfying
4.1 (i) - (iii) . That is, there is a unique degeneracy map
e;: K(X) > K(UJ) . This gives the result. [ '

Secondly, recall that a skeleton P of the category
SPoly is a member of EI and each category M e ET is
isomorphic to a full subcategory of P (II 2.10) . Clearly,

a PT-complex restricts to an MT-complex r MK and we have:

4.4 Proposition For M e ET, rM defines a functor

PTC - MTC . 0O

4.5 Proposition If there is a degeneracy structure in every

PT-complex then every MT-complex, M e ET , has a degeneracy

structure.

Proof We have obtained inverse equivalences of categories

Ty: MTC - AITC > eyt AITC +> MTC (III 1.5, 6.5, 8.6)
There is thus a natural equivalence 1MTC = ey ° Ty - It is
" immediate from the definition of rM that ey rM ° ep .
M

Hence 1 =1 ©° e ° Ty and, fér any MT-complex K , there is
a PT-complex L = ep ° ryK such that X is (naturally)
isomorphic to r lvlL .

A structure of degenerate elements in L induces a

degeneracy structure in erL and hence in K . [

We now consider degeneracies in PT-complexes. The
notions of a structure in a PT-complex (III 3.5) and a
thin expansion of a structure corresponding to a collapse

(III 3.7) will be used.
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4.6 Definition Let K be a PT-complex. For X a P-cell,

J(X) a pseudocylinder, and x € K(X) , the structure

SyX ! UJ - K 1is defined as follows. Let (st)o :Xg + K be
the structure specified by (st)o(Xg) = X and let s yX be

the thin expansion of (sJX)o corresponding to the collapse

C, : UJ N Xg given in 2.9.

J
For any x ¢ K(X) we have the structure SqpX: XxI=>K,

where T1(X)is the canonical pseudocylinder structure on X x I

1

with xg = X x {0}, Xp=Xx {1} (2.2)

4.7 Proposition For K a PT-complex, X a P=-cell and

x ¢ K(X) , we have s;X (X x {1} = spx (X x {oh) = x .

Proof (See example which follows.) The proof makes use of a
rectifier RI on I(X) .(see 3.4)

Consider the subcomplex UEI of RI . Sinée
um = unt = X x 1 , a structure E : UEN » K is defined by
setting E| Ul = E|UII_1 =sgx . Let Q : RI - K be the thin

expansion of E corresponding to the collapse

CR : RINYUED . (3.6).

For k 2 0 and each k-face A of X , the (k+2)-face
RI, of RI has as (k+#l)-faces A x I < UI , AxT¢c un~! ,
T, and Rl for each (k-1)-face B of A . By definition,

Q(RHA) , Q(A x I) and Q(RHB) for each B are thin in X .
Hence o(r QA) is thin by axiom (T3).

By 3.5 there is an SPoly-isomorphism « : X x I = rll

such that «(X x {0}) = XEJ , k(X x {1} =‘XéJ and

k(A x I) = rlI;, for each face A of X . Let «': X x I » RI

A

be the SPoly-morphism induced by « . Then there is a structure
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0 o k': X x I » K such that Q o «'|(X x {0}) = snx](X x {0})
and Q ° k'(A x I) is thin for each face A of X . Using
Proposition III 3.8 we have Q ° k' = spx , the thin
expansion of snxl(X x {0}) corresponding to Cj .

It follows that Q(X%J) = Qok'(X x {1}) = spx(X x {11
But Q(XéJ) was defined to be spx(X x {0}) so

spx(X x {1}) = spx(X x {0}) = x . a
Example
Bx {0} Xx {1}
> 1 <
XO L/ .
—> ’ El un A Ul xk
A X B - Xx{0} EXl
- XX\I % XIXI = Xxx{0}
V4 N\
Ax {0}
UE I
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Q( rl)
Qo' (XXI)

SpX (XxI)

%Hx (xx{0})

snx(Xx{O}) x(definition)

x(definition)

s X (Xx {1}

Q (RT)

4.8 Proposition Let X Dbe a PT-complex, For X a

P-cell, J(X) a pseudocylinder and X ¢ K(X) we have
1 o
st(XJ) = st(XJ) = X

Proof (See the example which follows.) We use a rectifier
RJ on J(X) . Let st(X}) = x' . From 4.7 ,
spx' (X x {1}) = spx' (X x {0}) = x' so we can define a structure
E: UEJ » K by setting E|UJ = s;x and Elun™! = E[XxI = spx’
Then Q: RJ + K is defined to be the thin expansion of E
corresponding to the collapse Cp : RJ \ UEJ .

For k 20 and A a k-face of X with stack
='{AO,R1,A1,...,R LAY , q =20, the (k+1)-faces of the

Ia q’q

(k+2)-face RJA are the faces Aj for 1 sj<q, AxXI1,

rJ, s and RJB for each (k-1)-face B of A . By definition,
Q(RJA) and all its (k+1)-faces except Q(rJA) are thin.

Hence Q(rJA) is thin by axiom T3 .
Let «': X x I - RJ be the SPoly-morphism induced by

the isomorphism «k: X x I » rJ of 3.5 The structure
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Q e k': X x I+ K satisfies Q o «'|(X x {0}) = snxl(X x {0})
and (for each face A of X ) Q o k'(Ax I) = Q(rJA) = 3
thin element. Hence (using. IIT 3.8 ) Q o k' = sgX the
thin expansion of snxl(X x {0}) corresponding to the
collapse CH

It follows (4.7) that Q ° k'(X x {1}) = Qoex'(x x {0}) =
x . But Q(Xg,) =S{(X x {0}) = x'

i 1
X ; that is Q(XEJ)

Hence x' = x . il
Example
.0
1_(B)
J  —— . —— T —
(o]
o} 1 X =
53 A A% gJ P!
XJ EJ
= xx{0}
——e e ped
.0
1J(A)
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Q(rm)
= Qox'(XxI)

= $;X (XxI)

Snx'(Xx{O})

x' (definition)

st(XX{l})
5% (xg)

=X

= x (definition)

Q(RJ)

4.9 Proposition, Every PT-complex K has a degeneracy

structure.

Proof For each P-cell X and P-pseudocylinder J(X) we
define a function €yt K(X) - K(UJ) by €yX = st(UJ) for
x ¢ K(X)

The structure s;X : UJ - K 1is the thin expansion of
sJXIXO corresponding to the collapse CJ: UJ N X° . Thus
€5X is thin. From 4.8 , B(Xo)st = B(Xl)ij = x"

Let dimX =n and consider an (n-1)-face A of X

. ) ~ ~ .1
with stack J, = {1J(A) Ao’Al’Al""’A JA = 1J(A)} . For

q° q
j =0,1,...,q9, let aj = sJﬂAj) . By 2.8, for j =1,2,...,9,
there is a sub-pseudocylinder J;(A) of J(X) with UJ; = Rj ,
i o(A) = A, and 1 1(A) = A. . Denoting the unique P-cell
Jj J-l Jj J

isomorphic to A by A' , Jj(A) defines a pseudocylinder

~

Jj(A‘) on Aj . There is thus a structure staj_lz Aj + K .

Since the collapse CJ_: A.‘N A, is a restriction of CJ
j J j-1

we have st|Aj = staj—l and, by 4.8 , aj = aj—li' Hence

aj = a, for each j and s jX |Aj = stao . It follows that
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~

for each face Aj € JA , B(Rj)EJX = erBAx in the notation
of 4.1 .

We have now shown that the maps €5 form a degeneracy

structure in X . O -

This completes the proof of 4.2

4,10 Remark It was noted in 2.2 (v) that a pseudocylinder
1

J(X) has an 'inverse' J—l(X) with UJ - =U0J . It is clear
that if €y: K(X) - K(UJ) is a degeneracy map in an MT-complex
K then there is a degeneracy map € -1y K(X) - K(UJ—l)

such that E(J—l) = EJ . That is, our notion of a degeneracy
structure in an MT-complex has two copies of every degeneracy
map. This does not cause any problems. I1f necessary, the
total order on the faces of UJ (I 5.3) «can be used to
specify one of the pseudocylinders J(X), J_l(X) so that a

choice of ey » €3-1 is fixed.

§5 Functors between categories of T-complexes

The degeneracy structure in an MT-compleX (M e ET)
allows us to define certain functors involving M-,
simplicial (A) - , and cubical (O0) T -complexes. For
convenience, we restrict oursel&es here to M = P = a skeleton
of SPoly , and consider functors between PTC , ATC and
gTc .

Note that P has full subcategories Ai » O¢ canonically
isomorphic to the categories A7 , DI defined in I §6
Throughout this section, A; is identified with Ay and 0Oj

and DI . The marked face structure of AT e Ob(AI) is



1v/27

equivalent to a vertex-ordering (I §6) . We denote the
(n-1)-face of A" not containing the vertex i by A? .
For a = 0, 1 the face

(s esty 185ty qserest)] O S ts 1} of I™ ¢ Ob (0p)
is denoted by (I™7F -

A simplicial T-complex p,K and a cubical T-complex
pDK can be associated with a PT-complex K thus : restrict
K to obtain a A;T-complex and a DIT-complex and define the
following degeneracy structures. (The notation of 4.1 1is used.)
For 0<j<n , sj: (pAK)n > (pAK)n+1. is the degeneracy
map sj: K(An) -+ K(An+l) in K , where J(An) is the

pseudocylinder with UJ = an*+1 s ig(Any = A% apg

J
.1.,n, _ ,n+l ' . . .
1J(A ) = Aj+1, . For 1= 3j £ n+l , aj. (pDK)n > (pDK)n+1 is
the degeneracy map Sy K(In) - K(In+1) , Wwhere L(In) is

(In+l)0 and

the pseudocylinder with UL = o+l , iE(In) = 3

i%(In) = (In+1)} . We have:

5.1 Proposition PA defines a functor PTC = ATC and
g defines a functor PTC » [TC . a

Not all the degeneracy maps K(An) > K(An+1)

?

n n+l . s sas
K(I™) » K(I ) are used in the definition of pAK , pDK .
As was noted in 4.10 , there are degeneracy maps in K

associated with the 'inverses' J 1 , ~1

- of the pseudo-
cylinders J , L . More significantly, KX has maps

K(Ih) - K(In+1) corresponding to the 'connections' introduced
by Brown-Higgins in [10] as extra (cubical) degeneracies.

These maps are defined by pseudocylinders of the form:
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l 7
> Ly
}{' N
. 1
A Loy
P4 - > Ry
10
?> }]
x° Xo

Recall (III 8.6) that there are inverse equivalences

of categories

PTC + A,TC e. : A.TC -~ PTC

Tp ¢ I > ©p I
and isomorphisms of categories (III §2)

g : ATC>4;TC , n = 5'1: A{TC » ATC .
We have immediately:
5.2 Proposition Py = N Tp . O

Setting e = e, o & , this gives:

O

5.3 Theorem The functors % PTC +» ATC and

e;: ATC » PTC are inverse equivalences of categories. [

We also believe the following to be true:

" 5.4 Claim The funector Ik PTC ~ OTC <s an equivalence

of categories. [

A sketch proof of this Claim is given in the next section.
The construction of the inverse equivalence is not direct.
| We use pg to obtain a functor =t: ATC ~» DTp « Our
definition of 1 1is similar to that of the functors
ew: AyTC » MTC in III §6 and terminology from III 86 1is

used.
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5.5 Definition For K a simplicial T-complex, the

DIT—complex TIK is defined as follows. For n 2 O ,
(TIK)n = the set of special Sd I™ -structures in EK and,
for a DI-morphism £: 1™ > 10 » T(K(E)Y(V) =V o sf,
where sf 1is the map of Ar-sets induced by f . A structure
Ve (1;K), is thin if V(pI") is thin in K .

The cubical T-complex TtK 1is obtained by defining
the following degeneracy structure. For n =21 ,
j=1,2,...,n+l and x € (TIK)n , we let ij be the unique
thin element of (TIK)n+1 with

o

a =
Biejx Ej-laix ’ 1<
X R i=7j
ejag_lx , i>3

Reasoning similar to that of III §6 shows that

TIK is a DIT-complex. In view of Example 1.2 there might
seem to be a pro%lem in showing that <tK 1is a cubical
T-complex. However, we find that K 1is actually the complex
Pg ° eﬁK . |

To eaéh ATC-morphism f: X - L we can associate a
OTC-morphism <tf: 1K » tL given by

tE(V: SAI® > K) = gf o v: Sa1™ > L .

Thus we have:

5.6 Proposition T defines a functor ATC -+ OTC such that

- A functor 0OTC - ATC may be defined in a fairly direct

way. Consider the function- fG:'{O,l}n - {0,1,...,n} given
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by fo(tl’tZ”'°’tn) = (n-~-1+1) , where i 1is the 1least

integer such that t; = 1 (set fU(O,O,...,O) =0).
= l :
n 0 1 ? 0 1
n =2 (1,0) (1,1) 2
—_—
0,0) (0,1 0 1
n =23 .
(1,1,0) (1,1,1) 3
{
(1,0,0) i (1,0;0
! —_—
(0,1, L - -
- (0,1,1) 2
(0,0,0) (0,0,1) 0 1

Intuitively, we obtain a 'simplicial' element x in a
cubical set K by making certain faces of x degenerate in

accordance with vertex-numbering fO .

5.7 Definition For K a cubical set, the Ar-set OIK is

defined as follows:

(0pK)g = Ko » (07K); = Ky 3
for n 2 2 , (GIK)n .= the set of n-cubes x such that
Bix € e?—lKn_l , i=1,2,...,n-1 ;

= 1 = o i =

There is no difficulty in checking that GIK is a Ar-set.
It is not obvious that a simplicial set can be associated to
K in a similar way: the definition of simplicial degeneracies
seems to require the Brown-Higgins 'connections' mentioned
earlier. However, a simplicial T-complex may be associated

to each cubical T-complex.
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5.8 Definition For X a cubical T-complex, the AT-complex

oK is defined as follows. Make GIK a AIT—complex by
taking X ¢ OIK to be thin if x is a thin cube in KX . Then
let oK = n(cIK) . (That is, add the canonical thin

degeneracy structure to oIK . )

5.9 Proposition o defines a functor [OTC =+ ATC . a

We believe the following is true.

5.10 Claim The functors o: OTC > ATC and 1t: ATC - 0OTC

are inverse equivalences of categories,

We do not give a complete proof of this Claim. 1In the
following section an outline of a possible proof (dealing
also with 5.4 ) is given. A detailed version of this would

be lengthy and might not be the best approach to the question.

§6 Suggested proof of 5.4 , 5.10

The sketch below is feasible but the statements made have

not been verified in detail.
Step 1 The natural equivalence Pp = 0 ° P
PT - complexes

v

OT-complexes g\

Gl
v

AT - complexes

Define a map fn: It > A" by induction on dimension, starting

with £ (1% =% . £ is given by

-~
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x I
- In'lxI n-1 An—l x I CAn—

- (An—l xI}/
@™ 1 x 1

the mapping cylinder, M(fn)

.__.___:.—) An .

1

Let Wn
= Al Uign) (I™ x 1) , where f': I® x {1} > "

is the map (x,1) » f(x) .
We can equip Wn with an SC structure to obtain an S-

polycell with an (SPoly) n-cube and n-simplex as faces.

For K a PT-complex and x ¢ (o o pDK)n an element

Qx € K(Wn) can be built using thin fillers and from this an

element wXx € (pAK)n is read off .

( t denotes a ‘ nx
thin element)
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Conversely, we can start with y e (pAK)n , build an element
Q'y € K(Wn) using thin fillers and read off an element
w'y € (o o pDK)n . A bijection (o ° pDK)n - (pAK)n is obtained

and this gives a natural equivalence Pp = O ° P -

Remark R. Brown has pointed out that the cells Wn have also
the following use. A classifying space BWG on a group G
may be defined. Then, through BWG., an equivalence between
the simplicial and cubical classifying spaces B AG ’ B{]G

(with degeneracies factored out) can be obtained.

BV

7 N\

e e

Step 2 Definition of the functor u from simplicial

T-complexes to crossed complexes.

We denote the category of crossed complexes by XC
p is a modification of Ashley's functor N: ATZ > XC
(see [ 3] ) .
For L a simplicial complex, set
(L), =L, » (ub)g =Ly 3
and, for n>1 and p e L ,
n-1

(L) (p) = {x e Lnldix =s, P, i=0,1,...,n-1} .

The obvious boundary maps are used. The groupoid structure

on (uL)1 and the group structure on (uL)n(p) are defined
as follows. For suitable elements x, y of (uL)1 or (uL)n
let x +y = dlM(x,y) where M(x,y) 1is an (n+l)-simplex

built using thin elements in the manner of Ashley.



2
> > *p po——)—-—o
X y
x+y y
0 X =p
(p) (p)
2 2 3
t t t
0 3x 1 0O 23y 1
(p) (p) (p) (p)

The groupoid action (x,a) - x2 (x €'(uL)n(P) ,
a e (uL)l(p,q)) is defined using a triangulated prism
01 ... n0'1l" ... n' whose (n+l)-simplices are 01 ... nn' ,

o1 ... n-1)(n-1)'n' , ... , 00'1' ... n"' .

O' 1|

Let 01 ... n be x and let each edge O00O' , 11' , ..., nn'
be a . For k 21 and each k-face ioil eee dg of

01 ... n , in order of increasing dimension, fill the - (k+1)-
!

simplices i i; ... id;' , iji; ... i(k-l)i(i—l)ik s eee s

ioil' .o ik' thinly.
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Take the face O0'l' ... n' to be xa

2'(9)
®) 0' (@) '@ L
2 2(p)
/\ |
(p O 1 (p) 0 1 0 1
(» | §)]
0’ l 1' Empty
— P eee —>
0 1
2! g1
—_— S, —

Step 3 The identity Y' = H o O

OT - complexes

0/

AT-complexes '

ul |
v

crossed complexes

Brown and Higgins [10] have constructed an adjoint
equivalence |
Y: w-groupoids I crossed complexes : X .
They have also obtained [12] an isomorphism

0g* cubical T-complexes =+ w-groupoids.
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We write y' for y ° o; and ' for Uél o A

Our definition of u is such that, for X a cubical

T-complex,

(weok) = (K, , n=0,1
(weok) () = (vK,(P) , PeK,, n=z2.
(p) (p) (p)
2 2 t 2
t t t x t
0 ox 1\ 0 3 X 1
(P) (P) (p) (p)

Also, the groupoid and group structures of u ° oK and

Yy'K coincide:

in u ° ok in +v'K
2 2 R

P4
Xty y X+y 1 N t A\ y

N
0 % 1 0 “x 1

To check that the groupoid actions in u ¢ oK and vy'K
coincide, consider the prism 01> ... nO'l' ... n' wused to
define the action (x,a) =~ (xa)uc (x € (u o oK)n(p) R

ae (ue 0ok);(p,q))

in p ¢ oK .
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The (n+l)-simplices intersect in the n-simplices
or ... (»-1)n' , 01 ... n-1)'n', ..., O1'" ... n'" . By
applying the cubical homotopy addition lemma [10, 7.1]1 in
K to each (n+l)-simplex in turn, and bearing in mind that all
n-simplices other than 01 ... n, O1 ... (n-1)n' , ... ,

0'1' ... n' are thin, we find that

cp(xa)uc = ©(0'1' ... n') = (01" ... n")
= ¢(01...(n-1)n"')
_ a
| P gy s
where ¢ 1is the 'folding operator'. But (xa)pg and

(xa)(Y,) are elements in Y'K so @(xa)uO = (Xa)uo and
a _ a a., . _ a

o (x )(Y') (x )(Y') . Hence (x )uo (x )(Y') and

the groupoid actions of u oK and +v'K coincide.

This gives Y' = u o 0 .

Step 4 'Proofs! of 5.4 and 5.10 .

To obtain 5.4 we show that

PTC » OTC , €p ° O gTc >~ PTC

DD1
are inverse equivalences.
Since A' and y' are inverse equivalences and
y' =u e o (Step 3) we have

}\louoo’:lDTC.

4

Thus o ° eP'o o} ‘A" o pu e g o g ° eP'° c

14

A' o o Pp ° eP'° o] (Step 1)
= A' o ye g ‘ (5.3)

R

lore
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Further, eP'° G ° P S eP'° oA (Step 1)
= 1PTC (5.3)
This gives 5.4
To obtain 5.10 we have to show that
g : OTC = ATC , T : ATC =» 0OTC
are inverse equivalences.
Now T = PO ° eP' , (5.6)
so T o0 = o ° €' ° O
= 1DTC . (see above)
Also goeT = g o pD ° eP'
= Py ° eP' (Part 1)
= 1ycc (5.3)

This gives 5.10
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CHAPTER V

COMMENTS AND POSSIBILITIES FOR FURTHER WORK

In this final chapter we make some remarks about the work
of the thesis and discuss possible future developments.
Throughout, M denotes a model category belonging to the
class T defined in I 6.1. For some of the chapter, we use
the terms poly-set, poly T-complex as generic terms for

M-sets and MT-complexes for various M

1. One major area which requires further work is to determine
which model categories M are such that the category ofb
M-sets 1is convenient for the purposes of algebraic topology.
The category A-sets of simplicial sets has certain features
which would be desirable in a category of M-sets. For
instance:

(1) A-sets is Cartesian - closed;

(ii) if || : A-sets > Top is the realization functor and
K , L are simplicial sets then |K x L] = |K| x |L]
with the weak topology on the right hand side;

(iii) there is an equivalence of homotopy categories

||: Ho(Kan A-sets) + Ho CW

We know from I §1 that for any M there is a singular
functor

Sy ¢ Top =+ M-sets

and a realization functor
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IIM M-sets =+ Top
such that IIM is a left adjoint of S, . There is also a
notion of KXan M-set . It would be very interesting to
characterize those model categories M such that the category
of Kan M-sets has a homotopy notion for which ]lM gives an

equivalence

Ho(Kan M-sets) -+ Ho CW

It may be that specific categories M are useful for
specific purposes. We have noted earlier (IV §86) how the
models Wn are useful for relating simplicial and cubical
theories. Other models may have other uses. We hope that we

have set up a basis for further work and exploitation.

2. In this respect, the proof of the eauivalence between
MT-complexes and simplicial T-complexes has been found to be
a useful test-bed for basic definitions and techniques. 1In
particular, the need for strong collapsibility conditions led
by a happy chance to an understanding of the benefits of
shellability notions, and hence to our équivalence between

S-shellable polycells and S-posets (II §§3,4).

3. It would be interesting to obtain a classification of
those categories M ¢ I' for which the eguivalence MT-complexes
-+ simplicial T+complexes holds. We have shown that the
equivalence holds for an infinite class of categories in T
but it is unlikely that this can be extended to all members
of T
For instance, consider the category G of globes
(I 6.6) . Intuitively, for the equivalence GTC -+ ATC to

hold, it ought to be possible to define some non-trivial
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composition in a GT-complex K wusing the T-complex axioms.
(bear in mind the groupoid structures which can be defined in
simplicial and cubical T-complexes and the role of these
structures in the equivalences T-complexes -+ crossed complexes
[3,10,121.) However, an n-dimensional globe has only two
(n-1)-faces so a box in K has one top-dimensional face.
This means that the T-complex axioms can not be used to define
any composites of elements in K .

It is doubtful that there is an equivalence
g;TC » ATC , where DI is the wide subcategory with injective
morphisms of the usual cubical model category 0. It was
shown in IV 1.2 that a DI T- complex does not, in general,
admit a degeneracy structure. Hence there is a significant

difference between DIT-complexes and [OT-complexes.

4. For P a skeleton of the category SPoly of S-polycells
we have defined an equivalence PT-complexes » simplicial
T-complexes and a functor PT-complexes - cubical T-complexes
which we believe to be an equivalence (IV §5) . It should be
possible to obtain direct equivalences between PT-complexes
and the categories of crossed complexes (XC) and =-groupoids
(e-Gpd) studied by Brown and Higgins {10,131 .

Given a PT-complex K , one way of constructing an
w-groupoid r_K and a crossed complex rXCK is to take
certain elemenfs of K and define the required structure
using the T-complex axioms. Intuitively, the eléments of an
o-groupoid are 'globular' so we could set (er)n = K(Gn)

(n 2 0) . Also feasible 1is (rXCK)n = the set of elements

X € K(Gn) with all faces (of all dimensions) thin except X
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and B(GE)X . (See I §6 and the equivalence w-groupoids
+ crossed complexes defined in [13] . )

In order to define <«~-groupoid and crossed complex
structures on r K and ry.K non-globular elements of K
are required. Hence, although the elements of r_K are the
elements of a GT-complex (the restriction of K ) it is not

obvious how to define a functor GT-complexes - «-groupoids.

5. Let X : X, < Xy < X, < ... be a filtered space. A
cubical or simplicial Kan complex R(X) can be associated
with X 1in a natural way (see Brown-Higgins [11] and
Ashley [31 ). When R(X) 1is factored by the relation of
filtered homotopy a quotient‘map p: R(X) - p(X) 1is obtained,
where p(X) 1is also a Kan complex. If X 1is a Jo-filtered
space (that is, each loop in Xo is contractible in X1 )
then p 1s a Kan fibration and p(X) 1is a T-complex.

A Kan M-set RM(X) c;n be constructed and, on taking
quotients, a Kan M-set pM(X) with quotient map
Pyt RM(X) > pM(X) . There is a question: for which M 1is it
true that X is a Jo-filtered space implies Py is a Kan
fibration? If the implication holds then it should follow

that pM(X) is an MT-complex, giving an excellent geometric

example of such a gadget.

One point here is that the proofs of the.cubical and
simplicial versions of the implication rely on strong
collapsibility properties of I™ and A" (see 6(iii)).

The case M = G = the, category of globes is of interest.

It should be poséible to define an w®~=-groupoid structure on
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pG(E) (see 4 above). If so, the =-groupoid pG(z) is
probably injected into the w-groupoid p(X) defined in [111.
None of this has been proved, however, so we cannot say
whether pG(Bn) is the free <«-groupoid on one generator of

dimension n .

6. A proof of the Brown-Higgins Union theorem [11] could

be attempted using poly T-complexes. Several points arise:

(1) A crucial factor in the success of cubical methods in

proving the Union theorem is that an array such as

can be composed. Simplicial theory lacks a suitable notion
of multiple composition and there is as yet no simplicial
proof of the theorem. As explained in 7 below, multiple

composition is easily handled in a poly T-complex.

(ii) Another key factor in the Brown-Higgins proof is the
relationship between thin elements and degenerate elements in
a cubical T-complex; in particular, the fact that degenerate
elements may be characterized as thin elements with certain
thin faces. Our definition of a degenerate element in a

poly T-compléi as a special thin element (IV §4) therefore

seems suitable.

(iii) For there to be a proof of the Union theorem using
MT-complexes, M-cells may have to satisfy stronger |

shellability/collapsibiligy conditions than S-shellability
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which was sufficient for the equivalence MTC » ATC . An
important technical tool in the work of Brown and Higgins is
the deformation theorem [11, 3.2]1 . (The result, mentioned
in 5, that p: R(X) » p(X) 1is a Kan fibration is a corollary.)
The pfoof of the deformation theorem uses a strong shellability-
collapsibility property of cubes (expressed in terms of partial
boxzes). .
There is a resemblance between the shellability part of
this property and the notion of (recursive) shellability of
a regular complex due to Bjorner-Wachs [6].Let X by a pure
n-dimensional regular complex. An ordering Fl’ FZ’ ooy Ft
of the n-faces of X 1is said to be a shelling if n=0 or
if n >0, BdF1
j-1

Fj n u Fi is a pure (n-1)-complex having a shelling which
i=1 :
extends to a shelling of BdFj . (That is, Bde has a
j-1
shelling in which the (n-1)-faces of Fj n u Fi come first).
i=1

is shellable and for j =2, 3, ..., t,

There is a question whether a condition based on recursive
shellability can be imposed on ﬁolycells to give the equivalent
of the deformation theorem in a polyhedral proof of the union
theorem. One requirement is: 1if the objects of M e I' are
polycells with the extra condition there must be an equivalence

MT-complexes + simplicial T-complexes.

7. A feature of poly T-complexes is that they provide a

theory of 'general compositions'. We quote R. Brown, who

writes inAhis Introduction to work of Dakin and Ashley [9] .
"The study of [categories equivalent to crossed complexes]

has a basic motivation:
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Determine an algebraic operation inmverse to subdivision.

"Subdivision is of course an old technique in topology.
The idea is to study a space by cutting it up into small,
manageable bits. Intuitively, one then studies eyeles and
boundaries as certain 'composites' of these bits. Eventually,
it was found convenient to treat these 'composites' as formal
sums,.and this is the formulation of homology theory thaf we
know today. It is, indeed, difficult to know how one can
'really compose' all the bits of the following subdivision of
the triangle ABC in order to form the big triangle ABC .

Simplicial theory lacks suitable composition operations.

By contrast, in cubical theory, such compositions are easy

to manage, since in a diagram such as
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one composes rows first and then columns, and this is a well-
defined operation. The interchange law allows one to carry
out these operations in the other order, or by computing

blocks in a partitioned matrix.

"A theory of general compositions, including simplicial,
cubical, or polyhedral 'pieces' or 'bits', has to do three

things:

Composition 1. Define the 'bits' and the circumstances under

which they are 'composable'.

Composition 2. Given 'composable bits', define their 'composite’.

Composition 3. Give all relations among various 'compositions’.

"It seems likely that all three of these requirements are
metby the theory of poly T-complexes. Thus the notion of
T-complex looks as if it will continue to have wide

ramifications."

The 'bits' referred to are the elements of a poly
T-complex K . Elements are 'composable' if they form a
box B in K and the 'composite' is the free face of the

unique thin filler of B (axiom T2) .

Composable elements Unique thin Composite
(making up a box) " filler
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Relations among 'compositions' follow from axiom T3 .

For instance, consider the following two cases

a+b+c .

J

composable \\\\\A a+b (a +b) +c
elements J//’_-‘\§¥, ‘(,f"“~\\\b
(in a box) o ° 3 -— (2)

a b C (a+b) C

That a +b + c = (a +b) + ¢ follows from filling the box

B below:

b
B
2{ :(a+b) \c

(a+b) +c

Since all 2-faces of B are thin the free face of the
filler is also thin. Hence a +b + c = (a + b) + c .

It is interesting to compare the nofion of 'general
compositions' with the idea that the poly T-complex structure
is a version of 'higher dimensional group theory' (see the
Introduction). Taking this further, we can think of the
degenerate elements defined in IV §4 as 'higher dimensional

identity elements'.
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8. Another intriguing feature of poly T-complexes is the
link with the notion of van Kampen diZiagrams which occurs in
combinatorial group theory. This point, noted by R. Brown,
provided some of the initial motivation for our study.

Van Kampen diagrams for a group G = <X|R> express
geometrically the deduction of new relators from old (see
Johnson [28] ). The are defined to be finite, connected,
planar graphs whose edges are oriented and labelled by the
generators of G . If the word assigned to the boundary of
every face belongs to R then the boundary label of the
diagram is equal to the identity in G . For example, the
diagram below shows that the relation x4 = 1 holds in the

quaternion group <X,y Ixyxy_l = yxyx'l = 1> .

We can think of the 2-faces of a diagram D as 2-
dimensional elements of a poly T-complex K whose thin
2-elements are faces with boundary label equal to the identity
in G . Then D 1is a box in K and the unique thin filler
has free face F with boundary identical to BdD . The fact
that the label on BdD = BAF is the identity in G follows
immediately from axion T3 . _

The theory of poly T-complexes might thus be regarded
as a version of 'higher dimensional combinatorial group theory'.

However, this idea needs to be clarified and developed.
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APPENDIX

S—SHELLABILITY OF CONE-COMPLEXES

Shellable simplicial complexes were discussed in II §1
and the notion of an S-shellable cone-complex was introduced
in II 1.6 . Here, proofs are given of statements concerning

S-shellability made in Chapters II and IV , namely:

The (CC-) dome, cone and cylinder constructions preserve
S-shellability (II 8§1; A2, A4, A6) . The construction VZ
preserves S-shellability (II §2 ; A8) .
The rectifier RJ on a pseudocylinder J(X) is S-shellable
(IV §3; A9) .

Also, in support of a statement made in II §2 and for

use here, we give the following well-known result.

Al Proposition For n 2 0 , SdA"  is shellable; that is, a

simplicial complex s S-shellable.

Proof See the proof of Proposition 1 of [161 . [

The definition of the dome DX on a cone-cell X 1is

given in I 3.4 .

A2 Proposition If X <s S-shellable then so Zs DX .

Proof Let dim X = n . Recall that DX is an (n+l)-cell

whose boundary consists of two copies x* , X of X.
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The result follows if Sd DX 1is shellable which, since
Sd DX <can be identified with CSdBdDX , is true if there is
a shelling of SdBd4dDX .

For F an n-simplex of SdX° , F n SdX = F n sdpdx” =
an (n-1)-face of F . A shelling of SdBdDX is thus obtained

if we shell first SdX~ then SdX° . O

In order to deal with the cone and cylinder constructions
we need the result below.

Recall (II §1) that a simplicial cone-complex is a
cone-complex CC-isomorphic to a simplicial complex. From Al
a simplicial cone-complex with a.marked face structure becomes
a simplicial §E-comp1ex. Pseudocylinder structures on

§3-complexes-are discussed in IV §2

A3 Proposition ILet J(X) be a pseudocylinder with no trivial

stacks and let X and UJ be simplicial’ SC-complexzes. If
there i8 a shelling of X sueh that condition (ii) of

I1 1.1 7%olds then UJ s shellable.

Proof For dim X = n we define a shelling S of UJ which
goes'through the stacks on the n-faces of X in turn,
following a-shelling F1 , F2 , ..., Ft of X which satisfies
IT 1.1 (ii)

For A an n-face of X 1let the stack J, be
(0 () = Ay, Ay, A, ey A, A = il (A)} . Recall that the
union of the faces of JA is denoted by QA (IV 2.3) . We

require two facts about QA :

1. For j = 1,2,...,9 , Aj—l and Aj are n-faces of the

(n+1)-simplex Aj so that .Aj—l n Aj is an (n-1)-face of Rj
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~

There is an (n-1)-face B of A such that Aj nJg = Aj-l nAj

For any other (n-1)-face G of A, Kj n JG = an n-face of

~

Aj other than Aj-l or Aj . (See 1IV 2.1 .)

2. For any (mn-1)-face B of A there exists. p ,

1 sp=<q, such that Rp n Jg = the (n-1)-face Ap_1 n Ap_.
(Assume that Aj n Jg is an n-face for j =1, 2, ..., q .
Then, denoting the vertex in A -3B by v, J = {v} is
trivial, which does not satisfy the conditions of the

Proposition.)

Suppose -that S has been defined on
J

dpq U Jpg U +e. U gF(k-l)_' We have
k-1
Fkn uv Fi = u G,
i=1 Ged

where ¢ 1s a set of (n-1)-faces of fhe Fk which does not
include all such faces. From IV 2.5 ,

k-1

n v J..
i=1 ~F1

u J

Ge d -G

Let (Fi)p be the first (n+l)-face in the stack JFk such
that (Fk)p_l n (Fk)p = (Fi)p n QB where B is an (n-1)-face
of Fk not contained in ¢ . (Such an (Fk)p exists by

Fact 2.) By Fact 1l , (Fk)_n v EG = a union of n-faces

p Ged

of (Fk)p not including (Fk) (Fk)p . We can therefore

p-1°
take (?i)p to be the next (n+1)-simplex in the shelling S

The remaining (n+l)-faces of JFk are now ordered

-5 (FR)

(FK) g5 (FR) g5 e e o5 (FK) 15 () g5 (FK)

p+2°°"

to define S on

e
-

i
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We check S at the face (ﬁi)j » 1 < j<p . It follows
from IV 2.1(a) that (Fk); n ((F), v «ov v (FK) 4, ) is the

n-face (Fk)j . By Fact 1, (ﬁi)j n u Jg 1s either a union
Ged ~

of n-faces of (F})j or ((Fk)j_1 n (Fk)j) u n-faces of

(Fk). . Also, (ﬁi). n u J does not contain (Fk). or
J J Ges —G j-1

(Fk)j . Hence. (Fk)j n ((Fk)p U oo U (Fk)j+l U G:Q QG ) =

a union of n-faces of (ﬁi)j not including (Fk)j_1 and we
may take (Fi)j to be the (n+l)-simplex following
(Fk)j+1; in the shelling' S

The reasoning in the case of (ﬁi)j » P <j=<q, is

similar. 0

In what follows, for any cone-cell A , we identify SdA
with CSdBdA (the barycentre bA of A becomes the cone
point). To avoid confusion with other cones, we write

SdA = CASdBdA .

A4 Propoéition If 7 +<s an S-shellable cone-complex then

so t8 the (CC~)eone CZ on z .

Proof We have to show that if SdX 1is shellable, for X
a cone-cell, then so is SdCX . Since X is a ball any
shelling of SdX satisfies condition (ii) of IT 1.1 .
Thus the result follows from Proposition A3 if we show that
there ista pseudocylinder structure J(SdX) on SdCX (having
equipped SdX , SdCX with marked faces to obtain simplicial
SC-complexes).

The case X = an O-cell is obvious.

Let dim X = n = 1 . A marked face structure can be

defined on SdX as shown in II 2.1 . We identify X x {0} <CX
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with X and specify a pseudocylinder J(SdX) with

UJ = SdCX , io(SdX) = SdX and il(SdX) = a subcomplex Y of

SdCX which is defined by induction on the skeleta of X .
Let Yo be the union of the barycentres of the faces

CB for B an O-face of X . Assume Yeoq @ =ks<n-1)

has been defined. For each k-face A of X (using

SdCA = C~,SdBdA) 1let Yk n SdCA = CCA(Yk-l n SdBdCA).

CA
This gives Y

n-1 °
Each vertex of Y,.7 1s the barycentre of CA for some
face A of X . Hence, for k 2 0 and any k-simplex D of

Y there is a (k+1)-simplex Dv of SdCX containing D

n-1 ?
and the cone-point v of CX . We take Y to be the union
of the simplices Dv for D c Y,.1 -+ Thus Y is the

(simplicial) cone on Y with cone point v .

n-1

The construction of Y through taking successive cones
gives a CC-isomorphism v: SdX - Y . We define a structure
of marked faces on Y to make v an §f—isomorphism.

The stacks of J(SdX) are defined by induction on the
skeleta of__SdX . For each face F of SdX we give the
subcomplex Jg of SdCX : this specifies the stack Jg in
an obvious way.

If F 1is a vertex of SdX then F 1is the barycentre
bA of some face A of X . We set Jpa = CCAbA for A # X
and J

~bX
of SdX have been defined. Let F be a k-face of SdX and

= CX(bX u v) . Assume the stacks on (k-1)-faces

let A be the highest-dimensional face of X such that bA
is a vertex qf F . Denote the (k-1)-face of F not containing
bA by E . If A # X we set JF = CCA(F U JE) ; if A =X

we set QF = CCX(F U‘QE u v(F))
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We specify the marked faces of the simplices in the
stack Jp = {Fo, Fl’ ..., F
jo=1, 2, ..., q, (ij)* =
of Fj which belongs to JP* (dim F = k)

qQ’ Fq} as follows. For
F._1 and (Fj)* = the (k-1)-face
We now have that SdCX is a simplicial §E—complex and

J(SdX) is a pseudocylinder with no trivial stacks. O

Before going on to the cylinder construction we prove the

following result, which is used in A9 .

A5 Lemma If X s an OSC-complex and J(X) <is a pseudo-
cylinder with no trivial stacks there exists a pseudocylinder
SJ(SdX) with no trivial stacks such that USJ = SdUJ ,

1

o _ o 1 _
(SdX)SJ = SdXJ and (SdX)SJ = SdXJ

Proof We let igJ : SdX ~» (SdX)gJ be the §3—isomorphism
induced by ig : X > Xg (o = 0,1) .

Induction on skeleta of SdX 1is used to define the stacks
of SJ(SdX) . For each face F‘ of SdX we give the
.subcomplex SJg of USJ = SdUJ ; this specifies the stack SJg

For A a face of X , let the stack JA be

. % " -1
(i3 = Ay, K, A, oo, B, Ap = 13(A)) . Recall (IV 2.1)
that Aj-l and Aj are faces of Ki and there is an SPoly-
isomorphism vj: A~ Aj for j=0,1, ..., q . Let
vy SdA - SdAj_ be the GSC-isomorphism induced by Vj

If F is a vertex of SdX then F 1is the barycentre

bA of some face A of X . We set

SJIE

L}
- C

Cy (sv:_(F) u sv.(F))
1<j<q Aj - 1 J

(setting 'SdKj = CK. SdBdKj) . Assume the stacks on (k-1)-faces
J
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of SdX have been defined and consider a k-face F of
SdX . Take A to be the highest-dimensional face of X
such that DbA 1is a vertex of F and denote the (k-1)-face
of F not containing bA by E . We set
SJp = 1s;sq Cchgvj-l(F) u (§§E g saKj) u svj(F))
Routine checking shows that we obtain a pseudocylinder

SJ(SdX) as required. [

A6 Proposition If 7 +1s an S-shellable cone-complex then

so ts the cylinder 1 x 1

Proof We have to show that if SdX 1is shellable, for X a
cone-cell, then Sd(X x I) 1is shellable.

Marked face structures can be defined on SdX , Sd(X x I)
(see II 2.1) to give simplicial §3—comp1exes. Although we
cannot define a pseudocylinder structure on X x I without
S-shellability we can define a pseudocylinder SJ(SdX) with
UJ = SA(X X I) , (SAX)3; = SA(X x {0}) , (SdX)g; = SA(X x {1}
in a way precisely analogous to the proof of A5 . Since
SJ(SdX) has no trivial stacks and any shelling of the ball
SdX satisfies condition (ii) of II 1.1 , S4d(X x I) 1is

shellable by A3 . 0

In order to show that the construction VZ preserves
S-shellability we need the result below. The notion of a
(general) subdivision of a cone-complex is used in the proof.
Let U and V be cone complexes. Wesay V is a subdivision
of U if the underlying spaces of V and U are identical
and each open cell of V 1is contained in an open cell of U .

The notion of barycentric subdivision SdU is a special case of

general subdivision.
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A7 Proposition Let (Y,Z) be a CC-pair and let sY be the

complex obtained by replacing L by SdZ . If Y <s

S-ghellable then so 28 sY .

Proof Consider an n-cell X of Y (n 21) with X n Z #0¢ .

If X< Z then X is replaced by SdX in sY . Since
the faces of SdX . are simplices S&k is an S-shellable
subcomplex of sY .

If X¢Z then X n Z 1is a subcomplex of BdX and X
is replaced by the n-cell sX in sY . We have to show that
Sd(sX) 1is shellable.

Let o be an n-simplex of SdX such that
o n SdZ # @ . Denote the subcomplex o n SdZ of o by B
and let - q = dim B . Since X ¢ Z we have 0 <q=<n-1.
Now « may be characterized as (bAo, bAl, cees bAn) where
bA; is the barycéntre of the i-face A; of X and

1

A0 c A1 € ... € An =X . If B contains any vertex bAr of

a such that r > q then A, < Z so that the r-face

(bA_, bA cees bAr) < B, which is a contradiction. On the

1’
other hand, B must contain at least one q-face of o .

o,

Hence B = (bAO, bAl’ ce oy bAq) .

The face B of sX is replaced by SdB in Sd(xX) .
There is a subcomplex A of Sd(sX) such that A is a
(general) subdivision of « -and there is a CC-isomorphism

A+ CC...C SdB ( = ¢4 sdB) which maps bA, onto the cone
n-q
point of C(C¥ 97 1saB) . We identify A with " %sdB .
We can define a shelling of Sd(sX) which models a
shelling of SdX (replacing each n-simplex o such that

o« n SdZ # @ with a sequence of n-simplices of C"79saB) if
the following holds:
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Claim If w= U V , where w is a broper subset of
Vel
the set of (n-1)-faces of o = (bAo, bAl’ . bAn) , there
is a linear ordering Fl’ FZ’ ey Ft of the n-faces of
c""49sdB which satisfies (*), : for 1sist,
i-1
Fi n (Wu v Fj) is a non-empty union of (n-1)-faces of E,
j=1

which does not include every such face.

The claim is proved by induction. SdB 1is shellable by
Al and the intersection of each q-face of SdB with BdB
is a (q-1)-face. Assume that, for q < k < n and each proper
subset wk_l of the set of (k-2)-faces of
(bA,, DAL, ..., bA,_;) , there is a shelling of ck-a-lg4p

which satisfies (*)w . Consider a proper subset W, of
k-1

the set of (k-1)-faces of (bAO, bAl, . bAk) . We define

a shelling Fy, F,, ..., F, of ck-954B  which satisfies

(*)wk . There are three cases:

1. wk is the set of all (k-1)-faces of (bAo, bAl, . bAk)

other than (bA_, ..., bAk—l)

It is easily shown that Fi n Wk is a union of (k-1)-

faces of Fi (1 <i < t) . Thus we can take any shelling

E of Ck_q_ISdB and set F. = CE.

EZ’ --.5 By i i

B

2. wk is a proper subset of the set of (k-1)-faces of
(bAo, ooy bAk) other than (bAo, ceny bAk—l)
Here there exists a proper subset U, of the set of

(k-2)-faces of (bAo, coes bAk_l) such that W, = CWk_1 .

k-q-1

Let E E E be a shelling of C satisfying

12 S22 v Bt

(*)wk . and take Fi = CEi for 1 =1, 2,..., t .
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3. (bAys ++-» DAp_1) € Uy -
For any k-face F of ck-dsgn » Foa (bAj, ..., bA_;)

is a (k-1)-face of F . We let Fi = CEi (1 =i < t) , where

E;s By, .5 E, is a shelling ck-a-lggp . 1f
k-q-1

Wy ={(bA0, cees bAk_l)} any shelling of C may be used.

Otherwise, El’ EZ’ ey Et is obtained as in 2 above. [

From Propositions A6 and A7 there follows immediately:

A8 Proposition If 71 <8 an S-shellable marked cone-complex

then VI 18 also S-shellable. 0O

Finally, we have (see IV 3.4 , 3.5 )

A9 Proposition For I an §E-complex, let J(Z) be a

pseudocylinder. A rectifier RJ on J(Z) is S-shellable.

Proof The notation of IV §§2, 3 is used. In view of
IV 3.5 it is sufficient to show that if X 1is an S-polycell
and J(X) 1is a pseudocylindef then SdRJ = SdRJX is
shellable.

Since the pseudocylinder EJ(X) has no trivial stacks

there exists, by A5 , a pseudocylinder structure SEJ(SdX)

on Sd UEJ with (SdX)gEJ = sang = deg- and

(SdX)éEJ - deéJ = sd(x x {o})

By IV 3.5 (iii) , rJ = rJy is SCisomorphic to X x I
Thus  (IV 2.2 (iii)) there is a canonical pseudocylinder
structure (X)) with UI = rJ , X% = Xg and X§.= X x {0}
Since T(X) has no trivial stacks, there is also a
pseudocylinder SH(SdX) with USI = SdrJ , (SdX)g = $dX§

and (de)én = Sd(X x {0} )
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For each face F of SdX we define a subcomplex QF
of SdRJ . (As usual, we identify SdW with CWSdBdW for
W a face of RJ.) If F is a vertex of SdX then F is
the barycentre bA of a face A of X . Set

QF = CRJA(QEQF v §EF ) . Assume that QG has been defined

for each face G of SdX with dimG <k - 1 . Let F be a
k-simplex of SdX . Take A to be the highest-dimensional
face of X such that 'bA is a vertex and let D by the
(k-1)-face of F not containing bDA . Set
Qe = CRJA(%;‘IF U Qp u Sy ).

For each face F of SdX a shelling SF of QF is
defined by induction on dim F . Since QF is a cone on a
complex Y we can specify SF by giving a shelling‘of Y .

In the case F = a vertex, Y = §§£F U §EF is shelled as

~

follows. Let SEJp = {F_, Fy, ..., iq, Fq} ,

', F., F ?;, F;} and proceed:

r = or F1s Fis wees
?1, ?2, ceey ﬁq, ﬁi, cees ?; . Assume SG has been defined

STt {F

for dim G = k - 1 and consider the k-face F . Here the

shelling of Y = §§£F u QD U §EF proceeds: ?1, ?2, ceey F_o;

q
- . ~1 ~t ~9
the shelling SD of QD, Fl’ FZ’ ooy Fr
Let dim X = n so that dim RJ =n + 2 . We have
SdRJ = U Qp . Thus a linear order S ‘on the set of (n+2)-

FeSdX
faces of SdRJ is defined by following a shelling F1l, F2

Fl1,F2, ..., Ft of SdX , replacing Fi (i =1, 2, ..., t) by
the sequence SFi of (n+2)-faces of Qg; -

To see that S 1is a shelling, consider QFi . Since Fi
is an n-face of SdX , the barycentre bX 1is a vertex of Fi

Denote the (n-1)-face of Fi not containing bX by D.
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i-1 .
Then D = Fi n BdSdX and we have Fi n uv Fj = uvu G,
j=1 Ged

where ¢ 1is a set of (n-1)-faces of Fi which does not

include D . It can be shown that if U, V, W are simplices

of SdX such that U n V =W then Qu " Qy = Qy -
i-1
Hence Qg: n v Q. = v Q. .
F1 7 521 FJ Geo G

Let the shelling SPi be Zl’ ZZ’ ceey Zm . We find

(by an argument using induction on dim Fi ) that if G # D
k-1

is an (n-1)-face of Fi then Zy 0 QG c j:1 Zj or Zy n Qg
is an (n+l1)-face of Zk (1 <k £m) . Hence

k-1 i-1 k-1
Z, n (v Z: v v Qg:) = (Z, 0 v Z.) u (Z, n uv Q.)
k j=1 J j=1 Fj k j=1 J k Ged G

is a union of (n+1)-faces of Zk and S 1s a shelling of

SdRJ . [



GLOSSARY OF SYMBOLS

Standard notation used without comment

Bl’l

(¢]]

cl

Categories

Set

Top

SPoly

SPos
P ’

Conv

standard n-cell
standard n-sphere

unit interval
boundary of a cell or manifold

interior » n w n “

closcd cell
closure

sets

topological spaces

regular complexes

cone-complexes

marked cone-complexes

polycells

S-shellable marked cone-complexes
S-shellable po&ycells

skeleton of SPoly

S-posets

skeleton of SPos

model category

simplicial model category

wide subcategory of A; Poly-simplices
cubical model category

wide subcategory of 0O ; Poly-cubes

globes

convex cone-cells

I/2
1/2
1/4
1/6
I/11
1/12
11/6
I1/6
II/11
I1/14
11/23
1/2
1/2
1/24
1/25
1/25
1/24
I1/8
I1/11



Cv skeleton of Conv 11/11

MTC MT-complexes, M e T 111/4
ATC simplicial T-complexes I11/2
gTc cubical T-complexes I111/2
XC crossed complexes 1v/33

Classes of categories

r 1/21
ET I1/8
Functors
s: A~ SetMop singular functor 1/2
r, |]: SetMop+ A realization functor 1/3
F: SPoly + SPos 11/16
G: SPos = SPoly 11/22
E: ATC - AITC I11/5
n: AITC + ATC I11/8
rM:'MTC -+ AITC 111/4
ey: ATC > MTC I111/38
. PTC - MTC 1V/20
Ppt PTC » ATC 1v/27
CIoE PTC = OTC 1v/27
ep: ATC + PTC IV/28
g: OTC » ATC 1V/31
T: ATC » 0OTC 1V/29
p: ATC »+ XC 1V/33
v': OTC » XC | 1V/36

A: XC o~ OTC | 1V/36



Standard polycells

In

.An

Gn

Constructions of cone-complexes

n-cube
n-simplex

n-globe

Xx1I
CX
DX
SdX

Vi
RJ

Collapses

A(X): SdX - pX \ SdBdX
B(X,t): SAX\ SdBdX - Int t

( Q%—cylinder
CC-cylinder

CL-cone
CC-cone

CC-dome

CC barycentric subdivision
CC barycentric subdivision

(
(
(
( CC-dome
C
(
(

rectifier on a pseudocylinder

Ag(VX): VXN X

AL (VX): VXN SdX

C

C

J:
R:

UJ \ X°
RJ \\ UEJ

Pseudocylinders

J(X)
An: X
I(x)

Il

J5(8)
35 (8)

= Y

(J + L) (X)

EJ(X)

1/25
1/24
1/24

1/9
1/23

I/9
/23

1/10
1/23

1/7
11/6

11/7
I1V/15

IT11/18
I11/20
111/22
I111/23
1V/13
1v/17

1v/6
. ITI/30
1v/9
1v/9
Iv/13
IV/13
1v/14
1v/14



Miscellaneous

h characteristic map for cell

A
a )
bA ) barycentre of cell
A, marked face

z(X) ordering of faces of a polycell
co(X) vertex-ordering of polycell
cs(X) ordering of cells of Int SdX
cs(BdX) ordering of cells of SdBdX

face map in M-sets

A

€5 degeneracy map in an MT-complex
di’sj simplicial face, degeneracy maps
afx,ej cubical face, degeneracy maps

[a,b]l] interval in poset
p(a) rank of element of graded poset
A(Q) order complex of a poset

Qs+ maximal subtree of poset Q

1/5
1/7

I/11
1/19
I1/20
IT1/13
I11/13
1/23
IV/18
I11/5
1v/2
I1/13
11/12
11/12
11/14
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