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The notion of k-space has turned out to be important in various applications,
and the analysis of this use brings out some interesting questions on the role
of general topology. On the one hand, k-spaces are a particular kind of space,
and so the analysis of their properties such as subspaces, products, and so on is
of interest. On the other hand, the notion of topological space arose partly to
give a useful setting to the notion of continuity, when it was found that metric
spaces were inadequate for the applications. Thus from this point of view, we
may not care what is the definition of topological space as long as it plays an
adequate role for the purposes in mind. So then we have to ask how we define
these purposes.

Since we need a notion of continuity, which defines a relation of a topological
space to all other spaces, we are led to a categorical viewpoint, that is, the
study of the category Top of all topological spaces and all continuous maps.
This global viewpoint suggests asking if this category has all the properties we
would desire, and if not, is there a ‘better’ candidate? It is not clear if the ‘final
answer’ has yet been obtained, but the notion of k-space has played a key role
in this investigation. An influential step was the remark in the R. Brown’s 1963
paper [3]: ‘It may be that the category of Hausdorff k-spaces is adequate and
convenient for all purposes of topology.” Of course ‘adequate’ means that the
category contains the basic spaces with which one wishes to deal, for example
metric spaces. A key list of desirable properties for a convenient category
was given in [4], which amounted to the property of being what is now called
cartesian closed [17]. This term ‘convenient category’ was adopted in Steenrod’s
widely cited 1967 paper [18], and the scope of the idea was extended by other
writers. For example, the 1998 book by Kriegl and Michor [15] provides a
‘convenient setting for global analysis’. It is interesting to see from their account
that workers in that field started by taking up the advantages of k-spaces, but
eventually found a different setting was needed, and that is the main topic of
[15]. But in certain applications, for example algebraic topology, it is often
sufficient to have and to use a convenient category without knowing the specific
details of its construction.

There are also a number of purely topological questions of interest in k-spaces
and these we will come to later.

We first give the definition in the Hausdorff case. A Hausdorff space is said
to be a k-space if it has the final topology with respect to all inclusions C — X
of compact subspaces C' of X, so that a set A in X is closed in X if and only if
ANC is closed in C for all compact subspaces C' of X. Examples of k-spaces
are Housdorff spaces which are locally compact, or satisfy the first axiom of
countability. Hence all metric spaces are k-spaces. Also all CW -complexes are
k-spaces. A closed subspace of a k-space is again a k-space, but this is not true
for arbitrary subspaces [E]. A space is Frechet-Uryson if, whenever a point z
is in the closure of a subset A, there is a sequence from A converging to z; it is
proved in [1] that a k-space X is hereditarily k, i.e. every subspace is a k-space,



if and only if X is Frechet-Uryson.

The product of k-spaces need not be a k-space. Let W4 be the wedge of
copies of the unit interval [0, 1] indexed by a set A, where [0,1] is taken to
have base point 0, say. (The wedge \/ .4 X, of a family {X,}sca of pointed
spaces is the space obtained from the disjoint union of all the X, by shrinking
the disjoint union of the set of base points to a point.) Consider the product
X = W4 x Wg where A is an uncountable set and B is countably infinite.
It is proved in [9] that X is not a CW-complex, although W4, Wg are CW-
complexes. Kelley in [14] states as an Exercise that the product of uncountably
many copies of the real line R is not a k-space. A solution is in effect given in
[2], since the example is used in showing that various topologies on X x Y are
in general distinct.

One place k-spaces arise is with the Ascoli Theorem (see [E]): Let X be a
k-space, let B be the family of compact subsets of X, and let (Y,U) denote a
uniform space. Then a closed subspace F' of the space Top(X,Y) of continuous
functions X — Y with the compact-open topology is compact if and only if the
following conditions hold:

(a) F|Z is equicontinuous for oll Z € B,
(b) for all x € X the set F(z) = {f(z): f € F} is a compact subset of Y.

However the most widespread applications of k-spaces are in algebraic topol-
ogy, for dealing with identification spaces and function spaces.

A problem with identification maps is that the product of identification maps
need not be an identification map. One example derives from Dowker’s example
mentioned above — another is f x 1: Q x Q — (Q/Z) x Q, where Q/Z denotes
here the space QQ of rational numbers with the subspace Z of integers shrunk to
a point. (A proof is given on p.105 of [3].)

Identification spaces present another problem in that an identification of a
Hausdorff space need not be Hausdorff, and so there grew pressure, in view of
the important applications of identification spaces, to extend the definition of
k-space to non Hausdorff spaces. A useful definition was found by a number of
writers as follows.

We now say that a space X is a k-space (also called compactly generated)
if X has the final topology with respect to all maps C' — X for all compact
Hausdorff spaces C. We view maps t of this form as test maps. A consequence
of this definition is that X is a necessary and sufficient condition for X to be a
k-space is that for all spaces Y a function f : X — Y is continuous if and only
if ft: C — Y is continuous for all test maps ¢t : C' — X.

It may seem against common sense to have to test properties of a space X
by considering all compact Hausdorff spaces, but in fact since X has only a
set of closed subspaces, it is easy to show we can choose a set of test maps to
determine if X is a k-space. This allows one to show that X is a k-space if and
only if X is an identification space of a space which is a sum (disjoint union) of
compact Hausdorff spaces.

Let kTop denote the subcategory of Top of k-spaces and continuous maps.
The inclusion 7 : kTop — Top has a left adjoint k : Top — kTop which assigns to
any space X the space with the same underlying set but with the final topology



with respect to all test maps ¢t : C — X. The adjointness condition means that
there is a natural bijection

Top(iX,Y) — kTop(X, kY)

for all k-spaces X and topological spaces Y. Consequently k preserves limits,
and in particular the product X Xy Y in the category kTop is the functor k
applied to the usual product X x Y. Further, 7 preserves colimits.

The importance for function spaces of the maps kX — Y was first empha-
sised by Kelley [14] in the context of Hausdorff spaces. If we now work in the
category kTop, it is natural to define the function space for k-spaces Y, Z to be
the set of continuous maps ¥ — Z with a modification of the compact open
topology to the test open topology. This has a subbase all sets

W(t,U) ={f € Top(Y, 2) | ft(C) CU}

for all U open in Z and all test maps ¢t : C — Y. Finally we apply k to this
topology to get the function space kTOP(Y, Z). The major result is that the
exponential correspondence gives a bijection

kTop(X xx Y, Z) = kTop(X,kTOP(Y, 7))

for all k-spaces X,Y, Z. For a detailed proof, see for example [8] or the references
given there. Thus this result says that the category kTop is cartesian closed.
A consequence is that in this category the product of identification maps is an
identification map.

As an example of what can be proved formally from the cartesian closed
property, we note that the composition map

KTOP(X,Y) x kTOP(Y, Z) — kTOP(X, Z)

is continuous. Consequently, END(X) = kTOP(X, X) is a monoid in the cate-
gory kTop (using of course the product — xy —).

Another important use of this law in algebraic topology is to be able to
regard a homotopy as either a map I x X — Y or as a path I — kTOP(X,Y)
in a space of maps. It is awkward for applications to have to restrict X to be
for example locally compact, or Hausdorff.

As an example of the use of the category kTop we consider the construction
of free products G x H of k-groups G, H (by which is meant groups in the
category kTop so that we require the difference map (g',9) — ¢'¢g ! on G to be
continuous as a function G xx G — G). The group G * H is constructed as a
quotient set p: W — G * H where W is a monoid of words in G U H, and it is
easy to show the multiplication W xx W — W is continuous. Because p Xy p is
an identification map in kTop, it follows that the difference map on G+ H (which
is given the identification topology) is also continuous. This type of application
is pursued in [10].

There is another way of making this type of colimit construction, which
also applies much more generally, for example to topological groupoids and



categories, see [7]. This method, based on what is known as the adjoint functor
theorem, see [17], supplies an object with the appropriate universal property
but the method gives no easy information on the open sets of the constructed
space. It can be argued that the universal property, since it defines the object
uniquely, is all that is required and any more detailed information should be
deduced from this property.

A more direct way has been found as follows. A topological space X is a
k,-space if it has the final topology with respect to some countable increasing
family Xg C X; C--- C X, C--- of compact subspaces whose union is X. The
following are some main results on these spaces, proved in [19].

Let X be a Hausdorff k,,-space, and let p: X — Y be an identification map.
Then the following are equivalent: (i) The graph of the equivalence relation
associated with p is closed in X x X. (i1) Y is a Hausdorff k,-space.

Ifp: X =Y, q:7Z — W are identification maps of Hausdorff k,,-spaces
XY, Z, W thenpxq: XxZ — Y xW is also an identification map of Hausdorff
k. -spaces.

These results are used in [6] for the construction of free products of Hausdorff
k,-groups (and more generally for constructions on topological groupoids).

There are other solutions to the problem of the inconvenient nature of the
category Top. An early solution involved what are called quasi-topologies [16].
This was gradually thought to be unacceptable because the class of quasi-
topologies on even a 2-point set did not form a set. However, this objection
can be questioned.

Another solution involves the space N" which is the one point compactifi-
cation of the discrete space of positive integers, that is it involves a sequential
approach. For any topological space X one defines the s-test maps to be the con-
tinuous maps N' — X. The space X is said to be a sequential space (which
we abbreviate here to s-space) if X has the final topology with respect to all
s-test maps to X. The study of such spaces was initiated in [11]. By working in
a manner analogous to that for k-spaces one finds the category sTop of s-spaces
has a product X xsY and a function space sTOP satisfying an exponential law

sTop(X xsY, Z) = sTop(X,sTOP(Y, Z))

for all s-spaces X,Y, Z [20]. In fact the k-space and s-space exponential laws are
special cases of a general exponential law defined by a chosen class of compact
Hausdorff spaces satisfying a number of properties [8].

For sequential spaces, the property corresponding to Hausdorff is having
unique sequential limits, which we abbreviate to ‘has unique limits’. A space X
has unique limits if and only if the diagonal is sequentially closed in X x X.

Another advantage of sequential spaces is with regard to proper maps. The
one-point sequential compactification X "ofa sequential space X is defined
to be the space X with an additional point w, say, and with a topology such that
X is open in X " and any sequence in X which has no convergent subsequence
converges to tAhe additional point w. Any function f : X — Y has an extension
f X —Y in which the additional point of X is mapped to the additional



point of Y. Consider the following conditions for an ssmap f : X — Y: (a)
f" is an s-map; (b) fx1:Xx N' = ¥ x N is sequentially closed; (¢)
fx1:XxZ =Y x Z is sequentially closed for any s-space Z; (d) if s is a
sequence in X with no subsequence convergent in X, then fs has no subsequence
convergent in Y; (e) if B is a sequentially compact subset of Y, then f~1(B) is
a sequentially compact subset of X; (f) if s is a convergent sequence in Y then
f~1(3) is sequentially compact.

It is proved in [5] that (d)=(e)=(f)=(c)=(b), and that if X is Ty then
(b)=(d). Further, if X,Y have unique limits, then (a)<(c). It is reasonable
therefore to call a map satisfying (a) sequentially proper.

A further advantage of the sequential theory as shown in [13] is that the
category sTop can be embedded in a topos, that is a category which is not only
cartesian closed but also has finite limits and a ‘sub-object classifier’. This has a
number of implications, including fibred exponential laws and spaces of partial
maps, which are developed in books on topos theory and pursued further in this
case in the thesis of Harasani [12]. We cannot go into these implications here,
but they do suggest that extensions of the notion of topological space may be
very important for future applications.

We now come to some other topological properties related to convergence of
sequences.

A topological space X is called Fréchet if whenever z € X and A C X,
then z € A if and only if there is a sequence of points (z,) of A such that
(xn) — x. Then every Fréchet space is sequential but not conversely, and every
first countable space is Fréchet.

Let L be the subspace of [0, 1] consisting of 0 and the set of points 1/n,n =
1,2,3,.... Let L* =L\ {0}. Let X be the set [0, 1] retopologized as follows. The
neighbourhoods of ¢ in (0, 1] are the usual neighbourhoods. The neighbourhoods
of 0 are the usual neighbourhoods and also any set containing {0} U U where
U is a usual open neighbourhood of L*. Then X is sequential but not Fréchet,
while X \ L* is not sequential.

Let X be the space of of the previous paragraph but defined using QN {0, 1]
instead of [0,1]. Then X is not sequential, but satisfies U is open in X if and
only if U N A is open in A for every countable subset A of X.
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